用户名: 密码: 验证码:
北京地铁盾构施工风险评价与控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盾构施工工艺是市政工程常用工艺之一,盾构法采用了特殊的施工工具盾构机。盾构机是根据施工对象“量身定做”的,盾构机制造所依据的对象,称之为施工环境,它是基础地质、工程地质、水文地质、地貌、地面建筑物及地下管线和构筑物等特征的总和。由此可以看出,如果不详细研究施工环境,就无法制造适应性强的盾构机,更谈不上顺利地进行盾构施工。在施工环境的诸多因素中,基础地质和工程地质特征是最重要的,因为它们是盾构机选型及采用盾构施工工艺最重要的先决条件。在实践当中,对地质特征的研究往往被忽视。殊不知,各项盾构施工技术无不与地质特征紧密有关,尤其是复合地层中的盾构施工。盾构机与盾构掘进施工是一项庞大的施工生产系统,包括水平垂直运输、机电设备安装与运行、实时测量监控、防水止水、管片运输和拼装、同步注浆等一系列的复杂工序,涉及安全的人、机、环境等各系统,需要最新的安全理论提供指导和服务。本文对北京地铁盾构施工地质模型、沉降模型、盾构参数模型的研究,极大地丰富了盾构施工的安全理论,促进了安全技术和安全理论在地铁施工领域的发展相较而言,盾构施工有着明显的优势,体现在以下几个方面:
     (1)环境影响较小。除车站或始发井施工外,区间施工作业均在地下进行,尘土、噪音、振动引起的环境公害较小;
     (2)地下盾构施工,不影响地面道路交通;
     (3)当隧道穿过河道、铁路或其他构筑物时,影响程度可控;
     (4)机械化程度高。盾构推进、出渣、衬砌拼装等主要工序均依靠盾构系统循环完成,施工用劳力较少、生产效率较高;
     (5)盾构施工生产不受风雨等气候条件影响;受工程地质水文地质条件影响较小,具有较好的技术经济优越性。但是,我国轨道交通发展历史比较短、施工经验不足,盾构掘进还存在着如下一些问题:
     (1)盾构施工安全技术水平和安全管理水平较低。我国尚未建立起独立自主的盾构机制造产业,盾构机主要依靠进口或者从不同国家引进设施、设备进行国内组装,国产化程度、自主知识产权程度很低。
     (2)地铁施工环境复杂。地铁盾构施工大多地处密集地段,周边环境复杂,穿越各种建筑物、铁路、河流、桥梁等作业日益频繁,而且由于施工节点较多,施工单位不同,管理理念、水平不一,给地铁工程的建设及将来的运营管理留下不容忽视的问题和安全隐患,仅2006年北京地铁四号线盾构施工就发生重大塌陷事故3起,严重影响人民生命及财产安全,造成了建设和运营截然不同的社会效益。
     (3)我国安全科学起步较晚,安全技术发展相对滞后。对地铁盾构施工风险研究还不够深入,大部分分析手段、研究方法仍依靠借鉴或模仿其他行业,没有形成盾构系统的安全理论和安全控制技术。
     北京地区地处永定河洪冲积扇的中上部,第四系松散土层及砂卵石层遍布全市。其地质沉积层的“相变”十分明显,西部的粗大颗粒沉积物向东很快渐变为细小颗粒沉积物;西部单一的砂卵石层向东很快渐变为粘性土和粉细砂互层的多层状态。在五环路以内和五环周边大约800km2的范围内,采用盾构施工时,将会碰到以下几类极具北京地层特征的粘质粉土、粉质粘土以及砂性土和砂卵石。西部将主要以砂卵石地层为主,如卢沟桥地区和石景山首钢一带,其砂卵石级配良好,最大颗粒可达40cm以上。南部或西南部、北部或西北部,将会碰到有少量粘性土的砂卵石地层和全断面的砂卵石地层,这些地层中含砂率大约在25%-40%之间。而在东部,则主要是粘性土或砂性土。
     北京的地层地下水或者更确切地说浅层地下水,一般均系第四系地层中地下水。通常认为包含三种水,即上层滞水、潜水和浅层承压水。另一类,景观、河湖渗漏水以及城市上下水道漏失水,按其赋存类型划分,也可归入以上三种水,当然其应是一种特殊的城市水。根据北京市政府水资源顾问侯景岩教授的研究,北京市含水地区可大致分为5个区段。Ⅰ区富水区:主要分布在北京中西部地区,即学院路、五道口、紫竹院、阜成门、天坛公园以西,面积约135 km2。含水层平均厚度13m,渗透系数60~150m/d,平均水力坡度0.2%;Ⅱ区富水区:主要分布在市区中心地带,以故宫为中心呈Y字型南北条形分布。其中天安门以西28中学附近含水层透水系数为40-80m/d,平均水力坡度为0.15%;Ⅲ区中等富水区:大致分为两片,第一片为东部西坝河以东,东四环以西地带;另一片为西坝河,北新桥一带。Ⅲ区总面积约61km2。其分层性明显,平均渗透系数为30~60m/d;Ⅳ区弱富水区:主要分布在安贞桥、太阳官以西公主坟附近,总面积20 km2左右。平均渗透系数20-40m/d;V区贫水区:此地区基本上无含水层,分布也较杂。
     由上述内容可知,北京地区地质与水文条件具有明显的不同于其他城市的特征,采用盾构技术施工时,必然要针对其特点,采取相应的对策,选用与之相适应的盾构机和采取适当的技术措施。例如,对于北京地区典型的砂卵石地层,就应该选择合适的盾构刀头,以增加刀头使用寿命,减少刀头消耗以及换刀头所带来的施工成本和施工风险。
     本文以北京地铁四号线4标为例,针对北京地区的工程地质水位地质条件、周边环境、盾构施工工艺、工区特点等相关危险源,提供危险源辨识清单,为施工企业系统、全面掌握安全隐患,制定完善的安全措施,为本文下一步安全评价提供充分详实的依据;对北京地铁盾构施工进行风险分析和风险评估,指导北京地区盾构施工安全生产和安全管理;为盾构施工创建科学的盾构施工风险管理程序,开发适合企业盾构项目工程施工的风险评估体系,为企业盾构施工项目风险管理的规范化、程序化提供合适的依据及参考标准;建立北京地区地铁施工的地质模型、参数控制模型、地表沉降预测模型以及风险预测模型,为安全控制技术提供理论基础;进行盾构穿越既有建(构)筑物、河道、桥梁、铁路等控制技术研究,提出科学、安全的盾构施工安全建议。
     本文通过调查北京地区盾构施工的工程地质水文地质情况,以及地表和地下环境,对北京地区盾构施工环境的复杂性进行了详细的分析探讨。结合北京地铁四号线4标工程实例,对北京地区地铁盾构施工危险源进行了分析,并且确定了盾构进出洞、盾构掘进过程中下穿高层建筑物、盾构掘进过程中下穿河流、盾构掘进过程中下穿道路以及盾构掘进过程中下穿地下管线等为重大风险源,对这些重大风险源可能发生的风险事故进行了分析。
     本文运用预先风险分析方法,对盾构施工初期阶段的物料、装置以及能量失控时可能出现的危险性类别、条件和可能造成的后果作宏观的概略分析,确定其危险性等级,以防止类似危险有害因素失控导致事故的发生。
     本文根据R=P×C定级法这种定性与定量相结合的风险分析方法,结合北京地区工程地质、水文地质以及地表地下环境,以及北京地铁四号线工程角门北路站—北京南站区间盾构工程施工的具体情况,选取了施工中的22项风险源作为主要风险,对该工程进行R=P×C定级风险评价。
     本文选取土压平衡技术作为主要分析类型,建立了掘进过程中的各种参数模型。主要有如下参数:土仓压力、推进速度、总推力、排土量、刀盘转速和扭矩、注浆压力和注浆量、泡沫、泥浆注入量,为盾构施工风险控制提供了一定理论基础。
     本文结合工程实例,对盾构施工线路的土体沉降监测的方法以及沉降预测进行了详细分析,且提出了控制土体沉降的控制技术。
     本文针对北京地区的具体地层进行盾构机选型分析,并针对北京砂卵石地层中,盾构施工刀具磨损严重的问题进行了探讨;根据刀具选型实例,提出了刀具磨损量与掘进距离的回归关系式。
     针对大直径盾构出洞时安全问题,对盾构出洞段土体稳定性进行评价。讨论了北京地区盾构施工土体加固的适宜施工方法,提出了盾构加固后土体的抗压、抗剪强度以及整体稳定性计算方法,并且结合工程实例进行了计算。
     本项研究对象是北京地区砂卵石地层盾构施工风险,具有一定的局限性。根据地层情况的不同,盾构施工所发生的危险也不同,其控制措施更是有很大差别。因此,需要收集大量施工资料,对不同地区的地层情况建立风险分析模型,分析其风险,为各种地质情况下的盾构施工防治风险提供指导。
     施工期风险分析应包括施工组织设计阶段的风险分析与工程建设过程的风险分析。本文假设方案选择和设计完全适用,仅仅对工程建设过程的风险进行了分析。实际在工程设计阶段就需要考虑各种方案的风险大小,选择风险最小,成本最低的方案。
     本文建立的风险分析模型都是定性或半定量的。半定量结果的可信度显然要比定性结果大大增强,但还是存在着人为的影响因素,与期望结果还是有一定的差距。因此,如何进行真正风险定量分析还需要进行深层次的思考和研究。
     本文进行风险分析过程中,主要以安全分析为核心目标,经济指标未作研究重点,无法实现技术、环境与经济三者的均衡。进一步分析风险产生的经济损失可以预测投保保额,可以帮助业主在尽可能保证安全的情况下,节省风险处理或转嫁的费用。
     风险分析作为一种方法,在地下工程领域正在被广泛关注着。随着今后大型地下工程投资主体的多样化,风险分析与风险控制必然会越来越受到重视。对该问题的研究不但具有理论上的意义,而且能够规避风险,指导实际工程的进行。
     课题对盾构工程施工安全技术、安全管理、安全教育等方面的研究,对盾构施工安全管理水平做出评价结论,使企业不仅了解了在盾构工程施工过程中存在的风险素及其可能导致事故的危险性,而且明确如何改进安全状况,为企业盾构工程领域安全生产的宏观控制提供客观的基础资料和系统控制技术,减少伤亡事故和环境破坏,有效控制施工成本和施工工期,提高企业经济效益和社会效益。
     根据隧道区间地质情况及周边环境条件,为保证开挖面的稳定、有效的控制地表沉降和确保沿线构造物的安全,主要选择七个施工管理指标来进行掘进控制管理:①土仓压力;②推进速度;③总推力;④排土量;⑤刀盘转速和扭矩;⑥注浆压力和注浆量;⑦泡沫、泥浆注入量,其中土仓压力是主要的控制指标。
     中国是隧道工程建设方面的世界大国,特别是近年来,各大城市开始兴建地铁,目前已经慢慢进入了地铁建设的高潮时期。仅就北京地区,现已初步形成轨道交通的基本骨架,根据规划,到2020年北京有望成为世界上地铁线路总长最长的城市。地铁的发展地缓解了各大城市的交通问题,方便了人民群众的生活。但是地铁建设成本高,风险大,一旦出现险情,费用更是直线上升。因此,对于地铁建设过程中的风险分析与控制成为了一个重要的研究方向。盾构掘进是地铁建设中的重要环节,也是危险多发阶段。本报告系统全面地研究了北京地区盾构施工中的各种风险因素,并且建立模型,结合工程实例,提出了可行的控制措施。然而由于水平和时间有限,报告在某些方面只是做了一些尝试性探索,许多方面还有待进一步深入研究。
     (1)报告的研究对象是北京地区砂卵石地层盾构施工风险,具有一定的局限性。根据地层情况的不同,盾构施工所发生的危险也不同,其控制措施更是有很大差别。因此,需要收集大量施工资料,对不同地区的地层情况建立风险分析模型,分析其风险,为各种地质情况下的盾构施工防治风险提供指导。
     (2)施工期风险分析应包括施工组织设计阶段的风险分析与工程建设过程的风险分析。本报告假设方案选择和设计完全适用,仅仅对工程建设过程的风险进行了分析。实际在工程设计阶段就需要考虑各种方案的风险大小,选择风险最小,成本最低的方案。
     (3)本文建立的风险分析模型都是定性或半定量的。半定量结果的可信度显然要比定性结果大大增强,但还是存在着人为的影响因素,与期望结果还是有一定的差距。因此,如何进行真正风险定量分析还需要进行深层次的思考和研究。
     (4)进行风险分析的一个重要目的就是为了降低成本。本报告在进行风险分析过程中,主要以安全分析为核心目标,而不是以经济指标为研究重点,无法实现技术、环境与经济三者的均衡。进一步分析风险产生的经济损失可以预测投保保额,可以帮助业主在尽可能保证安全的情况下,节省风险处理或转嫁的费用。
     (5)风险分析作为一种方法,在地下工程领域正在被广泛关注着。随着今后大型地下工程投资主体的多样化,风险分析与风险控制必然会越来越受到重视。对该问题的研究不但具有理论上的意义,而且能够规避风险,指导实际工程的进行。
Shield construction process is one technique commonly used municipal engineering, shield method of construction using a special tool to shield machine. Shield machine is based on the construction object "tailor-made", the shield machine manufacturing is based on the object, called the construction environment, it is the basic geology, engineering geology, hydrogeology, geomorphology, surface buildings and underground pipelines, and structures and other features combined. It can be seen, if you do not study in detail the construction environment, you can not create adaptable shield machine, let alone carried out smoothly shield construction. Factors in the construction environment, the basic geological and engineering geological characteristics are the most important,
     Because they are the shield machine selection and the use of shield construction technology of the most important prerequisite. In practice, the study of geological features is often neglected. As everyone knows, the shield construction technology is all closely related with the geological features, especially the complex formation of the shield construction. Construction of shield machine and the shield is a huge construction of production systems, including horizontal and vertical transportation, mechanical and electrical equipment installation and operation, real-time measurement monitoring, water-proof sealing, tube sheet transportation and assembling, grouting and a series of complex simultaneous process involving the safety of
     Man, machine and environment, all systems require the latest security theory provides guidance and services. In this paper, Beijing Subway Construction geological model, the settlement model, shield-parameter model studies, have greatly enriched the theory of security shield construction to promote the theory of security technology and security developments in the field of construction in the metro comparison, the Shield Construction structure has a clear advantage, reflected in the following areas:
     (1) Less environmental impact. In addition to originating stations or construction of wells, the range of underground construction operations are carried out, dust, noise, vibration caused by a smaller environmental hazards;
     (2) Underground shield construction, does not affect the ground level road traffic;
     (3) When the tunnel across the river, rail or other structure, the impact controllable;
     (4) A high degree of mechanization. Shield forward, out of slag, lining and other major assembly processes are completed on cycle shield system, the construction with less labor, productivity is higher;
     (5) The construction of the production from wind and rain shield and other weather conditions impact; by the engineering geology little effect on hydro-geological conditions, with good technical and economic superiority.
     However, our relatively short history of rail transportation, construction, lack of experience, shield, there are still some problems as follows:
     (1) The Shield construction safety technology and safety management was low. China has not yet established an independent shield machine manufacturing industries, shield machines rely mainly on imports or imported from different countries, facilities, equipment for domestic assembly and localization of the degree of independent intellectual property rights is low.
     (2) Subway construction complex environment. Subway Construction sites are mostly located in the dense, peripheral complex, across a variety of buildings, railways, rivers, bridges and other operations have become increasingly frequent, and because the construction of more nodes, the construction units of different management philosophy, different levels, giving subway Construction on the project and the future operation and management leave should not be ignored and security risks, only in 2006 Beijing Metro Line shield construction on the three major cave-in accident, the serious impact on people's lives and property, resulting in the construction and operation of different social benefits.
     (3) The late start of our national security science, security, technology development is lagging behind. Subway Construction risk of lack of research depth, most of the analytical tools, research methods continue to rely on learning or imitation of other industries, there is no theory of the formation of shield system's security and safety control technology.
     Region is located in Beijing in the Yongding River flood alluvial fan in the upper part of Quaternary loose soil and sand and gravel all over the city. Its geological deposits of the "phase change" is clear, coarse grain sediments west to east will soon fade as the small particles sediment; a single sand and gravel west to east gradient of clay, and soon each layer of fine sand multi-state. Within the Fifth Ring Road and the rings surrounding the extent of about 800km2 use of shield construction, it will encounter the following types of characteristics of highly viscid Beijing strata of silt, silty clay and sandy soil and sand and gravel. Western Sand and Gravel will be primarily based,
     Such as the Marco Polo Bridge area and Shijingshan-Shougang area, its well-graded sand and gravel, the largest particles of up to 40cm or more. The south or south-west, north or north-west, will encounter a small amount of clay of the Sand and Gravel and the whole cross-section of Sand and Gravel, these strata of sand rate is about between 25%-40%, in the east, mainly clay or sandy soil.
     Beijing's underground water strata or rather shallow groundwater is generally the Department of Quaternary strata in the groundwater. Usually considered to comprise three kinds of water, that is, perched water, diving and shallow confined water. Another, landscape, river and lake water leakage as well as urban water and sewer leakage of water, according to their type of occurrence can also be included in the above three kinds of water, of course, its should be a special kind of urban water. According to the Beijing Municipal Government adviser Professor Hou Jingyan water resources research, water-bearing area of Beijing can be broadly divided into 5 sections. I zone water-rich region:mainly distributed in the Beijing central and western regions, namely, College Road, Wudaokou, Purple Bamboo, Fuchengmen, Temple of Heaven Park, west of the
     An area of about 135 km2. The average aquifer thickness of 13m, permeability coefficient of 60~150m/d, an average hydraulic gradient of 0.2%;Ⅱarea water-rich region:mainly distributed in the urban heart of the National Palace Museum as the center showed the distribution of Y-shaped north-south strip.28 secondary schools in the vicinity west of Tiananmen Square in which the aquifer permeability coefficient of 40~80m/d, an average hydraulic gradient of 0.15%;Ⅲarea middle water-rich region:roughly divided into two, the first piece east of the eastern Xibahe, East City of Victoria west of the zone; another piece of Xibahe, Beixinqiao area.Ⅲtotal area of about 61km. Its layered obviously, with an average permeability coefficient of 30~60m/d; IV District weak water-rich region:mainly distributed in the Anzhen bridge, the sun, west of Gongzhufen official close to the total area of about 20 km2.The average permeability coefficient of 20~40m/d; V-deficient water area:This area is basically non-aquifer, distribution is more mixed.
     From the above we can see that the Beijing area geological and hydrological conditions are distinctly different from the characteristics of other cities, using shield technology during the construction, will have to address its own characteristics, to take corresponding countermeasures, selection of corresponding shield machine and take of appropriate technical measures. For example, a typical in Beijing Sand and Gravel, it should select the appropriate shield Cutter, in order to increase Cutter life, reduce consumption and for Segment Segment caused by construction costs and construction risks.
     In this paper, Beijing Metro Line 4# standard, for example, in Beijing, the water level of the engineering geology geological conditions, surrounding environment, shield the construction process, work area and other relevant characteristics of hazards and provide hazard identification list for the construction of enterprise systems, complete control of potential safety problems, develop sound security measures, in order to provide adequate safety assessment of this next detailed basis; of Beijing Subway Construction risk analysis and risk assessment to guide in Beijing shield construction safety in production and safety management; to shield construction The shield construction to create a scientific risk-management procedures and to develop projects for enterprise shield construction risk assessment system, Shield construction project for the enterprise risk management, standardization and procedural basis for the provision of appropriate and reference standards; the establishment of subway construction in Beijing geological model, control model parameters, surface subsidence prediction model and the risk prediction model, in order to provide a theoretical basis for the security control technology; to shield through the existing building (structure) building materials, river, bridges, railways and other control technology research, to provide scientific, security, shield construction safety recommendations.
     In this paper, the investigation in Beijing shield construction engineering geology hydrogeology, as well as surface and subsurface environment, the environment in Beijing shield the complexity of the construction carried out a detailed analysis of study. Beijing Metro Line 4 with standard engineering practice, the Beijing Subway Construction hazard area was analyzed and determined that shield and out of holes, shield beneath the process of high-rise buildings, shield beneath the process of river, under the shield to wear during the course of the road as well as shield beneath underground pipelines as a major risk source of these major risk source of the risk of accidents that may occur are analyzed.
     In this paper, a pre-risk analysis method, the early stages of shield construction materials, devices and energy control may occur when the risk categories, conditions and possible consequences for the broad macro-analysis to determine their risk level, in order to prevent similar risk loss of control of harmful factors leading to accidents.
     Based on the R=P×C classification method that combines qualitative and quantitative risk analysis methods, combined with the Beijing area engineering geology, hydrogeology and surface underground environment, and the Beijing Metro Line project they saw Road Station-Beijing South Railway Station range of the specific circumstances of shield construction selected for the construction of the 22 risk source as a major risk, the works R=P×C rated risk assessment.
     This paper selected earth pressure balance technology as the main type of analysis to establish a tunneling process of the various parameter models. Have the following main parameters:soil storage pressure, the advancing speed, the overall thrust, the amount of waste pile, knives plate speed and torque, grouting pressure and grouting volume, foam, slurry injection rate, in order to shield construction provides a certain theoretical risk control foundation.
     In this paper, engineering practice, the construction of the shield lines, soil subsidence monitoring methods, and conducted a detailed analysis of settlement prediction, and control the proposed settlement of soil control technology.
     In this paper, the specific stratum in Beijing shield machine selection analysis, and for the Beijing Sand and Gravel, the shield construction tool wear problem were discussed; selection of examples under the knife and put forward the amount of tool wear and the tunneling distance regression relationship.
     For the large-diameter shield out of its hole when the security issues out of its hole on the shield section to evaluate the stability of the soil, Shield Construction in Beijing discussed the reinforcement of soil suitable for construction method proposed shield Houtu body compressive reinforcement, shear strength and the overall stability of the calculation method, combined with engineering examples were calculated.
     This study object is in Beijing Sand and Gravel shield construction risks, has certain limitations. According to the different formation conditions, the construction of the risk shield is also different, their control measures is very different. Therefore, the need to collect a large number of construction materials, the situation in different regions of the strata a risk analysis model to analyze their risks, for a variety of geological conditions under the prevention and control risk shield construction to provide guidance.
     The construction period of risk analysis should include the construction organization design and engineering phase of the construction process of risk analysis, risk analysis. This article assumes that the selection and design of the program is fully applicable only to the construction process of risk analysis. Practical in the engineering design phase will need to consider the size of the risks of various options, choose the least risk, lowest cost solution.
     In this paper, risk analysis models are qualitative or semi-quantitative. Clearly the credibility of the results of semi-quantitative than qualitative results greatly enhanced, but still there are human factors, and expectations of the results is still a certain gap. Therefore, how to conduct quantitative analysis of the real risk needs to be done in-depth thinking and research.
     This risk analysis process, the main core objectives of security analysis, economic indicators, research priorities have not been unable to achieve the technical, environmental and economic balance of the three. Further analysis of the risk of economic loss arising from the insured the sum insured can be predicted, can help the owners as much as possible to ensure the safety of circumstances, to save the cost of the risk of handling or transfer.
     Risk analysis as a method of underground engineering is being widely watched. With the large-scale underground project investment in the future subject of diversification, risk analysis and risk control is bound to more and more attention. The study of the issue is not only has theoretical significance, but also to avoid risks, to guide the actual works.
     Construction subject to the Shield security technology, security management, security, education, research, construction safety management level of the shield made of evaluation findings to enable enterprises to not only understand in the process of shield construction elements and its possible risks the risk of causing accidents, but also specifically how to improve the security situation in the fields of engineering for enterprise production safety shield macro-control to provide basic, objective data and system control technologies to reduce casualties and environmental destruction, to effectively control construction costs and construction schedules, improve enterprise economic returns and social benefits.
     Interval according to the geological condition of the tunnel and the surrounding environmental conditions, in order to ensure the stability of the excavation face and effective control of surface subsidence along the constructs and to ensure the safety, construction management, the main choice of seven indicators to carry out tunneling control management: Dokura pressure; forward velocity; general thrust; Dump volume; cutter speed and torque; grouting pressure and volume; foam, slurry injection rate, which Dokura pressure is a major control targets.
     China is the tunnel construction, the world powers, especially in recent years, major cities began construction of the MTR, the subway is now slowly entering the height of the building. Far as in Beijing has been initially formed the basic skeleton of rail transportation, according to the 2020 Beijing subway line is expected to become the world's total length of the longest city. Development of the MTRC is easing the traffic problems in major cities to facilitate the people's lives. But the subway construction costs are high, risks are great, the event of a dangerous situation, the cost is even straighter up. Thus, for subway construction in the process of risk analysis and control has become an important research direction.
     Shield is an important link in the subway construction, but also dangerous to multiple stages. The present report systematically and comprehensively studied in Beijing shield construction of the various risk factors and to build models, combined with engineering practice, put forward a feasible control measures. However, due to the level and the limited time available, the report is in some respects, has made some tentative explorations, in many ways remains to be further study.
     (1) The object of study is in Beijing Sand and Gravel shield construction risks, has certain limitations. According to the different formation conditions, the construction of the risk shield is also different, their control measures is very different. Therefore, the need to collect a large number of construction materials, the situation in different regions of the strata a risk analysis model to analyze their risks, for a variety of geological conditions under the prevention and control risk shield construction to provide guidance.
     (2) The construction period of risk analysis should include the construction organization design phase of the construction process of risk analysis and risk analysis. The report assumes that the program selection and design of fully applicable only to the construction process of risk analysis. Practical in the engineering design phase will need to consider the size of the risks of various options, choose the least risk, lowest cost solution.
     (3) In this paper, the risk analysis models are qualitative or semi-quantitative. Clearly the credibility of the results of semi-quantitative than qualitative results greatly enhanced, but still there are human factors, and expectations of the results is still a certain gap. Therefore, how to conduct quantitative analysis of the real risk needs to be done in-depth thinking and research.
     (4) To conduct risk analysis is an important aim is to reduce costs. The process of conducting risk analysis of this report, the main core objectives of security analysis, rather than a focus on economic indicators, and can not achieve the technical, environmental and economic balance of the three. Further analysis of the risk of economic loss arising from the insured the sum insured can be predicted, can help the owners as much as possible to ensure the safety of circumstances, to save the cost of the risk of handling or transfer.
     (5) Risk analysis as a method of underground engineering is being widely watched. With the large-scale underground project investment in the future subject of diversification, risk analysis and risk control is bound to more and more attention. The study of the issue is not only has theoretical significance, but also to avoid risks, to guide the actual works.
引文
[1]《北京市城市轨道交通线网调整规划》,2002年6月修订
    [2]罗云,《安全经济学》,北京:化学工业出版社,2004:5-6
    [3]郭延安,《风险管理》,北京:清华大学出版社,2010
    [4]Guofang Zhai and Takeshi Suzuki (2006):Valuing Coastal Zone in Japan with Contingent Valuation Method. Proceedings of Techno-Ocean2006/19th JASNAOE Ocean Engineering Symposium (CD-ROM). October 18--20,2006
    [5]Herbert H. Einstein1, Claude Indermitte, Joseph Sinfield, Franccois P. Descoeudres, Jean-Paul Dudt:Transportation Research Record:Journal of the Transportation Research Board, Transportation Research Board of the National Academies, Volume 1656/1999: 6-13
    [6]吴贤国,R=P×C法评价水下盾构隧道施工风险[J],华中科技大学学报(城市科学版),2005/04:14-17
    [7]北京市政专业设计院有限责任公司,《北京地铁四号线4标地质勘查报告》,2003
    [8]中国建筑一局(集团)有限公司,《北京地铁四号线4标施工组织设计》,2004
    [9]苏健行等,土压平衡盾构掘进总推力的计算与试验研究[J],工程机械,2008(1):13-16
    [10]陈英盈,土压平衡盾构机主要技术参数的选择[J],建筑机械化,2004,6:48-59
    [11]王铁生,地下隧洞测控技术与地表沉降动态监控模型的研究[J],南京:河海大学,2003
    [12]张云,殷宗泽,徐永福.盾构法隧道引起的地表变形分析[J],岩石力学与工程学报,2002,21(3):388-392
    [13]周文波,盾构法隧道施工技术及应用[M],北京:中国建筑工业出版社,2004
    [14]王沫然,MATLAB与科学计算[M],北京:电子工业出版社,2003
    [15]张明富,砂卵石地层盾构刀具动态磨损分析[J],岩石力学与工程学报,2008(2):15-18
    [16]吴家龙,弹性力学[M],上海:上海同济大学出版社,1987
    [17]姚希梦,邱棣华,陈安.弹塑性力学[M],北京: 机械工业出版社,1987
    [18]赵峻,戴海蛟,隧道盾构机进出洞施工技术,城市道桥与防洪,2007,9(9):62-67.
    [20]吴韬,韦良文,张庆贺.大型盾构出洞区加固土体稳定性研究[J].地下空间与工程学报,2008.4(3):31-35.
    [21]张成.地铁工程土压平衡式盾构施工技术研究[D].成都:西南交通大学,2002.
    [22]吴韬,大型盾构进出洞施工技术及加固土体受力机理分析[D].上海:同济大学工学,2006
    [23]刘鸿文.板壳理论[M],杭州:浙江大学出版社,1997
    [24]刘波,韩彦辉,FLAC原理、实例与应用指南[M],北京:人民交通出版社,2005
    [25]郭玉海,盾构穿越铁路的沉降综合控制技术[J],市政技术,2003(7):204-208
    [26]宋克志,王梦恕,砂卵石地层盾构穿越铁路的施工效应分析[J],烟台师范学院学报(自然科学版),2005(1):76-80
    [27]杜孔泽,严广艺,近距离盾构隧道下穿铁路沉降分析[J],山西建筑,2005(7):80-81
    [28]庄剑.项目管理过程中的风险分析与控制[J].中国勘察设计,2003,(04)
    [29]蔡英.建筑工程项目的风险分析与控制[J].武汉科技学院学报,2006,(07)
    [30]赵金葵,马晓晖,孙维丰.地下工程施工风险分析应用研究[J].黑龙江科技信息,2007,(18)
    [31]乐贵平.浅谈北京地区地铁隧道施工用盾构机选型[J].现代隧道技术,2003,(03)
    [32]胡蒙达,黄士兴,刘万兰.地铁隧道保护的技术标准及纠偏施工技术[J].建筑施工,1999,(06)
    [33]朱衍峰,周晓军,邓彬.地铁施工中地下建筑物对地表沉降的控制标准[J].四川建筑,2008,(01).
    [34]武建华,王献伟.地铁矿山法暗挖下穿北辰桥和北四环路施工技术[J].施工技术,2008,(S1).
    [35]陈建桦.广州地铁5号线珠猎区间桩基托换技术研究[J].施工技术,2008,(S2).
    [36]雷洁,刘伟.隧道施工围岩稳定与适时支护[J].山东建材,2006,(04).
    [37]王鹏程.地下铁道由区间隧道扩挖三联拱隧道施工技术[J].石家庄铁道学院学报,2007,(01).
    [38]唐达昆.超近距离立体交叉隧道施工动态控制技术[J].石家庄铁道学院学报(自然科学版),2008,(02).
    [39]王彦臻,韩日美.“洞桩法+千斤顶托换”密贴穿越既有线施工技术浅谈[J].陕西建筑,2009,(01).
    [40]常进.地铁隧道施工及监测分析[J].市政技术,2006,(05).
    [41]张晓丽.浅埋暗挖下穿既有地铁构筑物关键技术研究与实践[D].北京交通大学,2007.
    [42]杜彬.地铁车站浅埋暗挖法施工对邻近桩基的影响及控制措施[D].北京交通大学,2007.
    [43]柳厚祥.地铁隧道盾构施工诱发地层移动机理分析与控制研究[D].西安理工大学,2008.
    [44]王志达.城市人行地道浅埋暗挖施工技术及其环境效应研究[D].浙江大学,2009.
    [45]张敏.复杂地质条件下大断面隧道“零”进洞工法技术体系及应用研究[D].成都理工大学,2009.
    [46]陈晓婷.富水砂卵石地层条件下浅埋暗挖法隧道设计与施工对策[D].西南交通大学,2006.
    [47]胡茜.成都地铁区间隧道盾构法可行性分析[D].西南交通大学,2006.
    [48]周伟.隧道施工地面沉降数值分析研究[D].华中科技大学,2006.
    [49]卢光杰.上穿工程对既有地铁隧道结构变形影响及控制研究[D].北京交通大学,2008.
    [50]李海锋.盾构扩挖法修建地铁车站的内支撑体系研究[D].北京交通大学,2007.
    [51]贺美德.盾构推进对长距离超近邻隧道影响研究[D].北京市市政工程研究院,2007.
    [52]刘召刚.海底隧道施工力学行为研究[D].大连理工大学,2007.
    [53]杨新锐.软土地区隧道开挖引起的地层变形研究[D].北京交通大学,2007.
    [54]滕红军.城市隧道穿越地面建筑物的安全风险控制[D].北京交通大学,2007.
    [55]刘存林.南水北调某标段施工通道稳定性及地表沉降数值分析[D].中国地质大学(北京),2008.
    [56]张继明,李力,刘卫功.浅埋暗挖隧道裂缝分析及预防[A].北京市政第一届地铁与地下工程施工技术学术研讨会论文集[C],2005.
    [57]汪波.车站暗挖施工洞内塌方原因分析及处理措施[A].北京市政第一届地铁与地下工程施工技术学术研讨会论文集[C],2005.
    [58]祝显学.某风道穿越北京动物园暗挖施工技术[A].北京市政第一届地铁与地下工程施工技术学术研讨会论文集[C],2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700