用户名: 密码: 验证码:
超薄复合膜的理性设计、结构调控及脱湿性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
受细胞膜内水传递通道的启发,在膜内构建水分子传递通道,以提高水分子在膜内的扩散特性,同时通过降低膜的厚度,缩短水分子扩散路径,最终提高膜的脱湿性能。论文以膜内水传递通道的理性构建和复合膜表皮层的超薄化为出发点,以水/丙烯混合气为模型体系,制备了PVA-EDTMPA/PS复合膜、PVA-silica/PS杂化复合膜、Gelatin-silica/PS杂化复合膜和Polydopamine/PS复合膜。采用SEM、TEM、NMR、XRD、DSC、TG和PAS等方法对膜进行了表征,系统研究了膜的吸附、扩散和气体脱湿性能,并通过分子动力学模拟考察了膜的结构以及水分子在膜内的扩散过程。
     通过在PVA内引入EDTMPA,利用两者之间较强的相互作用,调控膜的自由体积特性,增大膜内水通道的体积和数量,并改变膜内水分子的状态。当EDTMPA含量小于10 wt.%时,膜内水通道的体积和数量增大,利于水分子在膜内的扩散。当EDTMPA含量在10-30 wt.%之间时,膜内自由水含量升高。由于自由水的扩散系数远大于结合水的扩散系数,当膜内自由水含量达到最高(24 %)时,渗透率达997.7 GPU,分离因子为无穷大(EDTMPA含量为20 wt.%)。
     将仿生矿化和高分子调控相结合,利用精蛋白的诱导作用,在PVA主体内原位合成大小均一、分散良好的氧化硅纳米粒子,制备出具有超薄PVA-silica杂化表皮层(0.8-1.0μm)的复合膜。通过改变PVA的热处理温度,控制PVA内受限空间的大小,制备出平均粒径为14.3、9.5和8.0 nm的氧化硅颗粒。由于水分子在PVA-silica界面通道内的扩散系数(2.82×10?7 cm2/s)高于PVA主体(1.05×10?7 cm2/s),杂化复合膜的渗透率可达1200 GPU,分离因子达无穷大(硅酸钠浓度为30 mM,pH为7.0,浸泡时间为1 h)。
     基于生物矿化原理,利用明胶的诱导作用和良好的成膜性能制备出具有超薄Gelatin-silica杂化表皮层(0.4-0.6μm)的复合膜,氧化硅纳米颗粒大小均匀,在表皮层内分散良好。明胶-silica界面通道的存在和明胶内主体通道连通性的改善,使得杂化复合膜的渗透率可达2497 GPU,分离因子达无穷大(膜内氧化硅含量为4.5 wt.%,pH为7.0,制备温度为40 oC)。
     利用仿生粘合剂多巴胺的迅速自聚合及其与支撑层之间的多种相互作用,制备出具有超薄表皮层(10-90 nm)的复合膜。通过改变制备条件可调控表皮层的厚度和致密度。利用聚多巴胺特殊的结构,构建了水传递的连续通道。聚多巴胺/聚砜复合膜的渗透率可达9317 GPU,分离因子达无穷大(多巴胺浓度为2 mg ml-1,pH为9.4,浸泡时间为0.5 h)。
Inspired by the channels in the cell membranes for water transportation, water transport channels were constructed in the synthetic membranes for gas dehumidification to facilitate the diffusion of water. Meanwhile, the thickness of the membrane was significantly reduced to decrease the diffusion path. Thus, the dehumidification performances could be improved. The goals of this dissertation were to design the the water channels rationally and fabricate composite membranes with ultra-thin skin layer. The water/propylene mixture was chosen as the model system. Four kinds of composite membranes, including PVA-EDTMPA/PS, PVA-silica/PS, Gelatin-silica/PS and polydopamine/PS, were fabricated. The as-prepared membranes were characterized by SEM, TEM, NMR, XRD, DSC, TG and PAS etc. And the sorption properties, diffusion properties and the separation performance were investigated extensively. Molecular dynamics simulation was employed to probe the microstructure and diffusion process of water molecules in the membranes.
     In the PVA-EDTMPA/PS composite membranes, the size and amount of the water channels were enhanced and the water states were adjusted by the stronger interaction between EDTMPA and PVA. At low EDTMPA content (<10 wt.%), the increase of water diffusion coefficient was mainly attributed to enlarged size and amount of water channels. At high EDTMPA content (10-30 wt.%), the increase of water diffusion coefficient mainly araised from the variation of water states. Diffusion coefficients of water increased with the increasing proportion of free water, since the mobility of free water was much higher than that of bound water. The water permeance of PVA-EDTMPA/PS membranes with the highest amount of free water (24 %) reached 997.7 GPU and the separation factor increased to infinity for water/propylene (0.3 wt.%) mixture, when the content of EDTMPA in the membranes was 20 wt.%.
     Composite membranes with ultrathin PVA-silica nanohybrid skin layer (0.8-1.0μm) were fabricated by a novel approach combing the biomimetic mineralization and polymer mediated method. The silica particles induced by protamine in confined space within the crosslinked PVA matrix showed a uniform size without aggregation. The silica nanoparticles with the average diameters 14.3, 9.5 and 8.0 nm were generated by controlling the size of confined space via adjusting the thermal treatment temperature. Since the diffusion coefficients of water in the interfacial water channels (2.82×10?7 cm2/s) was higher than that in the PVA bulk region (1.05×10?7 cm2/s), the water permeance of the composite membranes was increased to 1200 GPU, meanwhile, the separation factor increased to infinity for water/propylene (0.3wt.%) mixture (sodium silicate concentration 30 mM, pH 7.0, dipping time 1 h).
     Composite membranes with ultrathin Gelatin-silica nanohybrid skin layer (0.8-1.0μm) were fabricated based on biomineralization principle utilizing the inducing and membrane-forming properties of the gelatin. The size and morphology of the well-dispersion silica particles in the hybrid membranes can be controlled by the fabricated conditions. Since the existence of gelatin-silica interfacial water channels and the desirable connectivity of water channels in the gelatin bulk, the water permeance of the composite membranes was increased to 2497 GPU, meanwhile, the separation factor increased to infinity for water/propylene (0.3wt.%) mixture (silica content 4.5 wt.%, pH 7.0, fabricated temperature 40 oC).
     Inspired by the bioadhension principle, composite membranes with ultrathin defect-free skin layer (10-90 nm) were fabricated utilizing the self-polymerization of dopamine and its strong interaction with support layer. The thickness and compactness of the skin layer were conveniently tuned by varying fabrication conditions. The as-prepared membranes displayed special structure, which induced the continuous water channel. The water permeance of the composite membranes was 9316.7 GPU, and the separation factor of water vapor/propylene was infinite for water/propylene (0.3 wt.%) mixture (the dopamine concentration 2 mg/ml, pH 9.4, dipping time 0.5 h).
引文
[1] Kesting RE, Fritzsche AK, Polymeric gas separation membranes, New York: John Wiley & Sons, Inc., 1993.
    [2] Ho WSW, Sirkar KK, Membrane handbook.New York: Van Nostrand Reinhold, 1992. 17~95.
    [3] Graham T, On the law of diffusion of gases, J. Membr. Sci., 1995, 400: 17~21.
    [4]刘茉娥,膜分离技术应用手册,北京:化学工业出版社,2000,18~21.
    [5] Matson SL, Lopez J, Quin JA, Separation of gases with synthetic membranes, Chem. Eng. Sci., 1983, 38(4): 503~524.
    [6] Henis JMS, Tripodi MK, Composite hollow fiber membranes for gas separation: The resistance model approach, J. Membr. Sci., 1981, 8: 233~246.
    [7] Henis JMS, Tripodi MK, A novel approach to gas separations using composite hollow fiber membranes, Sep. Sci. Tech., 1980, 15: 1059~1068.
    [8]董子丰,气体膜分离技术在石油工业中的应用,膜科学与技术,2000,20(3):41~43.
    [9]陈桂娥,韩玉峰,阎剑,许振良,房鼎业,气体膜分离技术的进展及其应用,化工生产与技术,2005,12:23~35.
    [10] Bitter JGA, Transport mechanisms in membrane separation processes, New York: Plenum Press, 1991.
    [11] Wijmans JG, Baker RW, The solution-diffusion model: a review, J. Membr. Sci., 1995, 107: 1~21.
    [12] Mulder M, Basic priciples of membrane technology, Dordrecht: Kluwer Academic Publishers, 1991.
    [13]张立志,江亿,膜法空气除湿的研究与进展,暖通空调,1999,29:28~32.
    [14] Metz SJ, van de Ven WJC, Potreck J, Mulder MHV, Wessling M, Transport of water vapor and inert gas mixtures through highly selective and highly permeable polymer membranes, J. Membr. Sci., 2005, 251(1-2): 29~41.
    [15] Wang F, Chen TL, Xu JP,Synthesis of poly(ether ether ketone) containing sodium sulfonate groups as gas dehumidification membrane material, Macromol. Rapid Commun,, 1998, 19(2): 135~137.
    [16] Sijbesma H, Nymeijer K, van Marwijk R, Heijboer R, Potreck J, Wessling M, Flue gas dehydration using polymer membranes, J. Membr. Sci., 2008, 313(1-2): 263~276.
    [17] Chen G, Zhang XS, Wang JH, Zhang SB, Synthesis and characterization of soluble poly(amide-imide)s bearing triethylamine sulfonate groups as gas dehumidification membrane material, J. Appl. Polym. Sci., 2007, 106(5): 3179~3184.
    [18] Li GM, Feng CS, Li JF, Liu JZ, Wu YL, Water vapor permeation and compressed air dehydration performances of modified polyimide membrane, Sep. Purif. Technol., 2008, 60(3): 330~334.
    [19] Metz SJ, van de Ven WJC, Mulder MHV, Wessling M, Mixed gas water vapor/N2 transport in poly(ethylene oxide) poly(butylene terephthalate) block copolymers, J. Membr. Sci., 2005, 266(1-2): 51~61.
    [20] Jia L, Xu XF, Zhang HJ, Xu JP, Permeation of nitrogen and water vapor through sulfonated polyetherethersulfone membrane, J Polym Sci B: Polym Phys, 1997, 35 (13): 2133~2140.
    [21] Wang ZG, Chen TL, Xu JP, Gas and water vapor transport through a series of novel poly(aryl ether sulfone) membranes, macromolecules, 2001, 34(26): 9015~9022.
    [22] Okamoto K, Kita H, Horii K, Tanaka K, Zeolite NaA membrane: preparation, single-gas permeation, and pervaporation and vapor permeation of water/organic liquid mixtures, Ind. Eng. Chem. Res., 2001, 40(1): 163~175.
    [23] Zhua W, Gora L, van den Berg AWC, Kapteijn F, Jansen JC, Moulijn JA, Water vapour separation from permanent gases by a zeolite-4A membrane, J. Membr. Sci., 2005, 253(1-2): 57~66.
    [24] Sato K, Sugimoto K, Nakane T, Preparation of higher flux NaA zeolite membrane on asymmetric porous support and permeation behavior at higher temperatures up to 145 ?C in vapor permeation, J. Membr. Sci., 2008, 307(2): 181~195.
    [25]王金渠,李铮,A型沸石膜的制备及其在气体脱湿中的应用,膜科学与技术,1998,18(2):54~58.
    [26]时钧,袁权,高从堦,膜技术手册,北京:化学工业出版社,2001.
    [27]严万程,卡特斯膜空气除湿新工艺,石油与天然气化工,2001,30(6):281~286.
    [28]徐晓峰,贾连达,徐纪平.高分子除湿膜的进展,高分子通报,1993,4:226~229.
    [29]吴庸烈,膜蒸馏技术及其应用进展,膜科学与技术,2003,23(4):6.
    [30] Schell WJ, Spiral-wound permeators for purification and recovery, Chem. Eng. Prog., 1982, 78: 33~37.
    [31]张才靑,天然气中酸性气体脱除的新方法-膜分离法,天然气工业,1993,13(1):95~99.
    [32] Murphy MK, Beaver ER, Rice AW, Post-treatment of asymmetric membranes for gas application, AICHE Symp. Ser, 1989, 85: 34.
    [33]刘丽,陈勇,康元熙,刘韧,邓麦村,天然气膜法脱水工业过程开发,石油化工,2001,30(4):302~304.
    [34] Wessling M, Lidon Lopez ML, Strathmann H, Accelerated plasticization of thin-film composite membranes used in gas separation, Sep. Pur. Tech., 2001, 24(1-2): 223~233.
    [36] Alexander SS, Polymer for gas separations: The next decade, J. Membr. Sci., 1994, 94: 1~65.
    [36] Pesek SC, Koros WJ, Aqueous quenched symmetric polysulfone hollow fibers prepared by dry/wet phaseseparation, J. Membr. Sci., 1994, 88(1-2): 1~19.
    [37]姜忠义,刘亮,冯海锋,彭福兵,潘福生,渗透蒸发复合膜的选材与制备,现代化工,2004,24(4):11~14.
    [38]汤蓓蓓,徐铜文,武培怡,界面聚合法制备复合膜,化工进展,2007,19(9):1428~1435.
    [39]崔绍波,卢忠远,刘德春,贺凤伟,宋丽贤,界面聚合技术在材料制备中的应用,化工进展,2006,20(7):47~50.
    [40]毕经京,后晓淮,等离子体聚合在膜分离技术中的应用,化学通报,1990,12:8~12.
    [41]邓联东,孙多先,董岸杰,侯国玲,聚电解质自组装复合多层膜的研究进展,化学工业与工程,2001,18(6):401~407.
    [42]刘之景,王克逸,朱俊,张凯,自组装法制备聚合物纳米复合膜的新进展,膜科学与技术,2003,23(1):50~52.
    [43] Wang KL, McCray SH, Newbold DD, Cussler EL, Hollow fiber air drying, J. Membr. Sci., 1992, 72(3): 231~244.
    [44]刘丽,聚合物膜中水蒸气渗透行为及脱湿过程研究:[博士学位论文],大连;中科院大连化物所,2000.
    [45] Aranda P, Chen WJ, Martin CR, Water transport across polystyrenesulfonate/alumina composite membranes, J. Membr. Sci., 1995, 99(2): 185~195.
    [46]王洪军,刘家祺,唐娜,PVA/PS中空纤维复合膜用于脱除丙烯中微量水分的蒸汽渗透性能研究,膜科学与技术,2004,24(04):27~31.
    [47]王洪军,刘家祺,李俊台,CS/PS中空纤维复合膜脱除丙烯中微量水分的研究,石油化工,2003,32(11):1~5.
    [48]王洪军,分离丙烯中微量水分复合膜的制备及渗透行为研究:[博士学位论文],天津;天津大学,2004.
    [49] Peinemann KV, Iritsch D, Bellingen EM, Deppe M, Schossig-tiedemann M,Composite membrane with support structure made of microporous material, United States Patent, 6277483, 2001-08-21.
    [50] Ito A, Sasaki H, Yonekura M, Dehumidification of air by zeolite filled polymer membrane, J. Jpn. Petrol. Inst., 1998, 41(3): 216~221.
    [51] Yeh JM, Yu MY, Liou SJ, Dehydration of water–alcohol mixtures by vapor permeation through PVA/clay nanocomposite membrane, J. Appl. Polym. Sci., 2003, 89(13): 3632~3638.
    [52] Lu ZH, Liu GJ, Duncan S, Poly(2-hydroxyethyl acrylate-co-methyl acrylate)/SiO2/TiO2 hybrid membranes, J. Membr. Sci., 2003, 221(1-2): 113~122.
    [53] Lue SJ, Lee DT, Chen JY, Chiu CH, Hub CC, Jean YC, Lai JY, Diffusivity enhancement of water vapor in poly(vinyl alcohol)–fumed silica nano-composite membranes: Correlation with polymer crystallinity and free-volume properties, J. Membr. Sci., 2008, 325(2): 831~839.
    [54] Chung TS, Jiang LY, Li Y, Kulprathipanja S, Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation, Prog. Polym. Sci., 2007, 32(4): 483~507.
    [55] Jia MD, Peinemann KV, Behling RD, Preparation and characterization of thin-film zeolite–PDMS composite membranes, J. Membr. Sci., 1992, 73(2-3): 119~128.
    [56] Huang Z, Shi Y, Wen R, Guo YH, Su JF, Matsuura T, Multilayer poly(vinyl alcohol)–zeolite 4A composite membranes for ethanol dehydration by means of pervaporation, Sep. Purif. Technol., 2006, 51(2): 126~136.
    [57] Kwak SY, Kim SH, Kim SS, Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling. 1. Preparation and characterization of TiO2 nanoparticle self-Assembled aromatic polyamide thin-film-composite (TFC) membrane, Environ. Sci. Technol., 2001, 35(11): 2388~2394.
    [58] Jiang LY, Chung TS, Kulprathipanja S, An investigation to revitalize the separation performance of hollow fibers with a thin mixed matrix composite skin for gas separation. J. Membr. Sci., 2006, 276(1-2): 113~125.
    [59] Li Y, Chung TS, Huang Z, Dual-layer polyethersulfone (PES)/BTDA-TDI/MDI co-polyimide (P84) hollow fiber membranes with a submicron PES-zeolite beta mixed matrix dense-selective layer for gas separation, J. Membr. Sci., 2006, 277(1-2): 28~37.
    [60] Jiang LY, Chung TS, Kulprathipanja S, Fabrication of mixed matrix hollow fibers with superior intimate polymer/zeolite interface for gas separation, AIChE J., 2006, 52(8): 2898~2908.
    [61] Li Y, Krantz WB, Chung TS, A novel primer to prevent nanoparticleagglomeration in mixed matrix membranes, AIChE J., 2007, 53(9): 2470~2475.
    [62] Sylvie Neyertz, David Brown, Molecular dynamics simulations of oxygen transport through a fully atomistic polyimide membrane, Macromolecules, 2008, 41(7): 2711~2721.
    [63] Fried JR, Gas diffusion and solubility in poly(organophosphazenes): Results of molecular simulation studies, J. Inorg. Organomet. Polym., 2006, 16(4), 407~418.
    [64] Cozmuta I, Blanco M, Goddard WAIII, Gas sorption and barrier properties of polymeric membranes from molecular dynamics and Monte Carlo Simulations, J. Phys. Chem. B, 2007, 111(12): 3151~3166.
    [65] Tung KL, Lu KT, Effect of tacticity of PMMA on gas transport through membranes: MD and MC simulation studies, J. Membr. Sci., 2006, 272(1-2): 37~49.
    [66] Ostwal, Tsotsis TT, Sahimi M, Molecular dynamics simulation of diffusion and sorption of water in conducting polyaniline, J. Chem. Phys., 2007, 126(12): 124903.
    [67] Lim SY, Tsotsis TT, Sahimi M, Molecular simulation of diffusion and sorption of gases in an amorphous polymer, J. Chem. Phys., 2003, 119(1): 496~504.
    [68] Heuchel M, Hofmann D, Pullumbi P, Molecular modeling of small-molecule permeation in polyimides and its correlation to free-volume distributions, Macromolecules, 2004, 37(1): 201~214.
    [69] Toccia E, Gugliuzza A, Lorenzo LD, Macchione M, Luca GD, Drioli E, Transport properties of a co-poly(amide-12-b-ethylene oxide) membrane: A comparative study between experimental and molecular modelling results, J. Membr. Sci., 2008, 323: 316~327.
    [70] Tocci E, Bellacchio E, Russo N, Drioli E, Diffusion of gases in PEEKs membranes: Molecular dynamics simulations, J. Membr. Sci., 2002, 206(1-2): 389~398.
    [71] Charati SG, Stern SA, Diffusion of gases in silicone polymer: molecular dynamics simulation, Macromolecules, 1998, 31(16): 5529~5535.
    [72] Faure F, Rousseau B, Lachet V, Ungerer P, Molecular simulation of the solubility and diffusion of carbon dioxide and hydrogen sulfide in polyethylene melts, Fluid Phase Equilib., 2007, 261: 168~175.
    [73] van der Vegt NFA, Temperature dependence of gas transport in polymer melt: molecular dynamics simulation of CO2 in polyethylene, Macromolecules, 2000, 33(8): 3153~3160.
    [74] Laguna MF, Guzman J, Riande E, Experimental and simulation studies on thetransport of argon through poly(pentaerythritoltribenzoate acrylate), Macromolecules, 1998, 31(21): 7488~7494.
    [75] Bharadwaj RK, Boyd RH, Small molecule penetrant diffusion in aromatic polyesters: a molecular dynamics simulation study, Polymer, 1999, 40(15): 4229~4236.
    [76] Muller-Plathe F, Molecular dynamics simulation of gas transport in amorphous polypropylene, J. Chem. Phys., 1992, 96(4): 3200~3205.
    [77] Hofmann D, Fritz L, Ulbrich J, Paul D, Molecular simulation of small molecule diffusion and solution in dense amorphous polysiloxanes and polyimides, Comput. Theor. Polym. Sci., 2000, 10(5): 419~436.
    [78] Karayiannis NC, Mavrantzas VG, Theodorou DN, Detailed Atomistic Simulation of the Segmental Dynamics and Barrier Properties of Amorphous Poly(ethylene terephthalate) and Poly(ethylene isophthalate), Macromolecules, 2004, 37(8): 2978~2995.
    [79] Greenfield ML, Heodorou DN, Geometric analysis of diffusion pathways in glassy and melt atactic polypropylene, Macromolecules, 1993, 26(20): 5461~5672.
    [80] Pavel D, Shanks R, Molecular dynamics simulation of diffusion of O2 and CO2 in amorphous poly(ethylene terephthalate) and related polyesters, Polymer, 2003, 44(21): 6713~6724.
    [81] Pavel D, Shanks R, Molecular dynamics simulation of diffusion of O2 and CO2 in blends of amorphous poly(ethylene terephthalate) and related polyesters, Polymer, 2005, 46(16): 6135~6147.
    [82] Ronova IA, Rozhkov EM, Alentiev AY, Yampolskii YP, Occupied and accessible volumes in glassy polymers and their relationship with gas permeation parameters, Macromol. Theor. Simul., 2003, 12(6): 425~439.
    [83] Wang XY, In’t Veld PJ, Lu Y, Freeman BD, Sanchez IC, A molecular simulation study of cavity size distributions and diffusion in para and meta isomers, Polymer, 2005, 46(21), 9155~9161.
    [84] Nagel C, Gunther-Schade K, Hofmann D, Fritsch D, Strunskus T, Faupel F, Schmidtke E, Free volume distributions in glassy polymer membranes: comparison between molecular modeling and experiments, Macromolecules, 2000, 33(6): 2242~2248.
    [85] Wang XY, Lee KM, Lu Y, Cavity size distributions in high free volume glassy polymers by molecular simulation, Polymer, 2004, 45(11): 3907~3912.
    [86] Wei CY, Srivastava D, Cho K, Thermal expansion and diffusion coefficient of carbon nanotube-polymer composites, Nano lett., 2002, 2(6): 647~650.
    [87] Peng FB, Pan FS, Sun HL, Lu LY, Jiang ZY, Novel nanocompositepervaporation membranes composed of poly(vinyl alcohol) and chitosan-wrapped carbon nanotube, J. Membr. Sci., 2007, 300(1-2), 13~19.
    [88] Pan FS, Peng FB, Jiang ZY, Diffusion behavior of benzene/cyclohexane molecules in Poly(vinyl alcohol)-graphite hybrid membranes by molecular dynamics simulation, Chem. Eng. Sci., 2007, 62(26): 703~710.
    [89] Pan FS, Peng FB, Lu LY, Wang JT, Jiang ZY, Molecular simulation on penetrants diffusion at the interface region of organic-inorganic hybrid membranes, Chem. Eng. Sci., 2008, 63(4): 1072~1080.
    [90] Rallabandi PS, Ford DM, Permeation of small molecules through polymers confined in mesoporous media, J. Membr. Sci., 2000, 171(2): 239~252.
    [91] Zhang HP, Lu X, Leng Y, Fang LM, Qu SX, Feng B, Weng J, Wang JX, Molecular dynamics simulations on the interaction between polymers and hydroxyapatite with and without coupling agents, Acta Biomater., doi: 10.1016/j.actbio.2008.11.014.
    [92] Hofmann D, Fritz L, Ulbrich J, Schepers C, B?hning M, Detailed-atomistic molecular modeling of small molecule diffusion and solution processes in polymeric membrane materials, Macromol. Theor. Simul., 2000, 9(6): 293~327.
    [93] Gee RH, Maxwell RS, Balazs B, Molecular dynamics studies on the effects of water speciation on interfacial structure and dynamics in silica-filled PDMS composites, Polymer, 2004, 45(11): 3885~3891.
    [94] Preston GM, Carroll TP, Guggino WB, Agre P, Appearance of Water Channels in Xenopus Oocytes Expressing Red Cell CHIP28 Protein, Science, 1992, 256: 385~387.
    [95] Sui HX, Han BG, Lee JK, Walian P, Jap BK, Structural basis of water-specific transport through the AQP1 water channel, Nature, 2001, 414: 872~878.
    [96] Fujiyoshi Y, Mitsuoka K, Groot BL, Philippsen A, Grubmüller H, Agre P, Engel A, Structure and function of water channels, Curr. Opin. Struc. Biol., 2002, 12: 509~515.
    [97]隋海心,任罡,水分子通道蛋白的结构与功能,化工进展,2004,16(2):145~152.
    [98] Nakanishi H, Wang SJ, Jean YC, In international symposium on positron annihilation studies of fluids; Sharma, S. C., Ed.; World Scientific: Singapore, 1987.
    [99] Tao SJ, Positronium annihilation in molecular substances (liquids and solids), J. Chem. Phys., 1972, 56: 5499~5510.
    [100] Sharma SC, Positronium annihilation studies of fluids, World Science, Singapore, 1988.
    [101] Merkel TC, Freeman BD, Spontak RJ, He Z, Pinnau I, Meakin P, Hill AJ, Ultrapermeable reverse-selective nanocomposite membranes, Science, 2002, 296: 519~522.
    [102] Merkel TC, Freeman BD, Spontak RJ, He Z, Pinnau I, Meakin P, Hill AJ, Sorption, transport, and structure evidence for enhanced free volume in poly(4-methyl-2-pentyne)/fumed silica nanocomposite membranes, Chem. Mater., 2003, 15: 109~123.
    [103] Peng FB, Lu LY, Sun HL, Wang YQ, Liu JQ, Jiang ZY, Hybrid organic anorganic membrane: Solving the tradeoff between permeability and selectivity, Chem. Mater., 2005, 17: 6790~6796.
    [104] Peng FB, Lu LY, Sun HL, Wang YQ, Wu H, Jiang ZY, Correlations between free volume characteristics and pervaporation permeability of novel PVA–GPTMS hybrid membranes, J. Membr. Sci., 2006, 275: 97~104.
    [105] Schultz PJ, Lynn KG, Interaction of positron beams with surfaces, thin films and interfaces, Rev. Mod. Phys., 1988, 60: 701~780.
    [106] Sun H, Ab initio calculations and force field development for computer simulation of polysilanes, Macromolecules, 1995, 28: 701~712.
    [107] Sun H, COMPASS: An ab Initio force-field optimized for condensed-phase applications-overview with details on alkane and benzene compounds, J. Phys. Chem. B., 1998, 102: 7338~7364.
    [108] Berendsen HJC, Postma JPM, Funsteren WF, Molecular dynamics with coupling to an external bath, J. Chem. Phys., 1984, 81: 3684~3690.
    [109] Theodorou DN, Suter UW, Detailed molecular structure of a vinyl polymer glass, Macromolecules, 1985, 18: 1467~1478.
    [110] Meirovitch H, Computer simulation of self-avoiding walks: Testing the scanning method, J. Chem. Phys., 1983, 79: 502~508.
    [111] Davidson RL, Handbook of water-soluble gums and resins. McGraw-Hill, New York, 1980.
    [112] http://www.medicinescomplete.com/mc/excipients/current/1000299642.htm
    [113] Zeise L, Addison RB, Chedekel MR, Bioanalytical studies of eumelanins. 1. Characterization of melanin the particle, Pigment Cell. Res., 1992, Suppl. 2: 48~53.
    [114] Kruse J, Kanzow J, Ratzke K, Faupel F, Heuchel M, Frahn J, Hofmann D, Free volume in polyimides: Positron annihilation experiments and molecular modeling, Macromolecules, 2005, 38: 9638~9643.
    [115] Zhang LZ, Wang YY, Wang CL, Xiang H, Synthesis and characterization of a PVA/LiCl blend membrane for air dehumidification, J. Membr. Sci., 2008, 308: 198~206.
    [116] Yeh J M, Yu M Y, Liou S J, Dehydration of water-alcohol mixtures by vapor permeation through PVA/clay nanocomposite membrane, J. Appl. Polym. Sci., 2003, 89: 3632~3638.
    [117] Namboodiri VV, Vane LM, High permeability membranes for the dehydration of low water content ethanol by pervaporation, J. Membr. Sci., 2007, 306: 209~215.
    [118] Guo RL, Hu CL, Li B, Jiang ZY, Pervaporation separation of ethylene glycol/water mixtures through surface crosslinked PVA membranes: Coupling effect and separation performance analysis, J. Membr. Sci., 2007, 289: 191~198.
    [119] Wesslein M, Heintz A, Lichtenthaler RN, Pervaporation of liquid mixtures through poly (vinyl alcohol) (PVA) membranes. I. Study of water containing binary systems with complete and partial miscibility, J. Membr. Sci., 1990, 51(1): 181~182.
    [120] Lichtenthaler R N, Proc. 4th Int. Conf. Pervaporation, Proc. Chem. Ind., Fort Lauderdale, 1989, 138.
    [121] Heintz A, Funke H, Lichtenthaler RN, in: "Pervaporation membrane separation processes", Huang RYM., Ed., Elsevier, Amsterdam 1991.
    [122] Ghi PY, Hill DJT, Whittaker AK, 1H NMR study of the states of water in equilibrium Poly(HEMA-co-THFMA) hydrogels, Biomacromolecules, 2002, 3: 991~997.
    [123] Quinn F X, Kampff E, Smyth G, McBrierty V J, Water in hydrogels. 1. A study of water in Poly(N-vinyl-2-pyrrolidone/methylm ethacrylate) copolymer, Macromolecules, 1988, 21: 3191~3198.
    [124] Quinn FX, Kampff E, Smyth G, McBrierty V J, Water in hydrogels. 2. A study of water in poly (hydroxyethy1 methacrylate), Macromolecules, 1988, 21: 3198~3204.
    [125] Herrera-Gomez A, Velazquez-Cruz G, Martin-Polo MO, Analysis of the water bound to a polymer matrix by infrared spectroscopy, J. Appl. Phys., 2001, 89: 5431~5437.
    [126] Garcia RM, Bartolome ML A, Alvarez AE, Thermogravimetry (TG) applied to the analysis of cabrales cheese, Thermochim. Acta, 1993, 215: 281~289
    [127] Ping ZH, Nguyen QT, Chen SM, Zhou JQ, Ding YD, State of water in different hydrophilic polymers-DSC and FTIR studies, Polymer, 2001, 42: 8461~8467.
    [128] Li WB, Xue F, Cheng RS, States of water in partially swollen poly(vinyl alcohol) hydrogels, Polymer, 2005, 46: 12026~12031.
    [129] Neyertz S, Tutorial: Molecular dynamics simulation of microstructure and transport phenomena in glassy polymer, Soft Mater., 2007, 4: 15~83.
    [130] Chiessi E, Cavalieri F, Paradossi G, Water and polymer dynamics inchemically cross-linked hydrogels of poly(vinyl alcohol): A molecular dynamics simulation study, J. Phys. Chem. B, 2007, 111: 2820~2827.
    [131] Muller-Plathe F, Diffusion of water in swollen poly(vinyl alcohol) membranes studies by molecular dynamics simulation, J. Membr. Sci., 1998, 141: 147~154.
    [132] Alexy P, Bakos D, Crkonova G, Kolomaznik K, Krsiak M, Blends of polyvinylalcohol with collagen hydrolysate thermal degradation and processing properties, Macromol. Symp., 2001, 170: 41~50.
    [133] Zheng P, Ling X K, A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites, Polymer Degrad. Stabil., 2007, 92: 1061~1071.
    [134] Wang ZG, Chen TL, Xu JP, Gas and water vapor transport through a series of novel poly(aryl ether sulfone) membranes, Macromolecules, 2001, 34: 9015~9022.
    [135] Muller-Plathe F, Different states of water in hydrogels?, Macromolecules, 1998, 31: 6721~6723.
    [136] Merkel TC, Freeman BD, Spontak RJ, He Z, Pinnau I, Meakin P, Hill AJ, Ultrapermeable, reverse-selective nanocomposite membranes, Science, 2002, 296: 519~522.
    [137] Patel NP, Miller AC, Spontak RJ, Highly CO2-permeable and selective polymer nanocomposite membranes, Adv. Mater., 2003, 15: 729~733.
    [138] Kwak SY, Kim SH, Kim SS, Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling. 1. Preparation and characterization of TiO2 nanoparticle self-Assembled aromatic polyamide thin-film-composite (TFC) membrane, Environ. Sci. Technol., 2001, 35: 2388~2394.
    [139] Huang Z, Shi Y, Wen R, Guo YH, Su J F, Matsuura T, Multilayer poly(vinyl alcohol)–zeolite 4A composite membranes for ethanol dehydration by means of pervaporation, Sep. Purif. Technol., 2006, 51: 126~136.
    [140] Kroger N, Deutamann R, Sumper M, Polycationic peptides from diatom biosilica that direct silica nanosphere formation, Science, 1999, 286: 1129~1132.
    [141] Sumper M, Kroger N, Silica formation in diatoms: the function of long-chain polyamines and silaffins, J. Mater. Chem., 2004, 14: 2059~2065.
    [142] Aizenberg J, Weaver J C, Thanawala M S, Sundar V C, Morse D E, Fratzl P, Skeleton of euplectella sp.: Structural hierarchy from the nanoscale to the macroscale, Science, 2005, 309: 275~278.
    [143] Sotiropoulou S, Sierra-Sastre Y, Mark SS, Batt CA, Biotemplated nanostructured materials, Chem. Mater., 2008, 20: 821~834.
    [144] Kroger N, Lorenz S, Brunner E, Sumper M, Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis,Science, 2002, 298: 584~586.
    [145] Coradin T, Marchal A, Abdoul-Aribi N, Livage J, Gelatine thin films as biomimetic surfaces for silica particles formation, Colloids Surf. B: Biointerf., 2005, 44: 191~196.
    [146] Shiomi T, Tsunoda T, Kawai A, Mizukami F, Sakaguchi K, Biomimetic synthesis of lysozyme-silica hybrid hollow particles using sonochemical treatment: influence of pH and lysozyme concentration on morphology, Chem. Mater., 2007, 19: 4486~4493.
    [147] Leng B, Chen X, Shao Z, Ming W, Biomimetic synthesis of silica with chitosan-mediated morphology, Small, 2008, 4: 755~758.
    [148] Foo CWP, Huang J, Kaplan DL, Lessons from seashells: silica mineralization via protein templating, Trends Biotechnol., 2004, 22: 577~585
    [149] Kessel S, Thomas A, Borner HG, Mimicking biosilicification: Programmed coassembly of peptide-polymer nanotapes and silica, Angew. Chem. Int. Ed., 2007, 46: 9023~9026.
    [150] Jan JS, Shantz DF, Biomimetic silica formation: Effect of block copolypeptide chemistry and solution conditions on silica nanostructure, Adv. Mater., 2007, 19: 2951~2956.
    [151] Zhou F, Li S, Vo CD, Yuan J J, Chai S, Gao Q, Armes SP, Lu C, Cheng S, Biomimetic deposition of silica templated by a cationic polyamine-containing microgel, Langmuir, 2007, 23: 9737~9744.
    [152] Jin RH, Yuan JJ, Simple synthesis of hierarchically structured silicas by poly(ethyleneimine) aggregates pre-organized by media modulation, Macromol. Chem. Phys., 2005, 206: 2160~2170.
    [153] Zhang Y, Wu H, Li J, Li L, Jiang Y, Jiang Y, Jiang Z, Protamine-templated biomimetic hybrid capsules: Efficient and stable carrier for enzyme encapsulation, Chem. Mater., 2008, 20: 1041~1048.
    [154] Nakano M, Kasai K, Yoshida K, Tanimoto T, Tamaki Y, Tobita T, Conformation of the fowl protamine, galline, and its binding properties to DNA, J. Biochem., 1989, 105(1): 133~137.
    [155] Raukas E, Mikelsaar RH, Are there molecules of nucleoprotamine?, Bioessays, 1999, 21(5): 440~448.
    [156] Arellano A, Canales M, Jullian C, Brunet JE, Fluorescence studies on clupein protamines: evidence for globular conformation, Biochem. Biophys. Res. Commun., 1988, 150(2): 633~639.
    [157] Coradin T, Lopez P J, Biogenic silica patterning: Simple chemistry or subtle biology?, ChemBioChem, 2003, 4(4): 251~259.
    [158] Coradin T, Roux C, Livage J, Biomimetic self-activated formation of multi-scale porous silica in the presence of arginine-based surfactants, J. Mater. Chem., 2002, 12(5): 1242~1244.
    [159] Rodríguez F, Glawe DD, Naik RR, Hallinan KP, Stone MO, Study of the chemical and physical influences upon in vitro peptide-mediated silica formation, Biomacromolecules, 2004, 5(2): 261~265.
    [160] Tomczak MM, Glawe DD, Drummy LF, Lawrence CG, Stone MO, Perry CC, Pochan DJ, Deming TJ, Naik RR, Polypeptide-templated synthesis of hexagonal silica platelets, J. Am. Chem. Soc., 2005, 127(36): 12577~12582.
    [161] Kr?ger N, Deutzmann R, Sumper M, Polycationic peptides from diatom biosilica that direct silica nanosphere formation, Science, 1999, 286(5442): 1129~1132.
    [162] Patwardhan SV, Clarson SJ, Perry CC, On the role(s) of additives in bioinspired silicification, Chem. Commun., 2005, 9: 1113~1121.
    [163] Roth KM, Zhou Y, Yang W, Morse DE, Bifunctional small molecules are biomimetic catalysts for silica synthesis at neutral pH, J. Am. Chem. Soc., 2005, 127(1): 325~330.
    [164] Iler RK, Association between polysilicic acid and polar organic compounds, J. Phys. Chem., 1952, 56(6): 673~677.
    [165] Chiu YC, Liu FY, Ma CCM, Chou IC, Riang L, Chiang CL, Yang JC, Syntheses and characterization of novel P/Si polysilsesquioxanes/epoxy nanocomposites, Thermochim. Acta, 2008, 473: 7~13.
    [166] Brew D R M, Glasser F P, Synthesis and characterisation of magnesium silicate hydrate gels, Cem. Concr. Res., 2005, 35: 85~98.
    [167] Xu Y P, Xu S J, Thomas E, Frank R, Christoph B, Rainer H, Gerd B, A Novel Green Template for the Synthesis of Mesoporous Silica, Chem. Eur. J., 2008, 14: 3311~3315.
    [168] Li L, Liu MJ, Li SJ, Morphology effect on water sorption behavior in a thermoplastic modified epoxy resin system, Polymer, 2004, 45: 2837~2842.
    [169] Gautier C, Abdoul-Aribi N, Roux C, Lopez PJ, Livage J, Coradin T, Biomimetic dual templating of silica by polysaccharide/protein assemblies, Colloids Surf., B: Biointerf., 2008, 65: 140~145.
    [170] Coradin T, Bah S, Livage J, Gelatine/silicate interactions: from nanoparticles to composite gels, Colloids Surf., B: Biointerf., 2004, 35: 53~58.
    [171] Coradin T, Marchal A, Abdoul-Aribi N, Livage J, Gelatine thin films as biomimetic surfaces for silica particles formation, Colloids Surf., B: Biointerf., 2005, 44: 191~196
    [172] Kouketsu T, Duan S, Kai T, Kazama S, Yamada K, PAMAM dendrimer composite membrane for CO2 separation: Formation of a chitosan gutter layer, J. Membr. Sci., 2007, 287(1): 51~59
    [173] Waite JH, Tanzer ML, Polyphenolic substance of mytilus edulis: Novel adhesive containing L-Dopa and hydroxyproline, Science, 1981, 212: 1038~1040
    [174] Waite J H, Qin X, Polyphosphoprotein from the adhesive pads of mytilus edulis, Biochemistry, 2001, 40(9): 2887~2893.
    [175] Lee H, Dellatore SM, Miller WM, Messersmith PB, Mussel-inspired surface chemistry for multifunctional coatings, Science, 2007, 318: 426~430.
    [176] Lee H, Lee BP, Messersmith PB, A reversible wet/dry adhesive inspired by mussels and geckos, Nature, 2007, 448: 338~341.
    [177] Lee H, Rho J, Messersmith PB, Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings, Adv. Mater., 2008, 20: 1-4.
    [178] Lee H, Lee Y, Statz AR, Rho J, Park TG, Messersmith PB, Substrate-independent layer-by-layer assembly by using mussel-adhesive-inspired polymers, Adv. Mater., 2008, 20: 1619~1623.
    [179] Fan X, Lin L, Dalsin JL, Messersmith PB, Biomimetic anchor for surface-initiated polymerization from metal substrates, J. Am. Chem. Soc., 2005, 127: 15843~15847.
    [180] Dalsin J L, Messersmith PB, Bioinspired antifouling polymers, Mater. Today, 2005, 8(9): 38~46.
    [181] Double KL, Zecca L, Costi P, Mauer M, Griesinger C, Ito S, Ben-Shachar D, Bringmann G, Fariello RG, Riederer P, Gerlach M, Structural characteristics of human substantia nigra neuromelanin and synthetic dopamine melanins, J. Neurochem., 2000, 75(6): 2583~2589.
    [182] Pezzella A, Panzella L, Natangelo A, Arzillo M, Napolitano A, Ischia M, 5,6-dihydroxyindole tetramers with "Anomalous" interunit bonding patterns by oxidative coupling of 5,5',6,6'-tetrahydroxy-2,7'-biindolyl: Emerging complexities on the way toward an improved model of eumelanin buildup, J. Org. Chem., 2007, 72(24): 9225~9230.
    [183] Ito S, Wakamatsu K, Chemical degradation of melanins: Application to identification of dopamine-melanin, Pigm. Cell Res., 1998, 11(2): 120~126
    [184] Kaxiras E, Tsolakidis A, Zonios G, Meng S, Structural model of eumelanin, Phys. Rev. Let., 2006, 97: 218102.
    [185] Stark KB, Gallas JM, Zajac GW, Golab JT, Gidanian S, McIntire T, Farmer PJ, Effect of stacking and redox state on optical absorption spectra of melanins-Comparison of theoretical and experimental results, J. Phys. Chem. B, 2005, 109: 1970~1977.
    [186] Waite J H, Mussel power, Nat. Mater., 2008, 7(1): 8~9
    [187] Lee A, Design of novel bioadhensive materials based on mussel-devrived glues, Ph D Thesis, Northwestern University, USA, 2005.
    [188] Waite JH, Nature's underwater adhesive specialist, Int. J. Adhes. Adhes., 1987, 7: 9~13.
    [189] Waite JH, Reverse engineering of bioadhesion in marine mussels, Ann. N. Y.Acad. Sci., 1999, 875: 301~309.
    [190] Chen H, Hung W, Lo C, Huang SH, Cheng M, Liu G, Lee K, Lai J, Sun Y, Hu C, Suzuki R, Ohdaira T, Oshima N, Jean Y C, Free-Volume Depth Profile of Polymeric Membranes Studied by Positron Annihilation Spectroscopy: Layer Structure from Interfacial Polymerization, Macromolecules, 2007, 40(21): 7542~7557.
    [191] Brandt W, Dupasquier A, Positron Solid State Physics, North-Holland, Amsterdam, 1983.
    [192] Huang S, Hung W, Liaw D, Li C, Kao S, Wang D, Guzman M, Hu C, Jean Y, Lee K, Lai J, Investigation of multilayer pervaporation membrane by positron annihilation spectroscopy, Macromolecules, 2008, 41(17): 6438~6443.
    [193] Lee H, Scherer N F, Messersmith P B, Single-molecule mechanics of mussel adhesion, Proc. Natl. Acad. Sci., 2006, 103: 12999~13003.
    [194] Gallas JM, Littrell KC, Seifert S, Zajac GW, Thiyagarajan P, Solution structure of copper ion-induced molecular aggregates of tyrosine melanin, Biophys. J., 1999, 77(2): 1135~1142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700