用户名: 密码: 验证码:
高烈度地震下隧道破坏机制及抗震研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国西部地区具有全球独特、最复杂的地质构造,第四纪以来,新构造运动、地震活动频繁,活动断裂发育,在青藏高原如此复杂的地质条件下,西部地区基础建设过程中不可避免的会遇到在活断层附近和高烈度地震区修建隧道工程的问题。因此,研究高烈度地震区隧道的破坏机制,并提出有针对性的抗震措施,对拟建隧道选址、设计、施工具有重大的现实意义。
     本文的工作从研究高烈度地震区隧道震害机制出发,首先进行了岩石和研制的新型隔震材料泡沫混凝土的动力学特性研究,然后开展了地震波的合理选取和针对地下工程的合理地震动输入机制研究,进一步,以上述两部分的研究成果为基础,论文开展了高烈度地震下隧道动力响应特性和稳定性评价研究,抗震材料及抗震方法研究,同时还进行了隧道地震作用下动力响应的远程自动监测。论文的主要研究成果如下:
     1、基于无限元人工边界的地下工程合理的地震动输入方法
     地下工程抗震分析中一个关键的环节是地震动的合理输入,但是目前不少人沿用地面建筑物的地震动输入方式,这对地下工程是不合适的。为此,本文提出一种新的基于无限元人工边界的合理的地震动输入方法,本方法考虑到了地层的辐射阻尼和地震波在地层中的反射和散射,采用波场分解的方法给出了地震波从底面垂直入射时底边界和侧边界面各自不同的等效地震荷载的计算公式,并基于abaqus进行二次开发编制了相关的程序,同时进行了算例考证。
     2、一种新型抗震材料泡沫混凝土的研制及其动力特性研究
     研制了一种新型隔震材料泡沫混凝土,采用正交试验进行了配合比方案比选,遴选出轻质、低强度和较好延性的方案,具有较好的隔震和缓冲性能,然后对优选方案开展了的动三轴试验,分析材料在地震应变率范围内的变形和强度特征,试验结果表明:泡沫混凝土抗压强度均随应变速率的增加而增加;试验中该材料无剪胀现象,这是由于泡沫混凝土多孔隙所致;泡沫混凝土在动态压缩荷载作用下轴向变形明显,但破坏后仍保持完整性,这表明该材料具有较好的延性,地震中可以耗散相当多的地震能量。
     3、隧道地震反应特性研究
     研究了隧道动态响应特性,结果表明:地震强度和持时增加,隧道位移增大;低频地震波导致的隧道位移明显高于高频地震,因此低频的地震更易造成隧道的破坏;对剪切波,水平入射时位移响应幅值最小,垂直入射时位移响应幅值最大;随着埋深的增加,隧道位移响应有明显减小的趋势,但是这种趋势只是针对一般地质情况,在围岩质量、地应力和断层的交叉影响下,埋深较大时也会出现震害。
     4、近场区活断层对隧道安全性的影响研究
     隧道近场区发震断层引发的地震不同于一般远场地震,具有速度脉冲效应、较大的峰值和较长的周期。由于缺乏实际地震监测记录,本文首先根据近场区地震动参数,采用考虑高频分量叠加的等效脉冲模型,人工合成了近断层脉冲地震动记录,然后采用运动学震源模型,将上述合成波用于模拟隧道进口处走滑断层错动激震,以此来评价隧道的地震安全性。另外,本文还开展了地震引发的次级断层错动对隧道安全性影响的初步研究,同时分析了隧道洞口边坡震害对隧道稳定性的影响。
     5、高烈度地震下隧道工程抗震方法研究
     首先归纳出了隧道抗震设计的两个总体思路,即:改变衬砌一定范围内围岩的性能和改变结构本身的性能,接着沿循这两个思路总结了目前隧道采用的各类抗减震措施,然后据此开展了隧道抗震设计方法的一系列研究,包括隧道断面型式优化研究、减震层减震效果研究、加固围岩减震效果研究以及隧道抗错断设计研究。其中减震层研究方面,通过数值试验验证了泡沫混凝土的隔震效果,泡沫混凝土采用crushable-foam率相关本构模型,结果表明泡沫混凝土作为衬砌隔震层具有较好的隔震效果,并针对工程具体情况给出了合理经济的隔震层厚度。另外本文专门比较了采用隔震层抗震和传统的提高刚度抗震两类思路的优劣,最后综合以上的工作,针对隧道工程的抗震设计提出了一些适用性的建议。
     6、嘎隆拉隧道抗震和现场地震监测研究
     综合运用上述研究成果,开展嘎隆拉隧道动力响应分析研究,评估近场断层错动激震和高烈度远场地震对包含F7非发震弱断层的进洞口区域的影响,并提出了适合嘎隆拉隧道的抗震措施。同时进行了隧道地震作用下动力响应的远程无线监测,通过在隧道进洞口处埋设加速度仪,获得三个方向的加速度动力时程记录,可以为研究隧道工程在地震动时的真实动力响应特性提供第一手现场资料。
China has the most complex geological structure in the west region, which is unique in the world. Since Quaternary Period, tectonic movement and earthquake activity are frequent, active faults develop. In such complicated geological conditions of tibetan plateau, the tunnel may have to be constructed beside active fault and in high seismic intensity area.Therefore, research on tunnel failure mechanism in high seismic intensity area and the proposed aseismic measures accordingly will greatly benefit the project location selecting, design and construction of tunnel engineering.
     Research work of this paper starts from study of tunnel seismic damage mechanism in high seismic intensity area. Firstly, dynamic mechanical properties of rock and a new vibration absorbing material-foamed concrete are studied in this paper,then, reasonable selection method for seismic wave and a new earthqukae input method in aseismic analysis for underground engineering are both considered, futhermore,on the basis of the above two work,characteristic of tunnel seismic response in high seismic intensity area and stability evaluation are carried out deeply, and the corresponding aseismic methods are summarizd and analyzed,meanwhile, remote earthquake monitoring of the tunnel is also carried out. The main achievements are conducted as follows:
     1. Study on method of earthqukae input in aseismic analysis for underground engineering based on infinite element dynamic artificial boundary
     A crucial link in underground engineering aseismic analysis is appropriate earthquake input method, but now a considerable number of people apply the earthquake input method used in surface buildings, which is not appropriate for underground buildings. Therefore, a new earthquake input method based on infinite element dynamic artificial boundary is proposed by this paper, in this new method, radiation damping of the strata and reflection, scattering of the seismic wave in the strata are both considered, and equivalent earthquake load formulae in different boundary surfaces for seismic waves vertically incident from the bottom of computational domain are deduced, using the wave field separation method. Meanwhile, a numerical example is conducted to verify the validity and accuracy of the method.
     2. Development of a new vibration absorbing material-foamed concrete and research on its dynamic mechanical property
     A new vibration absorbing material-foamed concrete has been developed, which has light weight, low strength and good ductility, and the formula of which is selected through orthogonal test, then, dynamic triaxial test is carried out on foamed concrete,analysing the deformation and strength characteristics within a seismic strain rate range,the results show that compressive strength of this material increse with increasing of strain rate;the material has no dilatancy phenomenon because of its porosity;the axial deformation of foamed concrete is obvious under dynamic compressive loading, however, it still keeps integrity after failure,which shows that foamed concrete has good ductility and can dissipate considerable seismic energy.
     3. Research on seismic response characteristics of tunnel
     Seismic response characteristics of the tunnel is studied in this paper, the results show that the displacements of cavern increase with the increasing earthquake amplitude and duration time; the cavern displacement induced by low-frequency earthquake is larger than high-frequency earthquake, which means that the cavern failure is more easily induced by low-frequency earthquake; for shear wave, the displacement is the smallest when wave incidence is horizontal,and the biggest when wave incidence is vertical; cavern displacement will decrease with the increasing buried depth, however, this trend is just fit for general geological condition, actually, seismic damage can also appear when buried depth is deep under the cross influences of surrounding rock quality,high in-situ stress and fault.
     4. Research about safety influences of near-field seismic faults on tunnel
     Earthquake initiated by seismic fault of the engineering near field area is different from general far-field earthquake, which has long period and large velocity pulse. Due to the lack of seismic monitoring records, firstly, a near-fault pulse-type seismic record is generated synthetically using equivalent velocity pulse model combined with high-frequency earthquake compponents and real near-field seismic parameters, and then this artificial wave is used to simulate the quake induced by strike-slip fault movement near the tunnel portal using kinematic seismic source model, which can be applied to evaluated the safety of the tunnel. Besides, a preliminary study is also carried out about safety influences of earthquake-induced secondary fault movement on tunnel. Meanwhile, the safety influence of tunnel slope failure on the tunnel portal is evaluated as well.
     5. Research on tunnel aseismic methods in high seismic intensity area.
     Firstly, two general ideas about tunnel aseismic design are concluded,which are property change of rock surrounding of a certain range and property change of tunnel structure itself, and various anti-seismic and seismic-relieving measures of the tunnel now are all summarized according to the two ideas, then a series of studies are carried out on tunnel aseismic design methods, which inlude researches on sectional form optimization, shock absorption effects of seismic isolation layer, shock-reduction effects of surrounding rock strengthening and anti-breaking structural design.Among the research on seismic isolation layer, the shock absorption effect of foam concrete is verified through numerical experiment, using crushable-foam rate-dependent constitutive model. The result shows that foamed concrete has good shock absorption effects as seismic isolation layer of tunnel lining, meanwhile, an economic and areasonable thickness of the isolation layer is proposed according to the specific conditions of practical engineering. Besides, two ideas on earthquake reduction of isolation layer and traditional earthquake resistant of stiffness increment are compared specially. At last, summarizing the above work, some applicable suggestions are proposed on tunnel aseismic design.
     6. Seismic research and earthquake monitoring for Galongla Tunnel
     Using the above research results synthetically, research on Galongla Tunnel seismic response is carried out, evaluating the influences of both near-fault pulse-type earthquake and far-field earthquake on inlet region containing non-causative fault, then, anti-seismic and seismic-relieving measures suitable for Galongla Tunnel are proposed. Meanwhile, remote automatic earthquake monitoring of the tunnel is carried out. By burying accelerograph in inlet region of the tunnel, three-direction acceleration records can be obtained, which provide the first hand data about research on real tunnel seismic response.
引文
[1]郑永来,杨林德等.地下结构抗震[M].上海:同济大学出版社,2005.
    [2]潘家铮.老生常谈集[M].北京:黄河水利出版社,2005.
    [3]钱七虎.中国岩石(地下)工程的成就、进展和挑战-“二十一世纪岩石力学的研究在中国”[R],2006.
    [4]Dowding C. H., Rozen A. Damage to rock tunnels from earthquake shaking[J]. J. Geotech.Eng. Div., ASCE 104 (GT2),1978:175-191.
    [5]Pratt H R, Stephenson D E, Zandt G, et al. Earthquake Damage to Underground Facilities[A].In: Rapid excavation and tunneling conference[C]. CO, USA: Littleton,1980.
    [6]Sharma S, Judd R. J. Underground opening damage from earthquakes[J]. EngineeringGeology,1991, 30:263-276.
    [7]陶连金,张倬元,姜德义.复杂工程岩体稳定性评价[M].成都:成都科技大学出版社,1998.
    [8]卢慈荣,蒋建群.地下隧道结构抗震分析综述[A].见:史佩栋编.《地下工程进展2003》浙江省建筑业行业协会地下工程分会,2003.
    [9]胡聿贤.地震工程学[M].北京:地震出版社,2006.
    [10]Murano T, Takewaki N. On earthquake resistance of rock caverns[R]. A report prepared for the NEA Coordinating Group on Geological Disposal OECD/NEA,1984.
    [11]Carpenter D W, Chung D. C. Effects of earthquakes on underground facilities[R].NUREG/CR-4609, Lawrence Livermore National Lab,1986.1-52.
    [12]常虹,尹新生,尹春超.地下建筑结构抗震设计的几个问题[J].吉林建筑工程学院学报,2005,22(1): 21-23.
    [13]马行东,李海波,冯海鹏.动参数对三维洞室动态特性的影响分析[J].地下空间与工程学报,2006,2(1):83-86.
    [14]马行东.地震动荷载作用下地下洞室响应的初步分析[硕士学位论文][D].武汉:中科院武汉岩土力学研究所,2005.
    [15]Phillips, J.S. and Luke, B. A., Tunnel damage resulting from seismic loading[A]. Proceedingsof 2nd International conference on Rec Adv, in Geotechnical Earthquake Engineering and Soil Dynamics, March 11-15, St. Louis, Missouri,1991,207-201.
    [16]Shunzo Okamoto and Choshiro Tamura, Behavior of subaqueous tunnels during earthquakes,Earthquake Engineering and Structural Dynamics,1973,1:253-266.
    [17]Yakovlevich, D. I. and Borisovna, M. J., Behavior of tunnel liner model on seismic platform,Symposium on earthquake engineering, University of Roorkee. Oct.5-7,1978,1:379-382.
    [18]王志杰,高波,关宝树.围岩-隧道衬砌结构体系的减震研究[J].西南交通大学学报,1996,31(6):590-594.
    [19]赵大鹏,宫必宁,晏成明.大跨度地下结构振动性态试验研究[J].重庆建筑大学学报,2002,24(5):52-56.
    [20]宫必宁,赵大鹏.地下结构与土动力相互作用试验研究[J].地下空间,2002,22(4):320-324.
    [21]周林聪,陈龙珠,宫必宁.地下结构地震模拟振动台试验研究[J].地下空间与工程学报,2005,1(2):182-213.
    [22]Pao Yih-Hsing, Mao Chao-Chow. Diffraction of Elastic waves and Dynamic Stress Concentrations[M]. Crane, Russak &Company Inc. New York, U.S.A,1972.
    [23]AFPS/AFTES. Guidelines on Earthquake Design and Protection of Underground Structures,2001.
    [24]Wang J. N. Seismic Design of Tunnels: A State-of-the-Art Approach[M]. New York: Parsons,Brinckerhoff, Ouade and Douglas Inc,1993.
    [25]阳波,顾红军.大跨度地下结构中柱抗震研究[J].建筑技术开发,2004,31(8):36-38.
    [26]黄润秋,王贤能,唐胜传.深埋隧道地震动力响应的复反应分析[J].工程地质学报,1997,5(1):1-7.
    [27]刘晶波,李彬,谷音.地铁盾构隧道地震反应分析[J].清华大学学报(自然科学版),2005,45(6):757-760.
    [28]陈健云,胡志强,林皋.超大型地下洞室群的三维地震响应分析[J].岩土工程学报,2001,23(4):494-498.
    [29]韦敏才.地下结构的动力特性及地震反应分析[J].昆明理工大学学报,1996,21(3):60-63.
    [30]于新杰,张鸿儒,王逢朝.南京长江沉管隧道竖井地震反应分析[J].北方交通大学学报,1998,23(4): 61-64.
    [31]陈健云,胡志强,林皋.超大型地下洞室群的随机地震响应分析[J].水利学报,2002,1:71-75.
    [32]陈健云,胡志强,林皋.大型地下结构三维地震响应特点研究[J].大连理工大学学报,2003,43(3):344-348.
    [33]高峰,石玉成,严松宏等.隧道的两种减震措施研究[J].岩石力学与工程学报,2005,24(2):222-229.
    [34]杨超,杨林德,季倩倩.软土地铁车站地震响应数值计算方法的研究[J].地下空间与工程学报,2006,2(1):87-95.
    [35]杨林德,杨超,季倩倩等.地铁车站的振动台试验与地震响应的计算方法[J].同济大学学报,2003,31(10):1135-1140.
    [36]张丽华,陶连金,李晓霖.节理岩体地下洞室群的地震动力响应分析[J].世界地震工程.2002,18(2): 158-162.
    [37]房营光.岩土介质与结构动力相互作用理论及其应用[M].北京:科学出版社,2005
    [38]陶连金,张倬元,傅小敏.在地震载荷作用下的节理岩体地下洞室围岩稳定性分析[J].中国地质灾害与防治学报.1998,9(1):32-40.
    [39]陶连金,常春.节理岩体的动力响应分析及工程应用.黑龙江矿业学院学报,2000,10(4):6-10.
    [40]杨小礼,李亮.层状地基中交通隧道地震反应分析[J].长沙铁道学院学报,2000,18(4):15-19.
    [41]Wang J. M. The Distribution of Earthquake Damage to Underground Facilities during the1976 Tangshan Earthquake[J], Earthquake Spectra,1985,1(4).
    [42]Asakura T, Sato Y. Mountain Tunnels Damage in the 1995 HYOGOKEN-NANBU earthquake[J]. Railway Technical Research Institute(RTRI),1998,39(1):9-16.
    [43]Hashash Y M A, Hook J J, Sehmidt B, et al. Seismic design and analysis of underground struetures[J]. Tunnelling and Underground Space Teehnology,2001, (16):247-293.
    [44]Mohammad C, Pakbaz, YareevandA.2-D analysis of circular tunnel against earthquake loading[J]. Tunnelling and Underground Space Technology,2005,20:411-417.
    [45]王瑞民,罗奇峰.阪神地震中地下结构和隧道的破坏现象浅析[J].灾害学,1998,13(2):63-66.
    [46]李海波,蒋会军,赵坚等.动荷载作用下岩体工程安全的几个问题[J].岩石力学与工程学报,2003,22(11):1887-1891.
    [47]王景明.1976年唐山地震地下工程震害的分布规律[J].地震学报,1980,2(3):314-320.
    [48]郑水明等.汶川地震强震观测[J].大地测量与地球动力学,2008,28(6):73-76.
    [49]潘昌实.隧道及地下结构物抗震问题的研究概述[J].世界隧道,1996,32(5):7-16.
    [50]潘昌实.隧道地灾害综述[J].隧道及地下工程,1990,11(2):1-9.
    [51]吕涛.地震作用下岩体地下洞宝响应及安全评价方法研究生[J].武汉:中国科学院武汉岩土力学研究,2008.
    [52]Shunzo Okamoto. Introduction to Earthquake Engineering[M]2nd Edition. Tokyo:University of Tokyo Press,1984.
    [53]Nakamura S, Yoshida N, Iwatate T. Damage to Daikai Subway Station During the 1995 Hyogoken-Nambu Earthquake and Its Investigation[J]. Japan Society of Civil Engineers, Committee of Earthquake Engineering,1996:287-295.
    [54]姜忻良,宋丽梅.软土地层中地下隧道结构地震反应分析[J].地震工程与工程振动,1999,19(1):65-69.
    [55]戚蓝,马斌,钟登华.断层错位影响下输水管道结构分析[J].水利水电技术,2001,32(12):47-48.
    [56]冯启民,赵林.跨越断层埋地管道屈曲分析[J].地震工程与工程振动,2001,21(4):80-87.
    [57]Tajimi M. Damage done by the great earthquake disaster of the Hanshin-Awaji district to the Kobe Municipal Subway System and restoration works o, the damage[J]. Japan Railway Engineering, 1996,137:19-23.
    [58]Senzai Samata, Hajime Ohuchi, Takashi Matsuda. A study of the damage of subway structures during the 1995 Hanshin-Awaji earthquake[J]. Coment and Concrete Composites,1997,19(3):223-239.
    [59]Suleyman, Dalgic. Tunneling in squeezing rock, the Bolu tunnel, Anatolian Motorway, Turkey[J]. Engineering Oeology,2002,67(1-2):73-96.
    [60]Kazuo Konagai, Shigeki Takatsu, Tetsuo Kanai, et al. Kizawa tunnel cracked on 23 October 2004Mid-Niigata earthquake:An example of earthquake-induced damage to tunnels inactive- folding zones[J]. Soil Dynamics and Earthquake Engineering,2009,29(2):394-403.
    [61]李育枢.山岭隧道地震动力响应及减震措施研究[博士学位论文][D].上海:同济大学土木工程学院,2006.
    [62]R. W. Clough, J. Penzien. Dynamics of structures. McGraw-Hill,1995.
    [63]郑永来,杨林德.地下结构震害与抗震对策[J].工程抗震,1999,21(4):23-28.
    [64]Lee C F. Performance of underground coal mines during the 1976 Tangshan earthquake[J]. Tunnelling Underground Space Technology,1987,2(2):199-202.
    [65]叶世强,肖扬.地下工程地震灾害与防治[J].中国地质与灾害防治学报,1993,4(4):66-71.
    [66]Wang W L, Wang T T, Su J J, et al. Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi Earthquake[J]. Tunnelling Underground Space Technology,2001,16(3):133-150.
    [67]王文礼,苏灼谨,林峻弘,等.台湾集集大地震山丘隧道受损情形之探讨[J].现代隧道技术,2001,38(2):52-60.
    [68]李天斌.汶川特大地震中山岭隧道变形破坏特征及影响因素分析[J].工程地质学报,2009,16(6):742-754.
    [69]郭美贤等.城市地铁车站及隧道结构的震害分析及其对策[J].广州建筑,2006,6:24-27.
    [70]Wang Zheng zheng, Gao Bo. Investigation. and assessment on mountain tunnels and geotechnical damage after the Wenchuan earthquake[J].Science in China Series E:Technological Science:2009, 52(2):546-558.
    [71]王秀英,刘维宁,张弥.地下结构震害类犁及机理研究[J].中国安全科学学报,2003,13(11):55-58.
    [72]福季耶娃著,徐显毅译.地震区地下结构支护的计算[M].北京:煤炭出版社,1986.
    [73]Thorns R, Kuesel F. ASCE, Earthquake design criteria for subways. Journal of the Structural Division Proceedings of the American Society of Civil Engineers.1969, (6):1213-1231.
    [74]Monsees JE, Merritt JL. Seismic modeling and design of underground structures.Numerical Methods in Geomechanics. Innsbruck,1833-1842,1991.
    [75]黄先锋.地下结构的抗震计算[J].铁道建筑,1999,6:3-6.
    [76]Shukla DK, Rizzo PC, Stephenson DE. Earthquake load analysis of tunnels andshafts. Proceeding of the 7th World Conference on Earthquake Engineering.1980, (8):20-28.
    [77]林皋.地下结构抗地震问题[J].第四届全国地震工程会议,1994.
    [78]路石(译).地震区的隧道工程[J].铁道建筑,1993,33(3):13-17.
    [79]徐龙军,张相忠,胡进军.地下工展害与地下地震动的位移特征[J].青岛理工大学学报,2008,29(3):16-21.
    [80]尚昊,郭志民,张武刚.大断面地下结构抗震模型试验[J].岩土工程界,2002,5(10):60-64.
    [81]徐复新,刘芳.地震时岩石隧道的稳定问题[J].人民黄河,1982,4(3):39-42.
    [82]林皋.地下结构抗震分析综述(上)[J].世界地震工程,1990,6(2):1-10.
    [83]陈国兴,庄海洋,杜修力,等.土-地铁车站结构动力相互作用大型振动台模型试验研究[J].地震工程与工程振动,2007,7(2):172-176.
    [84]Owen G N, Scholl R E. Earthquake engineering of large underground structures[R]. FHWA/RD-80/195-Federal Highway Administration and National Science Foundation,1981.
    [85]严松宏,高峰,李德武,等.沉管隧道地震响应分析若干问题的研究[J].岩石力学与工程学报,2004,23(5):846-850.
    [86]刘志贵.影响地下结构地震响应的若干因素探讨[J].岩土工程界,2004,7(2):44-49.
    [87]林皋,梁青槐.地下结构的抗震设计[J].土木工程学报,1996,29(1):15-24.
    [88]McClure Cole R.Damage to underground structures during earthquakes. In: Workshop on Seismic Performance of Underground Facilities. Augusta Ga USA.1981,75-106.
    [89]张玉娥,白宝鸿,张姗辉,等.地铁区间隧道震害特点、震害分析方法及减震措施的探讨[J].振动与冲击,2003,22(1):70-74.
    [90]梁庆国,韩文峰,堪文武,等.岩体地震动力破坏问题研究[J].岩石力学与工程学报,2003,22(增2):2783-2788.
    [91]周德培.强震区隧道洞口段的动力特性研究[J].地震工程与工程振动,1998,18(1):124-130.
    [92]房营光.岩土介质与结构动力相互作用理论及其应用[M].北京:科学出版社,2005.
    [93]陈健云,胡志强,林皋.大型地下结构三维地震响应特点研究[J].大连理工大学学报,2003,43(3):344-348.
    [94]Goto Y, Matsuda Y, Ejiri J, et al. Influence of Distance between Juxtaposed Shield Tunnels on their Seismic Response[C].Proc.9th world Conf on Earthquake Eng.Tokyo-Kyoto,Japan,1988.
    [95]邵根大,骆文海.强震作用下铁路隧道衬砌耐震性的研究[J].中国铁道科学,1992,12(2):92-108.
    [96]徐志英,施善云.土与地下结构动力相互作用的大型振动台试验与计算[J].岩土工程学报,1993(4):1-7.
    [97]史常青.浅埋明挖地下铁道车站结构的抗震性能研究[D].西安:西南交通大学,1996.
    [98]宫必宁,赵大鹏.地下结构与土动力相互作用试验研究[J].三峡大学学报,2002(6):493-496.
    [99]陶连金,王沛霖,边金.典型地铁车站结构振动台模型试验[J].北京工业大学学报,2006,32(9):798-801.
    [100]郑少河,车爱兰,岩循敞广.地铁地震响应的减震效果模型振动试验研究[J].四川建筑科学研究,2007,33:42-45.
    [101]车爱兰,岩循敞广,葛修润.关于地铁地震响应的模型振动试验及数值分析[J].岩土力学,2006,27(8):1293-1298.
    [102]李凯玲,张亚,刘妮娜.土-地铁隧道动力相互作用模型试验分析[J].工程地质学报,2007,15(4):534-538.
    [103]史晓军,陈隽,李杰.地下综合管廊大型振动台模型试验研究[J].地震工程与工程振动,2008,28(6):116-123.
    [104]Shahidi A R, Vafaeian M. Analysis of longitudinal profile of the tunnels in the active faulted zone and designing the flexible lining(for Koahrang- III tunnel) [J]. Tunnelling and Underground SpaceTechnotogy,2005,20(3):213-221.
    [105]Kiyomiya O. Earthquake-resistant Design Features of Immersed Tunnels in Japan[J].Tunnelling and Undergound Space Technology,1995,10(4):463-475.
    [106]周德培.高烈度地震区浅埋大跨隧道施技术及抗震材料[J].现代隧道技术,2001,38(2):1-4.
    [107]林皋.地下结构抗震分析综述(下)[J].世界地震工程,1990,6(3):1-10.
    [108]于翔,陈启亮,赵跃堂,等.地下结构抗震研究方法及其现状[J].解放军理工大学学报,2000,1(5): 63-69.
    [109]边金.地铁地下结构的地震动力响应研究[D].北京:北京工业大学,2006.
    [110]刘金云.软弱土层输水隧道地震响应及减震措施研究[D].大连:大连理工大学,2007.
    [111]王国波.软土地铁车站结构三维地震响应计算理论与方法的研究[D].上海:同济大学,2007.
    [112]Power M, Rasidi D, Kanesbiro J. Seismic vulnerability of tunnels-revisited[C]. L.Oxedimir, Ed., Proceedings of the North American Tunneling Conference. Long Beach, CA, USA. Elsevier,1998.
    [113]赵宝友.大型岩体洞室地震响应及减震措施研究[博士学位论文][D].大连:大连理工大学,2009.
    [114]Hamada H, Hitahara M. Earthquake observation and BIE analysis on dynamic behavior of rock cavern[C]. Proceedings of the Fifth International Conference on Numerical Methods in Geomechanics. Nagoya,1985. Vol.3:1525-1532.
    [115]Dike C M, Leeds D J. Effects of Earthquakes on Tutnnels.Paer Presented at the RAND Seeond Proteetive Construction Symposium.Mareh,1959:24-26.
    [116]Lee V M, Tfrifunac M D. Response of tunnels to incident SH wave[J]. Journal of Engineering Mechanics,ASCE.1979,105(4):643-659.
    [117]李斌.地铁地下结构抗震理论分析与应用研究[博士学位论文][D].北京:清华大学,2005.
    [118]邵根大.城市地下结构的抗地震设计问题.铁道部科学研究院铁道建筑研究所,1985.
    [119]Youssef MA Hashash, Jeffray J Hook, Birger Schmidt, John I-Chiang Yao. Seismic design and analysis of underground structures[J]. Tunneling and Underground Space Technology,2001,16(4): 247-293.
    [120]Newmark NM. Problems in wave propagation in soil and rock[J]. Proceedings of the International Symposium on Wave-Propagation and Dynamic Properties of Earth Materials.1968.
    [121]Kuesel T R.Earthquake design criteria for subways.J. Struet. Div. ASCEST6.1969, pp:1213 - 1231.
    [122]Idriss IM, Sun JI. "SHAKE91:A computer program for conducting equivalent linear seismic response analysis of horizontally layered soil deposits". User's Guide,California: University of California, Davis,1992.
    [123]Lysmer J. FLUSH-a computer program for approximate 3D analysis of soil structure interaction problems[R]. Berkeley: EERC, University of California,1975.
    [124]Bardet JP. LINOS-a Non-linear Finite Element Program for Geomechanics and Geotechnical Engineering, User's Manual. University of Southern California, Los Angeles, CA.1991.
    [125]Navarro C. Effect of adjoining structures on seismic response of tunnels. Int. J.Numer. Anal. Methods Gemech.1992, Vol.16:797-814.
    [126]Bardet JP, Ichii K, Lin CH. EERA-A Computer Program for Equivalent-linear Earthquake site Response Analysis of Layered Soil Deposits, User's Manual.University of Southern California, Los Angeles, CA.2000.
    [127]Wong K C, Shah A H,Datta S K. Diffraction of elastic waves in half-space. Analytical and numerical solutions[J].Bulletin of the Seismological Society of America,1985,75:69-92.
    [128]Luco J E, Debarris F C P. Dynamic displacements and stresses in the vicinity of a cylindrical cavity embedded in a half space[J].Earthquake Eng. Struct. Dyn.,1994,23:321-340.
    [129]Stamos A A, Beskos D E.3-D seismic response analysis of long lined tunnels in halfspace[J].Soild Dynamics and Earthquake Engineering,1996,15(2):111-118.
    [130]Lee V M, Karl J. On deformation of near a circular underground cavity subjected to incident plane P wave[J].European Journal of Earthquake Engineering,1993,7(1):29-36.
    [131]Davis C A, Lee V M, Bardet J P. Transverse response of underground cavities and pipes to incident SV waves[J].Earthquake Engineering and Structural Dynamic.2001,30(3):383-410.
    [132]梁建文,张浩,Lee V W.地下双洞室在SV波入射下动力响应问题解析解[J].振动工程学报,2004,17(2):132-140.
    [133]梁建文,张浩,Lee V W.平面P波入射下地下洞室群动应力集中问题解析解[J].岩土工程学报,2004,26(6):815-819.
    [134]阎盛海,王常义.圆形隧洞双层衬砌在P波作用下的动力反应[J].大连理工大学学报1989,29(s):707-714.
    [135]李伟华,赵成刚.平面SV波在饱和土半空间中圆柱形孔洞周边的散射[J].地震工程与工程振动,2008,28(6):1-7.
    [136]李建波.结构·地基动力相互作用的时域数值分析方法研究[D]大连:大连理工大学,2005.
    [137]Wolf J P. Soil-structure-interaction analysis in time domain[M].Switzerland:Prenfce Hall,1988.
    [138]Lysmer J, Richart F E T.Dynamic response of footings to vertical loadings[J].T. Soil. Mech. Div.ASCE.1966,92(l):65-91.
    [139]Wolf J P, Somaini D R. Approximate dynamic model of embedded foundation in time domain[J]. Earthqualce Engineering and Structural Dnamics,1986,14(5):683-743.
    [140]栾茂田,林皋.地基动力阻抗的双自由度集总参数模型[J].大连理工大学学报,1996,36(4):477-482.
    [141]Chopra A K, Perumalswami P R. Dam-Foundation Interaction during Earthquake [J].Pro 4th World Conf. Earthq. Eng, Santiago,Chile,1969.
    [142]楼梦麟.粘弹性地基的动力刚度矩阵及坝基相互作用对水坝地震反应的影响[D].大连:大连理工大学,1984.
    [143]Bettess P, Zienkiewica O C. Diffraction and Refraction of Surface Wave Using Finite and Infinite Elements[J].Int. I. far Num. Mech., In eng.1977:1271-1290.
    [144]赵崇斌,张楚汉,张光斗.用无穷元模拟半无限平面弹性地基[J].清华大学学报,1986:26(3):51-63.
    [145]Dasgupta G A.A finite element formulation for unbounded homogeneous continua[J].J. of Appl. Mech.,ASME.1982,49:136-140.
    [146]Wolf J P, Song C M. Dynamic-stiffness matrix of unbounded soil by finite element multi-cell cloning[J].Earthquake Eng. Struct. Dyn.,1994,23(3):232-250.
    [147]Song C M, Wolf J P. Dynamic stiffness of unbounded medium based on damping-solvent extraction[J].EESD.,1994,23(2):169-181.
    [148]Song C M,Wolf J P.The scaled boundary finite element method-a primer solution procedures[J].Computer and Structures,2000,78(3):211-225.
    [149]ASCE. Earthquake damage evaluation and design considerations for underground structures. American Society of Civil Engineers, Los Angeles Section,1974.
    [150]JSCE. Earthquake Resistant Design for Civil Engineering Structure in Japan. Japanese Society of Civil Engineering, Tokyo,1988.
    [151]Hamada H, Kitahara M. Earthquake observation and BIE analysis on dynamic behavior of rock cavern[C]. Proceedings of the Fifth International Conference Numerical Method in Geomeehanies.Nagoya.1985,3:1525-1532.
    [152]Nakamura NA. Practical method to transform frequency dependent impedance to time domain[J].Earthquake Engineering and Structural Dynamics,2006,35(2):217-231.
    [153]Nakamura N. Improved methods to transform frequency-dependent complex stiffness to time domain[J].Earthquake Engineering and Structural Dvnamics.2006.35(8):1037-1450.
    [154]杜修力,赵建峰.考虑土-结构相互作用效应的结构地震响应时域子结构分析法[J].北京工业大学学报,2007,33(5):517-523.
    [155]赵建锋,杜修力.地基阻抗力时域递归参数的计算方法及程序实现[J],岩土工程学报,2008,30(1):34-40.
    [156]Chopra A K, Dasgupta G. Dynamic stiffness matrix for viscoelastic half plane foundation[J]. ASCE. 1976, Vol.102 (EM3):497-514.
    [157]吴健,金峰,张楚汉,等.无限地基辐射阻尼对溪洛渡拱坝地震响应的影响[J],岩土工程学报,2002,24(6):716-719.
    [158]Lysmer J, Kuhlemeyer R L. Finite model for infinite media[J].Journal of engineering mechanics,division,ASCE.,1969,95:377-392.
    [159]White W, Valliappan S, Lee 1 K. United boundary for finite dynamic models[J]. Eng.Mech.,Div.,ASCE.,1977,103(5):949-964.
    [160]Smith W D. A nonreflecting plane boundary for wave propagation problems[J].Journal of Computational physics,1974,15:492-503.
    [161]廖振鹏,杨柏坡,袁一凡.暂态弹性波分析中人工边界的研究[J].地震工程与工程振动,1982,2(1):1-11.
    [162]廖振鹏,黄孑院,杨柏坡,等.暂态波透射边界[J].中国科学(A辑),1984,26(6):50-56.
    [163]Liao Z P, Wong H L.A Transmitting Boundary for the Numerical Simulation of Elastic Wave Propagation[J].Dyn.and Earth. Eng.1984,3(4):178-183.
    [164]Higdon R L. Absorbing boundary conditions for difference approximations to the multi-dimensional wave eaquation[J].J. Comp Phys,1973,15:492-503.
    [165]Deeks A,Randolph M F. Axisymmetric time-domain transmitting boundaries[J]. Eng.Mech.,1994,124(1):25-42.
    [166]高峰.地下结构动力分析若干问题研究[D].成都:西南交通大学,2003.
    [167]Kirahner F, Rosenhouse G. Numerical analysis of tunnel dynamic response to earth motions[J].Tunnelling and Underground Space Technology,2000,15(3):249-258.
    [168]Starnos A A, Beskos D E. Dynamic analysis of large 3-d underground structures by the BEM[J]. Earthquake Engineering and Structure Dynamics,1995,24(6):917-934.
    [169]Chow Y K, Smith I M. Static and periodic infinite solid elements[J].International Journal for Numerical Methods in Engineering,1981,17(4):503-526.
    [170]Zhao C,Valliappan S.A. Dynamic infinite element for three-dimensional infinite domain wave problems[J].Intemational Journal for Numerical Methods in Engineering,1993,36(15).2567-2580.
    [171]Zhang C H,Pekau O,Jin F. Application of FE-IE-IBE coupling to dynamic interaction between alluvial soil and rock canyons[J].Earthquake Engineering and Structure Dynamics,1992,21(3):367-385.
    [172]MOORE I D,GUAN F. Three-dimensional dynamic response of lined tunnels due to incident seismic waves[J].Earthquake Engineering and Structural Dynamics,1996,25(4):357-369.
    [173]Esmaeili M,Vahdani S,Noorzad A. Dynamic response of lined circular tunnel to plane harmonic waves[J].Tunnelling and Underground Space Technology,2406,(5):511-519.
    [174]陈健云,胡志强,林皋.超大型地下洞室群的随机地震响应分析[J].水利学报,2002,(1):71-75.
    [175]陈健云,胡志强,林皋.超大地下洞室群的三维地震响应分析[J].岩土工程学报,2001,23(4):494-498.
    [176]Chen J Y, Li J, Zhou J. Seismic analysis of large 3-D underground caverns based on high performance recursive method[J]. International Journal of Solids and Structures,2004,41(11-12);3081-3094.
    [177]隋斌,朱维申,李晓静.地震荷载作用下大型地下洞室群的动态响应模拟[J],岩土工程学报,28(12):1877-1882.
    [178]JOHN C M S,ZAHRAH T F.A seismic design of underground structures[J].Tunnelling and Underground Space Technology,1987,2(2):165-197.
    [179]T. Krauthammera and Y. Chen.Soil-structure interface effects on dynamic interaction analysis of reinforced concrete lifelines[J].Soil Dynamics and Earthquake Engineering,1998,8(l):32-42.
    [180]A. Szavits-Nossan, M.S. Kovacevic. Modeling of an anchored diaphragm wall[J].Flac and Numerical modeling in Geomechanics,1999:451-458.
    [181]刘文韬.岩石含损伤本构模型和地下爆炸效应研究[博士学位论文][D].合肥:中国科学技术大学,2003.
    [182]王如宾,徐卫亚,石崇,等.高地震烈度区岩体地下洞室动力响应分析[J].岩石力学与工程学报,2008,28(3):569-575.
    [183]Cundall, P. A. (1971):A computer model for simulating progressive, largescale movements in blocky rock systems. Proceedings of Symposium of International Society of Rock Mechanics, Nancy, II-8.
    [184]陶连金等.在地震载荷作用下的节理岩体地下洞室围岩稳定性分析[J].中国地质灾害与防治学报,1998,9(1):32-40.
    [185]J. Dominguez. Boundary elements in dynamics[M]. Computational Mechanics Publications, Elsevier Applied Science,1993.
    [186]Manolis G D, Beskos D E. Boundary Element Methods in Elasto dynamics[M]. London: Unwin Hyman,1988.
    [187]丁伯阳,宋新初,袁金华.饱和土隧道内集中荷载作用下振动位移反应的Green函数解答[J].工程力学,2009,26(6):153-157.
    [188]张楚汉,刘海笑.层状与各向异性介质波动问题的时域边界元法及工程应用[J].重庆建筑大学学报,2000,22(6):100-104.
    [189]金峰,王光纶,贾伟伟.离散元边界元动力藕合模型在地下结构动力分析中的应用[J].水利学报,2001,2:24-28.
    [190]吴健,金峰,张楚汉,王光纶.无限地基辐射阻尼对溪洛渡拱坝地震响应的影响[J].岩土工程学报,2002,24(6):716-719.
    [191]陈磊,陈国兴,李丽梅.近场和远场地震动作用下双层竖向重叠地铁隧道地震反应特性[J].中国铁运科学,2010,31(1):79-86.
    [192]谭贤君.高海拔寒区隧道冻胀机理及其保温技术研究[博士学位论文][D].武汉:中科院武汉岩土力学研究所,2010.
    [193]田口玄一.实验设计法[M].北京:机械工业出版社,1987.
    [194]Zhao J, Li H B, Wu M B, et al. Dynamic uniaxial compression tests on a granite[J]. International Journal of Rock Me-chanics and Mining Science,1999,36:273-277.
    [195]Grady D E. The mechanics of fracture under high-rate stress loading[A]. Baaant Z. Mechanics of Gsomaterials[C],1985:129-155.
    [196]Masuda K, Mizutani H, Yamada I. Experimental study of strain-rate dependence and pressure dependence of failure properties of granite[J]. Journal of Physics of the Earth,1987,35:37-66.
    [197]Swan G, Cook J, Bruce S, et al. Strain rate effect in Kimmeridge Bay Shale[J]. International Journal of Rock Mechanics and Mining Science,1989,26(2):135-149.
    [198]Drucker, D. C., and W. Prager. Soil Mechanics and Plastic Analysis or Limit Design[J]. Quarterly of Applied Mathematics,1952,10:157-165.
    [199]Hibbitt, Karlsson and Sorensen, Inc. ABAQUS theory manual and analysis user's manual[R]. Pawtucket, USA:Hibbitt, Karlsson and Sorensen, Inc.,2002.
    [200]陈厚群.坝址地震动输入机制探讨[J].水利学报,2006,12(12):1417-1423.
    [201]周维垣.高等岩石力学[M].北京:水利电力出版社,1990,222-231.
    [202]Gibson, L. J., and M. F. Ashby. The Mechanics of Three-Dimensional Cellular Materials[J]. Proceedings of the Royal Society,1982, LondonA,382:43-59.
    [203]Gibson, L. J., M. F. Ashby, G. S. Schajer and C. I. Robertson. The Mechanics of Two-Dimensional Cellular Materials[J]. Proceedings of the Royal Society,1982, LondonA,382:25-42.
    [204]MaitiS. K., L. J. Gibson and M. F. Ashby. Deformation and Energy Absorption Diagrams for Cellular Solids[J].Acta Metallurgica,1984,32(11):1963-1975.
    [205]王松涛,曹资.现代抗震设计方法[M].北京:中国建筑工业出版社,1997.
    [206]王艳华等.渡槽结构地震反应分析地震波选取研究[J].水利与建筑工程学报,2008,6(4):38-39.
    [207]西藏自治区地震局地震工程研究所,中国地震局地球物理研究所.扎墨公路嘎隆拉隧道工程场地地震安全性评价报告[R].拉萨:2006.
    [208]刘启方,袁一凡,金星,丁海平.近断层地震动的基本特征[J].地震工程与工程振动,2006,26(1):1-10.
    [209]王海云,谢礼立.近断层强地震动的特点[J].哈尔滨工业大学学报,2006,38(12):2070-2076.
    [210]罗伟.近断层地震作用下钢筋混凝土多层框架结构的响应分析[硕士学位论文][D].北京:北京 交通大学,2008.
    [211]Alavi B. Effects of near-fault ground motions on frame structure[D]. Berkeley:University of California,2000.
    [212]Dicleli M, Mehta A. Effect of near-fault ground motion and damper characteristics on the seismic performance of chevron braced steel frames[J]. Earthquake Engineering and Structural Dynamics, 2007,36:927-948.
    [213]Mavroeidis G P, Papageorgiou A S. A mathematical representation of near-fault ground motions[J]. Bulletin of the Seismological Society of America,2003,93(3):1099-1131.
    [214]田玉基,杨庆山,卢明奇.近断层脉冲型地震动的模拟方法[J].地震学报,2007,29(1):78-84.
    [215]Somerville P G. Development of an improved ground motion representation for near-fault ground motions[C]//SMIP98 Seminar Proceedings on Utilization of Strong Motion Data. Oakland,1998 California:California Division of Mines and Geology:1-20.
    [216]LYSMER J, KULEMEYER R L. Finite dynamic model for infinite media[J]. Journal of the Engineering Mechanics Division, ASCE,1969,95(4):859-2877.
    [217]CLAYTON R, ENGQUIST B. Absorbing boundary conditions for acoustic and elastic wave equations[J]. Bulletin of the Seismological Society of America,1977,67(6):1529-1540.
    [218]White W, Valliappan s, Lee I.K. United boundary for finite dynamic models[J]. J. Eng. Mech. Div.ASCE.1977,103(5):949-964.
    [219]Smith WD., A nonreflecting plane boundary for wave propagation problems[J]. J. Computational physics,1974,15:492-503.
    [220]廖振鹏,黄孔亮,杨柏坡,等.暂态波透射边界[J].中国科学(A辑),1984,(6):556-564.
    [221]吴鸿庆,任侠.结构有限元分析[M].北京:中国铁道出版社,2000.
    [222]刘晶波,吕彦东.结构-地基动力相互作用问题分析的一种直接方法[J].土木工程学报,1998,31(3):55-64.
    [223]邱流潮,金峰.地震分析中人工边界处理与地震动输入方法研究[J].岩土力学,2006,27(9):1502-1504.
    [224]孔戈,丁海平,等.多次透射边界在ANSYS软件中的应用[J].工程抗震与加固改,2005,27(2):67-70.
    [225]杜修力,赵密.基于黏弹性边界的拱坝地震反应分析方法[J].水利学报,2006,37(9):1063-1069.
    [226]赵建锋,杜修力,韩强,李立云.外源波动问题数值模拟的一种实现方式[J].工程力学,2007,24(4):52-58.
    [227]贺向丽,李同春.重力坝地震波动的时域数值分析[J].河海大学学报,2007,35(1):5-9.
    [228]李丽.基于ABAQUS的高速公路隧道地震动力响应研究[硕士学位论文][D].成都:西南交通大学,2009.
    [229]黄胜,陈卫忠,杨建平,等.地下工程地震动力响应及抗震研究[J].岩石力学与工程学报,2009,28(3):483-490.
    [230]赵光恒.结构动力学[M].北京:中国水利水电出版社,1996.
    [231]FLAC(Fast Lagrangian Analysis of Continua) User's Guide, Version 5.0. Itasca Consulting Group, Inc.,2005.
    [232]廖振鹏,刘晶波.离散网格中的弹性波动[J].地震工程与工程振动,1986,6(2):1-16.
    [233]刘启方.基于运动学和动力学震源模型的近断层地震动研究[博士学位论文][D].哈尔滨:中国地震局工程力学研究所,2005.
    [234]李金都,陈书涛.南水北调西线调水区地质条件与关键工程地质问题分析[J].人民黄河,1999,21(2):22-24.
    [235]李鹏.活动断层区公路隧道抗错断结构设计的研究[硕士学位论文][D].重庆:重庆交通大学,2009.
    [236]松田时彦.活动断裂と地震-その地质学的研究[M].地质学论集.1976,12:15-32.
    [237]蒋树屏,李鹏,林志.穿越活动断层区隧道的抗断设计对策[J].重庆交通大学学报(自然科学版),2008,27(6):1034-1039,1041.
    [238]师亚芹.跨西安地裂缝建设一般建筑物的可能性探讨[J].灾害学,2001,16(2):76-81.
    [239]刘雪梅,吴长富,邵明成.西安市地裂缝的工程危害及处理措施的初步探讨[J].地质灾害,2004,8(8):74-76.
    [240]李宁.群锚对断层的加固机理分析及工程应用[J].西安理工大学学报,1997,13(3):210-215.
    [241]朱长安.断层破碎带隧道地震动力响应分析[硕士学位论文][D].成都:西南交通大学,2009.
    [242]陈成宗,何发亮.大瑶山隧道九号断层的特性与工程对策[J].岩石力学与工程学报,1992,11(1):72-78.
    [243]陈红旗,张松林.工程断裂构造及其公路隧道工程效应[J].公路交通科技,2005,22(9):5-8.
    [244]孙铁成,高波,叶朝良.地下结构抗震减震措施与研究方法探讨[J].现代隧道技术,2007,44(3):1-5, 10.
    [245]高妍妍,刘剑雄.盾构法隧道结构震害及其抗震措施浅析[J].泰州织业技术学院学报,2006,6(6):17-20.
    [246]铃木猛康,地下结构的耐震性评价及免震化方法研究,1990.
    [247]孙均,张庆贺.设置垫层的地下结构的抗爆动态相应[R].同济大学资料,1984.
    [248]许学忠等.地下封闭爆炸地震场砂垫层组合减震性能分析[J].防护工程,1997,(2):35-39.
    [249]王志杰,高波,关宝树.围岩-隧道衬砌结构体系的减震研究,西南交通大学学报,1996,31(6).
    [250]王优龙,魏琏,李康棋等.隔震技术的研究与应用[M],北京:地震出版社,1991.
    [251]南昆铁路8、9度地震隧道洞口及浅理大跨段新机构设计试验研究[R].铁道部第二勘侧设计院,1996.
    [252]吉川惠也.铁路隧道的震害和抗震措施隧道译丛.1986,11:1-11.
    [253]李海清,孙震.酒家垭公路隧道震害处治对策[J].公路隧道,2009,1:24-27.
    [254]St John C M, Zahrah T F. Aseismic Design of Underground Structures[J]. Tunnelling and Underground Space Technology,1987,2(2):165-197.
    [255]Hilber, H. M., T. J. R. Hughes, and R. L. Taylor. Collocation, Dissipation and 'Overshoot' for Time Integration Schemes in Structural Dynamics[J]. Earthquake Engineering and Structural Dynamics,1978,6:99-117.
    [256]李志山,廖耘.ABAQUS显式动力弹塑性分析技术在建筑结构领域的应用[R].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700