用户名: 密码: 验证码:
插入式阵列电导传感器两相流测量方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
两相流动现象广泛存在于工业生产过程中,两相流流动参数检测对生产过程及工艺优化具有重要意义。由于两相流存在随机可变的相界面,使其流动结构复杂、流型多变,流动过程参数难于测量,同时两相流流动现象又表现为非平稳及多尺度非线性自组织模式特点。采用先进阵列传感器与现代信息处理技术融合的检测理论与方法,是解决复杂两相流流动参数检测的有效途径。针对石油工业中油井内特定测量环境的两相流参数检测问题,本文设计了能够同时测量两相流相含率及流量的插入式阵列电导传感器测量系统,在多相流实验装置测取动态测量信号的基础上,采用多尺度非线性分析方法研究了两相流流型非线性动力学特性,采用特征挖掘及信息融合的软测量方法实现了两相流流量参数测量。取得的创新性研究成果如下:
     1.采用有限元方法分析了插入式阵列电导传感器电场分布特性,对插入式阵列电导传感器几何尺寸进行了优化。在此基础上设计了可实现过压过流保护的电源模块、恒压恒流激励模式可选的激励信号发生模块、信号调理模块,并开发了基于嵌入式实时操作系统的便携式采集系统,可实现多路信号的高速并行采集,内嵌文件系统,可将采集数据通过USB扩展口直接存入可移动存储设备中;并通过串口、键盘与液晶实现人机交互。
     2.采用多尺度非线性两相流流型动力学特性分析方法。在此基础上分析了插入式阵列电导传感器在垂直上升气液两相流中采集的132种流动条件下电导波动信号。研究结果表明:利用小尺度熵变化速率特征可以分辨三种典型流型(泡状流、段塞流、混状流),而在大尺度熵值变化细节上可以反映各种流型的动力学特性。泡状流随机可变特性表现为大尺度熵的高值及振荡性;段塞流气塞与液塞的间歇性运动表现为大尺度熵的低值及平稳性;混状流极不稳定的振荡运动特性表现为介于泡状流及段塞流之间的熵值特点,并在更大尺度时熵值逐渐接近泡状流熵值。两相流多尺度熵分析有助于进一步理解流型转化动力学特性,多尺度熵值变化速率特征则是流型辨识的新指示器。
     3.针对插入式阵列电导传感器两相流流量软测量问题,本文采用基于粒子群算法和量子粒子群算法的支持向量机软测量模型,经对六种单峰或多峰测试函数搜索检验,证明了量子粒子群算法具有更高的支持向量机核函数关键参数搜索效率和寻优精度。在此基础上,从插入式阵列电导传感器相含率电极测取的相含率波动信号提取了时频域特征量,建立了基于量子粒子群算法的支持向量机软测量方法的相含率及分相流量预测模型,预测结果表明在水相流量范围为0.2方/小时~12方/小时,气相流量范围为7方/小时~60方/小时及含水率为0~0.6范围内,含水率预测的平均相对误差为2.06%,分相流量预测的平均相对误差为10%,取得了较高的测量精度。
     4.针对产气井气液两相流流量测量问题,提出了基于伞集流涡轮流量计与阵列电导传感器组合测量新方法。采用电导传感器瞬态波动信号的混沌吸引子形态特征的矩参数组合及低尺度与高尺度熵率特征量组合可以很好地辨识集流通道内不可视气液两相流流型特征。在伞集流条件下,采用涡轮流量计可实现较高精度的气液两相流总流量测量;在提取集流通道内电导波动信号时频域特征量前提下,结合涡轮流量计获取的流量测量信息,采用信息融合的软测量方法可实现较高精度的气液两相流分相流量测量,为油气田中低产量的气井内气液两相流流量测量探索了新的途径。
Two phase flow phenomenon widely exists in industrial producing process and the measurement of the flow parameters is of great significance for industrial producing process and the optimization of process. The existence of randomly changing interface of two phase flow makes the flow structure complex and the flow pattern changeable, in which the parameters are difficult to measure. Simultaneously, the two phase flow phenomenon behaves as non-stable and multiscale nonlinear auto organization characteristic. Therefore it’s an effective approach to solve the measurement of complex two phase flow parameters by the fusion of advanced array sensors and modern information processing method and theory. In the paper which mainly aims at the two phase flow measurement problem in oil well of petroleum industry, a intrusive array conductance sensor is designed which is capable of measuring the phase fraction and flowrate simultaneously. Based on the dynamic signal measured by multiphase flow facility, the nonlinear dynamic characteristics of two phase flow patterns were studied by using multiscale nonlinear analyzing method. The flowrate of two phase flow was measured by soft measurement method based on characteristics extracting and information fusion. And the innovative research fruits are shown as below:
     1. The electrical field distribution characteristics of intrusive array conductance probe were analyzed using finite element method, and the geometry size of intrusive array conductance probe were optimized. Then the power module which could realize over voltage protection and over current protection, exciting module which could be set to constant voltage or constant current exciting mode and the signal modulation module were designed. And then a portable data acquisition system based on embedded real time operating system was developed, which could complete high speed parallel acquisition, had embedded file system and could save the sampled data in removable storage devices through USB peripheral communication port, which also could realize communication between machine and human by serial port, keyboard and LCD screen.
     2. The multiscale nonlinear dynamic characteristics analysis method of two phase flow patterns was brought forward. And then based on this, the fluctuant conductance signals of 132 two phase flow conditions were analyzed, which collected by using array conductance sensors in upward vertical gas-liquid two phase flow. The results indicated the changing rate of sample entropy at small scales could classify the three typical flow patterns (bubble flow, slug flow and churn flow), and the fluctuation of sample entropy of large scales reflected the dynamic characteristics of each flow pattern. The stochastic characteristic of bubble flow was shown as higher and oscillating sample entropy at large scales; the intermittence of gas slug and liquid slug of slug flow was represented as lower and stable sample entropy of large scales; the unstable and oscillating characteristics of churn flow behaved as the entropy between that of bubble flow and slug flow, and the entropy closed to that of bubble at larger scales. The multiscale entropy analysis of two phase flow is helpful for understanding the dynamic characteristics of flow pattern transition, and the rate of multiscale entropy is a new indicator of flow pattern identification.
     3. Aiming at soft measurement problem of two phase flowrate researched with intrusive array conductance probe, the support vector machine soft measurement model based on particle swarm algorithm and quantum particle swarm algorithm were developed. After the proof-testing with six single peak or multi peak functions, the algorithm was proved to have higher searching efficiency and higher accuracy of seeking optimum. Based on this, the temporal and frequency characteristics of the phase fraction fluctuant signal acquired by phase fraction electrode of intrusive array conductance probe were extracted, and then prediction model of phase fraction and phase flowrate based on support vector machine with the quantum particle swarm algorithm was established. The prediction results indicate that the average percent deviation of water flowrate fraction is 2.06% and that of individual phase flowrate is about 10% at the water phase flowrate range of 0.2m3/h~12 m3/h, the air flowrate range of 7m3/h~60 m3/h and the water flowrate fraction range of 0 ~ 0.6.
     4. For the flowrate measurement issue of gas-liquid two phase flow in gas production well, the combined measurement method of petal type concentration turbine flowmeter and array conductance sensor was proposed. The combination of moment parameter based on attractor morphological characteristics and the combination of rate of entropy of low-scale and high-scale calculated by transient fluctuating signals acquired by conductance sensor could effectively identify the unseen gas-liquid two phase flow patterns in concentration channel. The turbine flowmeter could measure the total flowrate of gas-liquid two phase flow with high-precision for the flow condition with petal type concentrating diverter. After the temporal and frequency characteristics of the phase fraction fluctuant signal of concentration channel were extracted, combined with the flowrate information gotten by turbine flowmeter, the high precision phase flowmeter of gas liquid two phase flow was predicted by soft measurement method based on information fusion, and the measurement method was indicated as a new way to solve the gas liquid two phase flow of median and low yield gas production well.
引文
[1]李海青,两相流参数检测及应用,杭州:浙江大学出版社,1991
    [2]陈学俊,多相流热物理学,西安:西安交通大学出版社,2005
    [3]林宗虎,气液固多相流测量,北京:中国计量出版社,1988
    [4]吴应湘,李清平,郑之初等,海洋油气开发中的多相流技术,中国造船,2005,46(B11):314~321
    [5] Barnea D, Shoham O, Taitel Y, Flow pattern characterization in two phase flow by electrical conductance probe, International Journal of Multiphase Flow, 1980, 6(5): 387~397
    [6] Hardy J E, Hylton J O, Electrical impedance string probes for two-phase void and velocity measurements, International Journal of Multiphase Flow, 1984, 10(5): 541~556
    [7] Dykesteen E, Hallanger A, Hammer E, et al, Non-intrusive three-component ratio measurement using an impedance sensor, Journal of Physics E (Scientific Instruments), 1985, 18(6): 540~544
    [8] Andreussi P, Di D A, Messia M, An impedance method for the measurement of liquid hold-up in two-phase flow, International Journal of Multiphase Flow, 1988, 14(6): 777~785
    [9] Ma Y P, Bei B S, Lin W K, et al, An impedance method to determine void fraction for two-phase flow, Nuclear Science Journal, 1990, 27(4): 315~326
    [10] Tsochatzidis N A, Karapantsios T D, Kostoglou M V, et al, A conductance probe for measuring liquid fraction in pipes and packed beds, International Journal of Multiphase Flow, 1992, 18(5): 653~667
    [11] Das R K, Pattanayak S, Electrical impedance method for flow regime identification in vertical upward gas-liquid two-phase flow, Measurement Science & Technology, 1993, 4(12): 1457~1463
    [12] Klug F, Mayinger F, Impedance based flow reconstruction - a novel flow composition measuring technique for multi-phase-flows, Nuclear Engineering and Design, 1994, 146(1-3): 35~42
    [13] Ceccio S L, George D L, A review of electrical impedance techniques for the measurement of multiphase flows, Journal of Fluids Engineering, 1996, 118(2): 391~399
    [14] Nicander I, Rozell B L, Rundquist L, et al, Electrical impedance. A method to evaluate subtle changes of the human oral mucosa, European Journal of Oral Sciences, 1997, 105(6): 576~582
    [15] Fossa M, Design and performance of a conductance probe for measuring the liquid fraction in two-phase gas-liquid flows, Flow Measurement and Instrumentation, 1998, 9(2): 103~109
    [16] Song C H, Chung M K, No H C, Measurements of void fraction by an improved multi-channel conductance void meter, Nuclear Engineering and Design, 1998, 184(2-3): 269~285
    [17] Devia F, Fossa M, Design and optimisation of impedance probes for void fraction measurements, Flow Measurement and Instrumentation, 2003, 14(4-5): 139~149
    [18]高华魂,电导法测两相流参数,标准计量与质量(广西),1991,(2):20~24
    [19]高正明,王英琛,应用电导探针法测定气泡参数,化学反应工程与工艺,1992,8(1):105~110
    [20]胡金海,刘兴斌,等,一种同种测量流量和含水率的电导式传感器,测井技术,2002,26(2):154~157
    [21]黄雄斌,包雨云,应用电导探针测定固—液两相流的局部速度,高校化学工程学报,1995,9(2):187~190
    [22]刘兴斌,徐苓安,等,电导式相关流量计应用于油井井下流量测量,仪器仪表用户,2001,8(3):8~11
    [23]吕术森,陈雪莉,于广锁等,应用电导探针测定鼓泡塔内气泡参数,化学反应工程与工艺,2003,19(4):344~351
    [24]孙科霞,陈学俊,应用双头电导探针技术测量气液两相泡状流局部参数,计量学报,1999,20(4):297~303
    [25]张庆勇,黄海,周媛等,毛细管中两相流动特性的电导测量方法,北京化工大学学报:自然科学版,2008,35(3):9~13
    [26]赵鑫,金宁德,陈万鹏等,纵向多极阵列电导式两相流测量系统研究,仪器仪表学报,2006,27(10):1253~1257
    [27]李海青,黄志尧,特种检测技术及应用,杭州:浙江大学出版社,2000
    [28]冀海峰,黄志尧,等,小波分析技术在多相流系统中的应用,石油化工,2001,30(2):126~130
    [29]金宁德,聂向斌,任英玉等,基于Kolmogorov熵时间序列分析的垂直上升管中油水两相流流型表征,化工学报,2003,54(7):936~941
    [30]金宁德,李伟波,非线性时间序列的符号化分析方法研究,动力学与控制学报,2004,2(3):54~59
    [31]丁浩,黄志尧,李海青,基于高阶谱的气液两相流差压波动信号的分析,浙江大学学报:工学版,2006,40(1):1~4
    [32] Jin N D, Zheng G B, Dong F, et al, Application of chaotic recurrence plot analysis to identification of oil/water two-phase flow patterns: BERLIN: Berlin:Springer-Verlag Berlin, 2006: 4223, 1213~1216
    [33]金宁德,郑桂波,胡凌云,垂直上升管中气液两相流电导波动信号的混沌特性分析,地球物理学报,2006,49(5):1552~1560
    [34]王微微,耿艳峰,黄志尧,应用数据融合方法辨识油气两相流流型,传感技术学报,2007,20(9):2128~2132
    [35]孙斌,张宏建,基于HHT的两相流动态信号提取与滤波的研究,传感技术学报,2007,20(4):862~865
    [36]李强伟,黄志尧,丁浩等,基于经验模态分解的油气两相流流型状态监测,传感技术学报,2007,20(1):224~227
    [37] Jin N D, Dong F, Zhao S, The complexity measure analysis of conductance fluctuation signals of gas-liquid two-phase flow and its flow pattern characterization, Acta Physica Sinica, 2007, 56(2): 720~729
    [38]肖楠,金宁德,基于混沌吸引子形态特性的两相流流型分类方法研究,物理学报,2007,56(09):5149~5157
    [39]金宁德,吴红梅,张军霞等,气液两相流流动参数软测量方法研究,测井技术,2007,31(5):425~429
    [40]彭珍瑞,王保良,黄志尧等,基于改进的LS-SVM测量油气两相流空隙率,高校化学工程学报,2008,22(1):18~22
    [41]李英伟,于莉娜,孔令富,基于多特征的LS-SVM油水两相流流型识别,燕山大学学报,2008,32(3):258~262
    [42] Wallis G B, One-dimensional two phase flow, New York: McGraw-Hill Book Company, 1969
    [43] Oshinowo T, Charles M B, Vertical two-phase flow, part i: flow pattern coorelations, Canadian Journal of Chemical Engineering, 1974, 52(2): 25~35
    [44] Hewitt G F, Measurement of two-phase flow parameters, London: Academic Press, 1978
    [45] Taitel Y, Barnea D, Modelling flow pattern transitions for steady upward gas-liquid flow in vertical tubes, AIChE Journal, 1980, 26(3): 345~354
    [46] Vince M A, Lahey R T, On the development of an objective flow regime indicator, International Journal of Multiphase Flow, 1982, 8(2): 93~124
    [47] Mishima K, Nishihara H, Methods for determining flow regimes in gas-liquid two-phase flow, Annual Reports of the Research Reactor Institute, Kyoto University, 1984, 17: 61~93
    [48] Bilicki Z, Kestin J, Transition criteria for two-phase flow patterns in vertical upward flow, International Journal of Multiphase Flow, 1987, 13(3): 283~294
    [49] Annunziato M, Measuring system for two-phase flow pattern recognition using statistical analysis, Mass Flow Measurement, Chicago, IL, USA: Publ by American Soc of Mechanical Engineers (ASME), New York, NY, USA, 1988: 15~21
    [50] Govier G W, Sullivan G A, Wood R K, The upward vertical flow of oil-water mixtures, Canadian Journal of Chemical Engineering, 1961, 39(1): 67~75
    [51] Flores J G, Chen X T, Sarica C, et al, Characterization of oil-water flow patterns in vertical and deviated wells, SPE Production & Facilities, 1997, 14(2): 601~610
    [52]张宝群,油水两相滑动实验,测井技术,1981,(02):13~20
    [53]钟兴福,吕鹏举,等,125mm垂直圆管中油水两相流流型辨识研究,石油学报,2001,22(5):89~94
    [54]宗艳波,金宁德,马文衡等,油水两相流流型混沌吸引子形态特性,化工学报,2008,59(04):851~858
    [55]金宁德,宁英男,王微微等,垂直上升管中油水两相流流型表征,化工学报,2001,52(10):907~915
    [56] Jones O C, Zuber N, The interrelation between void fraction fluctuations and flow patterns in two-phase flow, International Journal of Multiphase Flow, 1975, 2(3): 273~306
    [57] Song C H, No H C, Chung M K, Investigation of bubble flow developments and its transition based on the instability of void fraction waves, International Journal of Multiphase Flow, 1995, 21(3): 381~404
    [58] Hubbard M G, Dukler A E, The characterization of flow regimes for horizontal two-phase flow, Proc. Heat Transfer &Fluid Mechanics Inst, 1966: 100~121
    [59] Matuszkiewicz A, Flamand J C, Boure J A, The bubble-slug flow pattern transition and instabilities of void fraction waves, International Journal of Multiphase Flow, 1987, 13(2): 199~217
    [60]陈珙,黄志尧,小波变换辨识流型的一种新方法研究,仪器仪表学报,1999,20(2):117~120
    [61]陈珙,王保良,基于小波分析的气液两相流流型模糊辨识,高校化学工程学报,1999,13(4):303~308
    [62] Bakshi B R, Zhong H, Jiang P, et al, Analysis of flow in gas-liquid bubble columns using multi-resolution methods, Chemical Engineering Research & Design, Transactions of the Institute of Chemical Engineers, Part A, 1995, 73(A6): 608~614
    [63]劳力云,基于动态压差信号分析的两相流参数辨识方法研究:[博士学位论文],杭州:浙江大学,1998
    [64] Huang N E, New method for nonlinear and nonstationary time series analysis: empirical mode decomposition and hilbert spectral analysis, Wavelet Applications VII, Orlando, FL, USA: Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, USA, 2000: 197~209
    [65]王晓萍,气固流化床压力脉动信号的Hilbert-Huang变换与流型识别,高校化学工程学报,2005,(04)
    [66]孙斌,张宏建,岳伟挺,HHT与神经网络在油气两相流流型识别中的应用,化工学报,2004,(10)
    [67]王晓萍,黄轶伦,气固流化床多传感器信息传输的复杂性研究,高校化学工程学报,2003,17(5):585~590
    [68]陈伯川,黄春燕,甄玲等,气固流化床压力信号时间序列复杂性特征研究,仪器仪表学报,2003,24(3):236~240
    [69]刘明言,胡宗定,气液固三相流化床流区及其过渡的混沌分析,化学反应工程与工艺,2000,16(4):363~367
    [70]金宁德,李伟波,赵鑫等,利用符号时间序列分析法表征垂直上升管中油水两相流流型,化工学报,2005,56(1):116~120
    [71]金宁德,董芳,赵舒,气液两相流电导波动信号复杂性测度分析及其流型表征,物理学报,2007,56(02):720~729
    [72] Wu H J, Zhou F D, Wu Y Y, Intelligent identification system of flow regime of oil-gas-water multiphase flow, International Journal of Multiphase Flow, 2001, 27(3): 459~475
    [73]周云龙,孙斌,陆军,改进BP神经网络在气液两相流流型识别中的应用,化工学报,2005,56(1):110~115
    [74]董峰,姜之旭,乔旭彤等,基于ERT技术的垂直管道两相流流型识别,仪器仪表学报,2004,25(4):457~461
    [75]贾志海,牛刚,王经,基于动态聚类算法的两相流流型识别方法研究,热能动力工程,2004,19(2):182~185
    [76]吴新杰,王师,王凤翔,基于粗糙集理论两相流流型辨识方法研究,仪器仪表学报,2003,24(3):221~225
    [77]邵晓寅,黄志尧,冀海峰等,基于电容层析成像和模糊模式识别的油气两相流流型辨识新方法的研究,高校化学工程学报,2003,17(6):616~621
    [78]白博峰,郭烈锦,等,气液两相流流型在线智能识别,中国电机工程学报,2001,21(7):46~50
    [79]白博峰,郭烈锦,垂直上升管汽液两相流型的压差波动特征识别,化工学报,1999,50(6):799~805
    [80]施丽莲,蔡晋辉,周泽魁,基于图像处理的气液两相流流型识别,浙江大学学报:工学版,2005,39(8):1128~1131
    [81]周云龙,孙斌,陈飞,气液两相流型智能识别理论及方法,北京:科学出版社,2007
    [82]李海青,乔贺堂,多相流检测技术进展:多相流测试技术现状及趋势,北京:石油工业出版社, 1996
    [83]李海青,黄志尧,软测量技术原理及应用,北京:化学工业出版社, 2000
    [84]赵鑫,金宁德,李伟波,油水两相流相含率的软测量方法,化工学报,2005,56(10):1875~1879
    [85]金宁德,赵鑫,郑华等,油井伞集流油气水三相流流动参数的软测量方法,化工学报,2006,57(12):2847~2853
    [86]许传龙,赵延军,黄健等,基于人工神经网络的固相质量流量软测量研究,计量学报,2006,27(3):246~249
    [87] Zhao X, Jin N D, Zhang J X, Flow pattern identification of gas/water two phase flow based on SVM, The Sixth World Congress on Intelligent Control and Automation, Dalian, China: 2006: 5661~5667
    [88] Peng Z R, Mi G S, Voidage measurement of two-phase flow based on least squares support vector machine, The Sixth World Congress on Intelligent Control and Automation, Dalian, China: 2006: 4900~4903
    [89] Peng Z R, Zhong L S, Concentration measurement of two-phase flow by means of LS-SVM, International Conference on Machine Learning and Cybernetics, Dalian, China: 2006: 3667~3670
    [90]奉国和,朱思铭,改进SVM及其在时间序列数据预测中的应用,华南理工大学学报(自然科学版), 2005, 33(05): 19~22
    [91]吴德会,一种基于LS-SVM的特征提取新方法及其在智能质量控制中的应用,计算机应用, 2006, 26(10): 2446~2449
    [92]梁新荣,刘智勇,孙德山等,支持向量机在混沌系统预测中的应用,计算机应用研究,2006,23(05):161~162,168
    [93]邵壮丰,杨晓伟,吴广潮,自适应模糊支持向量机算法,计算机工程与应用, 2006, 42(27): 53~56
    [94]金宁德,何晓飞,罗彤,气液两相流电导传感器测量波动信号的Wigner-Ville分析,传感器与微系统,2006,25(12):29~31
    [95]金宁德,陈万鹏,混沌递归分析在油水两相流流型识别中的应用,化工学报,2006,57(2):274~280
    [96]金宁德,郑桂波,陈万鹏,气液两相流电导波动信号的混沌递归特性分析,化工学报,2007,58(5):1172~1179
    [97]金宁德,苗龄予,李伟波,气液两相流差压测量波动信号的符号序列统计分析,化工学报,2007,58(2):327~334
    [98]王微微,气液两相流参数检测新方法研究:[博士学位论文],浙江大学,2006
    [99]吴盛俊,周锦东,量子算法简介,大学物理,1999,18(12):1~5
    [100]袁书卿,张葛祥,一种改进的遗传量子算法及其应用,计算机应用与软件,2003,20(10):1~2
    [101]钟艳花,余永权,Grover量子搜索算法的仿真实现,计算机工程,2005,31(2):3~4
    [102]梁军,程灿,改进的粒子群优化算法,计算机工程与设计,2008,29(11):2893~2896
    [103]刘利强,戴运桃,王丽华,蚁群算法参数优化,计算机工程,2008,34(11):208~210
    [104]王晓英,邢志栋,黄瑞平,改进的粒子群优化算法,计算机应用与软件,2008,25(5):85~86
    [105]杨朝霞,方健文,李佳蓉等,粒子群优化算法在多参数拟合中的应用,浙江师范大学学报:自然科学版,2008,31(2):173~177
    [106]黄辉先,陈资滨,基于混合信息的粒子群优化算法,计算机工程,2008,34(7):176~177
    [107]林川,冯全源,一种新的自适应粒子群优化算法,计算机工程,2008,34(7):181~183
    [108]余健,郭平,基于MATLAB的量子粒子群优化算法及其应用,计算机与数字工程,2007,35(12):38~39
    [109]林星,冯斌,孙俊,混沌量子粒子群优化算法,计算机工程与设计,2008,29(10):2610~2612
    [110] Kytoemaa H K, Brennen C E, Small amplitude kinematic wave propagation in two-component media, International Journal of Multiphase Flow, 1991, 17(1): 13~26
    [111] Coney M W, The theory and application of conductance probes for the measurement of liquid film thickness in two-phase flow, Journal of Physics E (Scientific Instruments), 1973, 6(9): 903~911
    [112] Costigan G, Whalley P B, Slug flow regime identification from dynamic void fraction measurements in vertical air-water flows, International Journal of Multiphase Flow, 1997, 23(2): 263~282
    [113] Saiz-jabardo J M, Boure J A, Experiments on void fraction waves, International Journal of Multiphase Flow, 1989, 15(4): 483~493
    [114] Asali J C, Hanratty T J, Andreussi P, Interfacial drag and film height for vertical annular flow, AIChE Journal, 1985, 31(6): 895~902
    [115]刘兴斌,井下油/水两相流测量:[博士学位论文],哈尔滨工业大学,1996
    [116] Xie T, Tjin S C, Yang Q, et al, Effect of blood's velocity on blood resistivity, IEEE Transactions on Instrumentation and Measurement, 1998, 47(5): 1197~1200
    [117] Lucas G P, Cory J C, Waterfall R C, A six-electrode local probe for measuring solids velocity and volume fraction profiles in solids-water flows, Measurement Science & Technology, 2000, 11(10): 1498~1509
    [118]胡金海,刘兴斌,黄春辉等,一种同时测量流量和含水率的电导式传感器,测井技术,2002,26(02):154~157
    [119]王俊,电导式纵向多极阵列油/水两相流测量方法研究:[硕士学位论文],天津大学,2004
    [120]赵鑫,纵向多极阵列电导式两相流测量方法研究:[博士学位论文],天津大学,2006
    [121]吴红梅,阵列电导式测井传感器优化及电导波动信号分析:[硕士学位论文],天津大学,2007
    [122] Hargreaves D M, Wright N G, On the use of the k-εmodel in commercial cfd software to model the neutral atmospheric boundary layer, Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95(5): 355~369
    [123] Li L, Li X F, Lin B R, et al, Improved k-εtwo-equation turbulence model for canopy flow, Atmospheric Environment, 2006, 40(4): 762~770
    [124] Svetlana P, Gianluca I, Simulating separated flows using the k-εmodel, Center for Turbulence Research Annual Research Briefs 2001, 2001
    [125] Hu H G, Zhang C, A modified k-εturbulence model for the simulation of two-phase flow and heat transfer in condensers, International Journal of Heat and Mass Transfer, 2007, 50(9-10): 1641~1648
    [126]王福军,计算流体动力学分析-CFD软件原理与应用,北京:清华大学出版社,2004
    [127]王瑞金,张凯,王刚,Fluent技术基础与应用实例,北京:清华大学出版社,2007
    [128] James C, The measurement of volume fraction and velocity profiles in vertical and inclined multiphase flows:[博士学位论文], the University of Huddersfield, 1999
    [129] Labrosse著,邵贝贝译,嵌入式实时操作系统μC/OS-II,北京:北京航空航天大学出版社,2003
    [130] Labrosse著,邵贝贝译,μC/OS-II源码公开的实时嵌入式操作系统,北京:北京航空航天大学出版社,2001
    [131] Matsui G, Identification of flow regimes in vertical gas-liquid two-phase flow using differential pressure fluctuations, International Journal of Multiphase Flow, 1984, 10(6): 711~719
    [132] Kelessidis V C, Dukler A E, Modeling flow pattern transitions for upward gas-liquid flow in vertical concentric and eccentric annuli, International Journal of Multiphase Flow, 1989, 15(2): 173~191
    [133]胡广书,数字信号处理-理论、算法与实现,北京:清华大学出版社,1997
    [134] Takens F, Dynamical system and turbulence, Lecture note in mathematics, 1981: p336
    [135] Eckmann J P, Kamphorst S O, Ruelle D, Recurrence plots of dynamical systems, Europhysics Letters, 1987(5): 973~977
    [136] Franca F, Acikgoz M, Lahey R T, et al, The use of fractal techniques for flow regime identification, International Journal of Multiphase Flow, 1991, 17(4): 545~552
    [137] Kozma R, Kok H, Sakuma M, et al, Characterization of two-phase flows using fractal analysis of local temperature fluctuations, International Journal of Multiphase Flow, 1996, 22(5): 953~968
    [138] Annunziato, M., Abarbanel H D I, Non linear dynamics for classification of multiphase flow regimes, Proceedings of International Conference on Soft Computing,Genova,Italy, 1999
    [139] Jin N D, Zheng G B, Hu L Y, Chaotic characteristic analysis of conductance signals of gas/liquid two-phase flow in vertical upward pipe, Chinese Journal of Geophysics-Chinese Edition, 2006, 49(5): 1552~1560
    [140] Annunziato M, Bertini I, Piacentini M, et al, Flame dynamics charaterisation by chaotic analysis of image sequences, Heat Transfer and Fluid Mechanics Institute, 36th, 1999: 13~30
    [141] Llauro F X, Llop M F, Characterization and classification of fluidization regimes by non-linear analysis of pressure fluctuations, International Journal of Multiphase Flow, 2006, 32(12): 1397~1404
    [142] Pincus S M, Approximate entropy as a measure of system-complexity, Proceedings of the National Academy of Sciences of The United States of America, 1991, 88(6): 2297~2301
    [143] Richman J S, Moorman J R, Time series analysis using approximate entropy and sample entropy, Biophysical Journal, 2000, 78(12): 218~218
    [144] Richman J S, Moorman J R, Physiological time-series analysis using approximate entropy and sample entropy, American Journal of Physiology-Heart and Circulatory Physiology, 2000, 278(6): 2039~2049
    [145] Zhuang J J, Ning X B, Zou M, et al, Agreement of two entropy-based measures on quantifying the complexity of short-term heart rate variability signals from professional shooters, Acta Physica Sinica, 2008, 57(05): 2805~2811
    [146] Costa M, Goldberger A L, Peng C K, Multiscale entropy analysis of complex physiologic time series, Physical Review Letters, 2002, 89(6): 068102
    [147] Costa M, Goldberger A L, Peng C K, Multiscale entropy analysis of biological signals, Physical Review E, 2005, 71(21): 021906
    [148] Thuraisingham R A, Gottwald G A, On multiscale entropy analysis for physiological data, Physica A: Statistical Mechanics and its Applications, 2006, 366: 323~332
    [149] Bornas X, Llabr J, Noguera M, et al, Fear induced complexity loss in the electrocardiogram of flight phobics: a multiscale entropy analysis, Biological Psychology, 2006, 73(3): 272~279
    [150] Li Z W, Zhang Y K, Multi-scale entropy analysis of mississippi river flow, Stochastic Environmental Research and Risk Assessment, 2008, 22(4): 507~512
    [151] Norris P R, Stein P K, Morris J J, Reduced heart rate multiscale entropy predicts death in critical illness: a study of physiologic complexity in 285 trauma patients, Journal of Critical Care, 2008, 23(3): 399~405
    [152] He L, Du L, Zhuang Y Q, et al, Multiscale entropy complexity analysis of metallic interconnection electromigration noise, ACTA PHYSICA SINICA, 2008, 57(10): 6545~6550
    [153] Ma Q L, Wang J, Multiscale entropy based study of the pathological time series, Chinese Physics B, 2008, 17(12): 4424~4427
    [154] Nikulin V V, Brismar T, Comment on "multiscale entropy analysis of complex physiologic time series", Physical Review Letters, 2004, 92(8): 089803
    [155] Costa M, Goldberger A L, Peng C K, Comment on "multiscale entropy analysis of complex physiologic time series" - reply, Physical Review Letters, 2004, 92(8): 089804
    [156]李卓,刘斌,刘铁男,支持向量机在油田产量预测中的应用,大庆石油学院学报, 2005(05)
    [157]孙斌,基于HHT与SVM的气液两相流双参数测量:[博士学位论文],浙江大学,2005
    [158] Jin N D, Zhang J X, Zhao X, A study on soft measurement method of water holdup for gas/liquid two phase flow, Sixth World Congress on Intelligent Control and Automation, 21-23 June 2006, Dalian, China: IEEE, 2006: 5 pp.
    [159]彭珍瑞,基于LS-SVM的气液两相流参数测量研究:[博士学位论文],浙江大学,2007
    [160]张军霞,气液两相流流动参数软测量方法研究:[硕士学位论文],天津大学,2007
    [161]彭佩星,王保良,李海青,基于ICA和ES-SVM的油气两相流空隙率测量,化工自动化及仪表,2007,34(4):60~62
    [162] Zheng G B, Jin N D, Jia X H, et al, Gas-liquid two phase flow measurement method based on combination instrument of turbine flowmeter and conductance sensor, International Journal of Multiphase Flow, 2008, 34(11): 1031~1047
    [163]彭珍瑞,殷红,祁文哲,基于SVM和ECT的两相流离散相浓度测量,自动化与仪器仪表,2008,(2):72~74
    [164]蔡慧林,彭珍瑞,祁文哲等,基于LS-SVM的油气两相流空隙率测量方法的研究,工业仪表与自动化装置,2008,(2):75~78
    [165] Vapnik V N, The nature of statistical learning theory, New York :Springer, 1995
    [166] Vapnik V N, An overview of statistical learning theory, IEEE Transactions on Neural Networks, 1999, 10(5): 988~999
    [167] Vapnik V N, Universal learning technology: support vector machines, NEC Journal of Advanced Technology, 2005, 2(2): 137~144
    [168] Chapelle O, Vapnik V, Bengio Y, Model selection for small sample regression, Machine Learning, 2002, 48(1-3): 9~23
    [169] Drucker H, Burges C J, Kaufman L, et al, Support vector regression machines, Advances in Neural Information Processing Systems 9. Proceedings of the 1996 Conference, 2-5 Dec. 1996, Denver, CO, USA: MIT Press, 1997: 155~161
    [170] Muller K R, Smola A J, Ratsch G, et al, Predicting time series with support vector machines, Artificial Neural Networks - ICANN '97. 7th International Conference. Proceedings, 8-10 Oct. 1997, Lausanne, Switzerland: Springer-Verlag, 1997: 999~1004
    [171] Vapnik V N, The support vector method, Artificial Neural Networks - ICANN '97. 7th International Conference. Proceedings, 8-10 Oct. 1997, Lausanne, Switzerland: Springer-Verlag, 1997: 263~271
    [172]王鹏,朱小燕,基于RBF核的SVM的模型选择及其应用,计算机工程与应用,2003,39(24):72~73
    [173]袁小芳,王耀南,基于混沌优化算法的支持向量机参数选取方法,控制与决策,2006,21(01):111~113,117
    [174] Schwaab M, Biscaia J E, Monteiro J L, et al, Nonlinear parameter estimation through particle swarm optimization, Chemical Engineering Science, 2008, 63(6): 1542~1552
    [175] He Q, Wang L, Liu B, Parameter estimation for chaotic systems by particle swarm optimization, Chaos, Solitons and Fractals, 2007, 34(2): 654~661
    [176]夏克文,董瑶,杜红斌,基于改进PSO算法的LS-SVM油层识别模型,控制与决策, 2007, 22(12): 1385~1389
    [177] Eberhart R, Kennedy J, New optimizer using particle swarm theory, Proceedings of the 1995 6th International Symposium on Micro Machine and Human Science, Nagoya, Jpn, 1995: 39~43
    [178] Kennedy J, Eberhart R, Particle swarm optimization, Proceedings of the 1995 IEEE International Conference on Neural Networks. Part 4 (of 6), Perth, Aust, 1995: 1942~1948
    [179] Shi Y, Eberhart R, A modified particle swarm optimizer, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence, Anchorage, AK, USA, 1998: 69~73
    [180] Angeline P J, Using selection to improve particle swarm optimization, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence, Anchorage, AK, USA, 1998: 84~89
    [181] Shi Y, Eberhart R, Modified particle swarm optimizer, Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, ICEC'98, Anchorage, AK, USA, 1998: 69~73
    [182] Sun J, Feng B, Xu W, Particle swarm optimization with particles having quantum behavior, Proceedings of the 2004 Congress on Evolutionary Computation, CEC2004, Portland, OR, United States: Institute of Electrical and Electronics Engineers Inc., New York, United States, 2004: 325~331
    [183] Sun J, Xu W, Feng B, A global search strategy of quantum-behaved particle swarm optimization, 2004 IEEE Conference on Cybernetics and Intelligent Systems, Singapore: Institute of Electrical and Electronics Engineers Inc., New York, NY 10016-5997, United States, 2004: 111~116
    [184] Beck M S, Correlation in instruments: cross correlation flowmeters, Journal of Physics E (Scientific Instruments), 1981, 14(1): 7~19
    [185] Thorn R, Beck M S, Green R G, Non-intrusive methods of velocity measurement in pneumatic conveying, Journal of Physics E (Scientific Instruments), 1982, 15(11): 1131~1139
    [186] Lucas G P, Jin N D, Measurement of the homogeneous velocity of inclined oil-in-water flows using a resistance cross correlation flow meter, Measurement Science & Technology, 2001, 12(9): 1529~1537
    [187]赵鑫,金宁德,王化祥,相关流量测量技术发展,化工自动化及仪表,2005,32(1):1~6
    [188]胡金海,刘兴斌,黄春辉等,相关流量计水平条件下两相流实验效果分析,测井技术,2006,30(01):54~56
    [189]刘兴斌,胡金海,周家强等,电导式相关流量测井仪在产出剖面测井中的应用,测井技术,2004,28(02):138~140,144
    [190]李英伟,孔令富,刘兴斌等,基于互相关理论的油井流量测量系统,电子器件,2007,30(4):1458~1461
    [191]任旭虎,王英辉,油井超声互相关流量计的研究,青岛大学学报:工程技术版, 2003, 18(2): 51~54
    [192]王智慧,王磊,互相关流量测量的原理及算法研究,西北工业大学学报, 1999, 17(B12): 186~189
    [193]刘磊,周芳德,气液两相流流量的互相关测量,计量学报, 1994, 15(2): 126~131
    [194] Xu L A, Green R G, Plaskowski A, et al, The pulsed ultrasonic cross-correlation flowmeter for two-phase flow measurement, Journal of Physics E (Scientific Instruments), 1988, 21(4): 406~414
    [195] Williams R A, Xie C G, Dickin F J, et al, Multi-phase flow measurements in powder processing, Powder Technology, 1991, 66(3): 203~224
    [196]李迎春,张宝芬,两相流中的速度分离和相关法测量,宇航计测技术,1990,(4):59~64
    [197]周洁,袁镇福,岑可法等,光信号互相关测量两相流中颗粒流动速度的研究,中国电机工程学报,2003,23(1):185~188
    [198] Makhoul J, Linear prediction: a tutorial review, Proceedings of the IEEE, 1975, 63(4): 561~580
    [199] Darwich T D, Toral H, Archer J S, A software technique for flow-rate measurement in horizontal two-phase flow, SPE Production Engineering, 1991(8): 265~270
    [200] Frank R, Mazars J, Ricque R, Determination of mass flow rate and quality using a turbine meter and a venturi, Heat and Fluid Flow in Water React Safety, Conference., Manchester, England, 1977: 63~68
    [201] Abdul-razzak A, Shoukri M, Chang J S, Measurement of two-phase refrigerant liquid-vapor mass flow rate - part II: turbine and void fraction meters, Proceedings of the 1995 ASHRAE Annual Meeting, San Diego, CA, USA, 1995: 523~531
    [202] Abdul-razzak A, Shoukri M, Chang J S, Measurement of two-phase refrigerant liquid-vapor mass flow rate - part III: combined turbine and venturi meters and comparison with other methods, Proceedings of the 1995 ASHRAE Annual Meeting, San Diego, CA, USA, 1995: 532~538
    [203] Shim W J, Dougherty T J, Cheh H Y, Turbine flow meter response in two-phase flows, Proceedings of the 1996 4th ASME/JSME International Conference on Nuclear Engineering, ICONE-4. Part 1B (of 5), New Orleans, LA, USA, 1996: 943~954
    [204] Shim W J, Lee C T, Measurement of gas-liquid vertical upward flow using turbine flow meter, Proceedings of the 1998 ASME/JSME Pressure Vessels and Piping Conference, San Diego, CA, USA, 1998: 171~176
    [205] Huang Z, Xie D, Zhang H, et al, Gas-oil two-phase flow measurement using an electrical capacitance tomography system and a venturi meter, Flow Measurement and Instrumentation, 2005, 16(2-3): 177~182
    [206] Mark P A, Johnson M W, Sproston J L, et al, The turbine meter applied to void fraction determination in two-phase flow, Flow Measurement and Instrumentation, 1990, 1(5): 246~252
    [207] Johnson M W, Farroll S, Development of a turbine meter for two-phase flow measurement in vertical pipes, Flow Measurement and Instrumentation, 1995, 6(4): 279~282
    [208] Minemura K, Egashira K, Ihara K, et al, Simultaneous measuring method for both volumetric flow rates of air-water mixture using a turbine flowmeter, Journal of Energy Resources Technology, Transactions of the ASME, 1996, 118(1): 29~35
    [209] Minemura K, Egashira K, Ihara M, et al, Simultaneous measurement method for volumetric flow rates of both phases of air-water mixture using a turbine flow meter, Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 1996, 62(593): 122~129
    [210] Minemura K, Furuta H, Furukawa H, et al, Simultaneous measurement of mass- and volumetric-flow rate and void fraction using a turbine flow meter, Proceedings of the Energy-Sources Technology Conference and Exhibition, Houston, TX, USA, 1995: 107~112
    [211] Ogawa Y, Kawaoto H, Gu R L, et al, Experiments of a turbine meter for multiphase flow, Proceedings of 9th International Conference on Flow Measurement, Lund, Sweden: ITF, 1998: 285~290

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700