用户名: 密码: 验证码:
极端冰雪灾害条件下岩体与支护结构相互作用试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
极端冰雪灾害条件下,反复冻融作用使岩体及支护结构内部应力平衡状态发生改变,严重威胁地质灾害体防治工程结构体系的正常运行,使支护结构体系失效随之产生滑坡、崩塌等地质灾害,造成人民生命财产的重大损失。2008年初,一场大范围持续性的极端冰雪灾害席卷我国中部及南方大部分地区,给国民经济造成了巨大损失,也随之引发了一系列次生地质灾害。多年来,国内外关于极端低温条件下的研究多集中于寒区深层岩土体冻融问题,对于表层岩体(地面以下20cm以内)的冻融研究少有涉及,因此,亟待开展极端冰雪灾害对我国中、南部地区表层岩体与支护结构安全性影响研究。
     本文依托“十一五”国家科技支撑计划重点项目“极端冰雪灾害条件下岩土体与支护工程一体化安全性研究”(编号2008BAC47BOX),在充分调研2008年极端冰雪灾害气候、岩土工程实例和系统研究国内外相关文献资料的基础上,以我国中、南部地区极端冰雪灾害条件下的边坡岩体及支护工程为背景,基于试验力学、低温学、冻土学、冻岩力学、岩土工程学及损伤力学等理论,围绕受低温冻结、融化影响显著的岩体及支护结构,开展了一系列物理、力学试验研究,包括岩石声波试验、X-射线衍射试验、封闭/开放式冻融试验、常规物理试验、冻融前后岩石及胶结面单轴压缩试验、三轴压缩试验、直剪试验、砼抗压试验、SEM微观试验及岩体与支护结构相互作用中型物理模型试验,并进行了深入分析。文中首先阐述了自主研制能模拟极端冰雪灾害气候条件、并可配合MTS大型岩石伺服机使用的环境控制系统的全过程。然后,以受灾较重的湖北地区灰色砂岩及常用挡土墙、喷锚支护结构为例,系统研究了极端冰雪灾害条件下,在温度、含水量、冻融方式等多因素作用下,岩石、岩体与挡土墙支护结构相互作用及岩体与喷锚支护结构相互作用的变形规律、强度特性及破坏屈服准则。其次基于三轴压缩试验成果,通过引入统计损伤理论,建立了冻融前后岩石、岩石与喷射砼相互作用的冻融损伤软化统计本构模型。在此基础上,开展了极端冰雪灾害条件下岩体与支护结构相互作用中型物理模型试验,并提出了适合极端冰雪灾害条件下岩体与支护结构相互作用物理模型试验研究的方法和建议。取得的主要研究成果如下:
     (1)自主研制了箱体内胆尺寸为1000×1000×1000mm的专用环境控制系统,该系统具有内部空间大、模型进出便利、连续冻融稳定性高、冻融速度快、温度可程控及具有专用加载配套设施等特性,不但能进行常规岩土体冻融试验,同时具备配合大型MTS800电液伺服加载系统对中型岩土体与支护结构相互作用物理模型进行冻融循环条件下各种力学试验的能力,该系统在箱内净容积、高低温控制性能、岩土体吊装及加载便利性等方面达到国内先进水平。
     (2)首先对取自2008年冰雪灾害重灾区的灰色砂岩进行了声波、物理指标测试,分别开展了10℃--20℃封闭式冻融循环及20℃--20℃开放式冻融循环试验,然后研究了常温、不同含水量(干燥和饱和)以及经历不同冻融循环次数的砂岩尺寸、质量变化规律。其次对冻融前后砂岩分别进行了单轴、三轴压缩力学试验,分析得出其破坏形态、应力-应变曲线特征、强度屈服准则及强度指标,最后对冻融前后砂岩进行了SEM微观扫描分析研究。试验结果表明,砂岩饱水或经历开放式冻融循环后,单轴抗压强度、弹性模量及变形模量显著下降;而在经历封闭式冻融循环后,上述指标呈现截然相反的变化趋势。说明含水量是砂岩冻融损伤的决定因素,据此提出砂岩在分别遭受封闭/开放式冻融循环时的两种损伤破坏模式:内部微损伤模式和沿层理面弱化模式。砂岩经历封闭/开放式冻融循环后的单轴破坏形式不同,但本质都是剪切破坏,开放式冻融循环后砂岩单轴强度显著降低、应变增大,在卸荷阶段表现出明显的流变性。低围压下,干燥和饱和砂岩均呈现典型的对角剪切破坏,应力-应变曲线明显存在脆性→延性的转化过程并在卸载过程中发生应力跌落。随着含水量的增大,砂岩粘聚力、摩擦角降低,抗剪强度降低。微观分析表明,由于冻融循环作用,砂岩内部孔隙和颗粒间空隙增大,颗粒之间出现挤压和相对错动导致水分逐渐侵入岩石内部造成破坏。
     (3)选取岩体与挡土墙支护结构相互作用体为研究对象,制作灰色砂岩与常用C20普通浇筑砼相互作用试样,研究了常温以及经历不同冻融循环次数后胶结面试样尺寸、质量变化规律。然后对开放式冻融前后试样进行了胶结面直剪试验,得到其剪切破坏强度准则及其影响因素。试验结果表明,随冻融次数的增加,胶结面试样高度及质量均呈增大趋势,砂岩和砼部分直径也分别增大,5-10次循环后即丧失强度导致胶结面脱落。随着轴压增大,胶结面剪切应力增大。随着冻融循环次数的增加,水平应力峰值明显降低,冻融前后胶结面剪切屈服后均出现不同程度的剪切流变现象,多个试样出现间歇性应力跌落。冻融循环3次后,胶结面处粘聚力有所降低,而摩擦角却增大。
     (4)选取岩体与喷锚支护结构相互作用体为研究对象,制作砂岩与C20喷射砼相互作用试样,研究了常温以及经历不同冻融循环次数后胶结面试样尺寸、质量变化规律。然后对开放式冻融前后胶结面试样进行了单轴压缩试验、中/低不同围压条件下三轴压缩试验及中/低不同轴压条件下胶结面剪切试验,分析得出其破坏形态、应力-应变曲线特征、强度屈服准则及强度指标。最后对冻融前后胶结面试样进行了SEM微观扫描分析研究。试验结果表明,常温及经历冻融后,胶结面试样在单轴压缩试验中破坏形式均为沿轴向拉伸劈裂,并无从胶结面处发生剪切滑移的趋势。随着含水量增加,胶结面试样强度明显降低。随着冻融次数增加,弹性模量、变形模量线性降低。低围压下,常温干燥/饱和胶结面试样破坏多数表现为对角向裂缝,随着含水量增大,峰值强度降低,粘聚力、摩擦角也降低;中等围压下,经历3次开放式冻融循环后试样三轴破坏形式为砼部分压碎,岩石部分轻微开裂,整体表现出明显的延性,砼的脆性破坏限制了整体强度的提高。粘聚力较低围压下冻融前变化不明显,摩擦角则大幅降低;随着冻融次数增加,剪切应力峰值平均值明显降低,且卸荷阶段出现明显的蠕变现象。随着轴向应力的增大,剪切应力峰值增大。在低轴压下,冻融循环次数的增加导致胶结面处粘聚力明显降低,摩擦角却反而略有提高,而高轴压下,胶结面处粘聚力及摩擦角均明显降低。微观分析表明,经历开放式冻融循环后,砂岩表面颗粒变得零碎,胶结弱化,砼表面颗粒之间的胶结弱化,且相互间发生错动和位移;而造成破坏的根本原因则是胶结物与两种材质之间的缝隙宽度经冻融后增大。
     (5)根据中、低围压下三轴压缩试验成果,引入基于Weibull分布统计规律及微元强度概念的统计损伤力学理论,建立了常温下不同含水量(干燥及饱和)砂岩及其与喷射砼相互作用两种损伤软化统计三维本构模型,并通过对峰值应力、应变与围压的关系拟合,将其推广至任意围压下的损伤软化统计本构模型。随后还建立了经历3次开放式冻融循环后的砂岩与喷射砼相互作用损伤软化统计一维本构模型。最后根据上述本构模型绘制出常温及冻融损伤后的应力-应变曲线,并与试验曲线进行了对比,结果表明,所建立的损伤软化统计本构模型可靠。
     (6)采用常用C20喷射砼与砂岩制作岩体与喷锚支护结构相互作用物理模型,并模拟极端冰雪灾害气候条件对模型进行了周期性补水条件下的冻融循环试验。试验过程中,采用电测法和光纤光栅测量法对物理模型岩石、砼、岩石与砼胶结面表面、岩石与砼胶结面内部受温度变化引起的应变进行了测量,系统研究了模型表面主应变、主应力、最大剪切力、主应力方向角及模型内部应变形成及变化规律。试验结果表明,冰雪覆盖条件下的岩石表面支护工程在经历一定次数冻融循环后,由于岩石远无法达到饱和含水率,加之砼凝固后吸水性很差,实际情况并不会发生理想化的冻胀融沉,而是呈现出局部冻胀融沉、局部热胀冷缩的中间状态。当冻融循环周期为24小时时,模型表面逐步由弹性变形阶段进入塑性变形阶段。而当冻融循环周期增大为48小时后,由于温度对模型内部及表面作用更充分,模型重新呈现弹性变形特性。鉴于此,为模拟实际温度变化且充分考虑塑性变形累积对实际工程的不利影响,建议实验技术规范中岩石与支护结构相互作用模型试验冻融周期每次不大于24小时。冻融过程中,岩石与砼胶结面平面内对降温过程更敏感,压应力、压应变及最大剪切力增长显著,而垂直于岩石与砼胶结面平面方向(含表面)变形对升温过程更敏感,拉应力及拉应变增长显著;当温度上升时,模型表面最大剪切力减小;当温度下降时,最大剪切力增大;无论是在岩石、砼还是岩石与砼胶结面侧表面,主应力方向角波动幅度基本均集中在一个90°的象限内。即使是在胶结面侧表面上不远的两点,其主应力方向仍有不同,但其变化范围有部分重合;模型内部平行于岩石与砼胶结面平面方向上,受温度变化影响时拉应变增长更显著,且波动最小,呈明显的冻胀融沉性质。垂直于岩石与砼胶结面平面方向上材料应变受温度变化影响最剧烈,且波动最大;岩石与砼胶结面平面内受温度变化影响时压应变增长更显著,且波动较大。
     本文的创新点主要表现在:
     (1)自主研制了能配合MTS大型岩石伺服机使用的专用环境控制系统,该系统具有内部空间大、模型进出便利、连续冻融稳定性高、冻融速度快、温度可程控及具有专用加载配套设施等特性,在箱内净容积、高低温控制性能、岩土体吊装及加载便利性等方面达到国内先进水平。
     (2)研究得出极端冰雪灾害条件下,在温度、含水量、冻融方式等多因素条件下,岩石、岩体与挡土墙支护结构相互作用、岩体与喷锚支护结构相互作用三种情况的破坏形态、应力-应变曲线特征、强度屈服准则及强度指标,并据此建立了常温下砂岩、砂岩与喷射砼相互作用损伤软化统计三维本构模型及冻融循环后砂岩与喷射砼相互作用损伤软化统计一维本构模型。结果表明,所建立的损伤软化统计本构模型可靠。
     (3)开展了极端冰雪灾害条件下,岩体与支护结构相互作用中型物理模型试验,深入研究并得出两种材料相互作用的动态响应规律及破坏机理,提出了适合极端冰雪灾害条件下岩体与喷锚支护结构相互作用物理模型试验研究的方法和建议。
Under extreme ice and snow disaster condition, repeated freezing and thawing change the internal stress balance status of rock mass and supporting structure, the structure of geohazard prevention will under a serious threat. The supporting system failure will lead to landslides, collapses and other geological disasters, resulting in great loss of lives and property. In early 2008, a persistent large-scale extreme ice and snow disaster swept most areas of central and southern of China, the disaster caused enormous losses to the Chinese economy, and also a series of secondary geological disasters are developed. Over the years, the research at home and abroad about extreme low temperatures almost focused on the freeze-thaw questions of rock and soil mass of great depth in cold region, the surface rock mass(less than 20cm below the surface) was rarely involved in freeze-thaw studies. Therefore, it is urgent to carry out the research on the safety influence of extreme ice and snow disaster for the surface rock mass and supporting structure in central and southern regions of China.
     This dissertation relies on the key projects of "Eleventh Five-Year" National Science and Technology Support Plan "Safety Research on Integration of Rock and Soil Mass and Supporting Engineering under the Conditions of Extreme Snow and Ice Disasters" (No.2008BAC47B0X). On the basis of extreme climatic of ice and snow disaster, geotechnical engineering examples and relevant literature of home and abroad, the dissertation is set in the rock slope and supporting engineering in central and southern regions of China under extreme ice and snow disaster condition, and based on the theory of test mechanics, cryogenics, frozen earth mechanics, frozen rock mechanics, geotechnical engineering and damage mechanics. In this dissertation, the author carried out a series of physical, mechanical experimental research including rock acoustic tests, X-ray diffraction experiment, closed/open freeze-thaw tests, routine physical tests, before and after freeze-thaw rock and cement surface uniaxial compression test, triaxial compression test, direct shear test, concrete compression testing, SEM micro-scanning test and medium physical model test of interaction between rock mass and supporting structure, according to the rock mass and supporting structure affected by freezing and thawing. Firstly, the dissertation describes the whole independent research process of the environmental control systems that not only can simulate the extreme ice and snow disaster climatic conditions, but also can work in conjunction with large-scale rock MTS. Then, the dissertation takes the gray sandstone and common retaining walls, spray-anchor structure from the heavily-disaster area of Hubei province for instance, and the interaction between rock mass and retaining walls supporting structure, the interaction between rock mass and spray-anchor structure under extreme ice and snow disaster condition, this dissertation researched systematically on the deformation law, strength properties and failure yield criterion under the action of multiple factors such as temperature, moisture, freeze-thaw method etc. Secondly, based on triaxial compression test results, and through the introduction of statistical damage theory, the freeze-thaw damage softening statistical constitutive model for the rock, the interaction between rock and shot-crete before and after freeze-thaw are presented in this paper. Based on above results, a medium physical model test of interaction between rock mass and supporting structure under extreme ice and snow disaster condition is provided. In addition, the dissertation proposed some research methods and recommendations suitable for the physical model test of interaction between rock mass and supporting structure under extreme ice and snow disaster condition. The major conclusions got in this dissertation are as follows:
     (1) A set of dedicated environmental control systems of cabinet liner size 1000×1000×1000mm has been developed independently. The system has the characteristics of a large interior space, convenience for circling, a continuous freeze-thaw stable, freeze-thaw speed, the temperature can be programmed and has a dedicated loading facilities, etc. and the system can not only regular freeze-thaw test of rock and soil mass, but also can carry out a variety of mechanical tests of a medium physical model of interaction between rock mass and supporting structure under freeze-thaw condition with cooperating large-scale rock MTS. The system reach the domestic advanced level in the fields of the net volume inside, high and low temperature control performance, rock and soil mass lifting and loading convenience and so on.
     (2) Firstly, author carried out the acoustic and physical indicators test of gray sandstone from the 2008 disaster hit area, and carried out closed freeze-thaw cycles test in 10℃~-20℃and open freeze-thaw cycles test respectively. Then the propeties of gray sandstone's size and quality variation at ordinary temperatures of different water content (dry and saturated) and after different freeze-thaw cycles are provided. Secondly, author carried out the uniaxial, triaxial compression mechanical tests of the sandstone before and after freeze-thaw, and analysis in arriving at its damage pattern, stress-strain curves, strength yield criteria and strength indexes. Finally, the sandstone before and after freeze-thaw was analyzed by SEM micro-scanning. Experimental results shows, after the sandstone is saturated or open-freeze-thaw cycles, its uniaxial compressive strength, elastic modulus and deformation modulus decrease significantly. after closed-freeze-thaw cycles, the indicators shows that the opposite trend of changes, the data indicate that sandstone's water content is the decisive factor of freeze-thaw damage. Accordingly, two kinds of failure modes of damage after sandstone was subjected to closed/open freeze-thaw cycles are proposed:internal micro-damage mode and weakening pattern along the bedding plane. After closed/open freeze-thaw cycles, the uniaxial failure modes of sandstone are different, but they are the essence of shear failure. After open freeze-thaw cycles, the uniaxial compression strength of sandstone decreases significantly, the strain increases and it shows significant rheological behavior in unloading stage. Under low confining pressure, dry or saturated sandstone shows a typical diagonal shear failure, the stress-strain curve evident that a transformation process of brittle to ductile, and appears a stress drop during the unloading process. With water content increases, the cohesion, internal friction angle and shear strength of sandstone will reduce. SEM micro-scanning analysis shows that, because of the freeze-thaw cycles, the pores within sandstone and the voids between particles increase, the squeeze between the particles and the relative dislocation lead to gradual intrusion of water and damage inside the rock.
     (3) Choosing the interaction between rock mass and retaining wall supporting structure as research object, the interaction sample made up of gray sandstone and C20 normal pouring concrete, the cement plane sample's size and quality variation at ordinary temperatures and after different freeze-thaw cycles is produced. Secondly, the direct shear test of cement plane samples before and after open freeze-thaw cycles was carried out, and the sample's shear failure strength criterion and influencing factors is provided. Experimental results shows, with freeze-thaw cycles increases, the height and quality of samples are increasing, the diameter of sandstone and concrete part are also increasing, and with the loss of strength, cement planes breaks off after 5-10 cycles. With axial pressure increases, the shear stress of cement plane increases. In addition, as freeze-thaw cycles increases, the peak value of horizontal stress drops significantly, the phenomenon of different levels of shear rheology appears after cement plane shear yield and some samples appears the phenomenon of intermittent stress falling. After 3 cycles, the cohesion of cement planes will reduce and its friction angle will increase.
     (4) Choosing the interaction body between rock mass and anchor-shotcrete supporting structure as research object, the interaction sample made up of gray sandstone and C20 shotcrete, and the cement plane sample's size and quality variation at ordinary temperatures and after different freeze-thaw cycles are produced. Secondly, author carried out the uniaxial compression test, triaxial compression test under medium/low levels of confining pressure, direct shear test under medium/low levels of axial pressure of cement plane samples before and after open freeze-thaw cycles, and analysis for its damage pattern, stress-strain curves, strength yield criteria and strength indexes. Finally, the cement plane samples before and after freeze-thaw was analyzed by SEM micro-scanning. Experimental results shows, in ordinary temperature or after freeze-thaw cycles, all of the failure modes of the cement plane samples are split along the axial tensile in uniaxial compression test, and does not occur the sliding trend of shear from the cementation surface. As water content increases, cement plane's strength decrease significantly. With freeze-thaw cycles increases, elastic modulus and deformation modulus decreases linearly. Under low confining pressure, most of dry or saturated samples show a right angle to the crack failure, and as water content increases, cohesion, friction angle and peak value of strength will reduce. Under moderate confining pressure, after 3 open freeze-thaw cycles, samples' damage in the form of part of the crushed concrete in triaxial compression test, some minor cracking of the rock shows significant ductility. Author believes that the overall increase in intensity is limited by the concrete's brittle failure. In addition, the cohesion of samples does not change significantly than that of low confining pressure and before freeze-thaw, but the friction angle reduces substantially. With freeze-thaw cycles increases, the average peak value of shear stress drops significantly, and the creep phenomenon obviously appears in the unloading stage. With axial stress increases, the peak value of shear stress increases. Under low axial pressure, an increase in the number of freeze-thaw cycles leads to the cohesion of cement plane decreases significantly, but the friction angle increases slightly. Under high axial pressure, both of the cohesion and the friction angle of cement plane decrease significantly. SEM micro-scanning analysis shows that, after the open freeze-thaw cycles, the particles of sandstone surface become fragmented, and the cement among particles of concrete surface become weaker, and dislocation and displacement occurs in the particles. But the fundamental reason of cement plane damage is that the width of the gap between cement and the two kinds of material increases after freeze-thaw cycles.
     (5) According to the triaxial compression test results under middle and low confining pressure, the dissertation introduced the statistical damage mechanics theory based on Weibull distribution statistical law and the concept of micro-element strength firstly. Secondly, author built up two kind of three-dimensional damage softening statistical constitutive model for sandstone and the interaction between sandstone and shotcrete of different water content (dry and saturated) in ordinary temperatures. In addition, through the fitting of the relationship among peak stress, peak strain and confining pressure, the dissertation extended it to the damage softening statistical constitutive model suitable for arbitrary confining pressure. Then, the one-dimensional damage softening statistical constitutive model for interaction between sandstone and shotcrete afer 3 open freeze-thaw cycles are provided. Finally, according to the above constitutive model, a comparison was carried out between the stress-strain curves based on model calculations and based on experimentations. The result shows that the damage softening statistical constitutive models are reliable.
     (6) Choosing C20 shotcrete and gray sandstone, the physical model of interaction between rock mass sandstone and shotcrete supporting structure is produced, and the freeze-thaw cycles test with periodic water-supplied under the conditions of extreme snow and ice disasters are presented. During the experiment, for the strain caused by surface temperature change of rock, concrete, surface and inside of the cement plane between rock and concrete, measured by electrical measuring method and measurement of fiber gratings, the dissertation researched systematically on the principal strain, principal stress, maximum shear stress, principal stress direction angle on model surface, and the formation and the variation of strain within the model. Experimental result shows, because the rock can not be reached saturation water content and the poor absorption of concrete after solidification, there will not be idealized frost heave and thawing settlement in the supporting engineering under ice and snow after many freeze-thaw cycles, in fact, the supporting engineering will show the intermediate state between the state of frost heave and thawing settlement and the state of expanding with heat and contracting with cold. When the freeze-thaw cycle is 24 hours, elastic deformation stage is gradually into the plastic deformation stage on the model surface. But after the freeze-thaw cycle changes to 48 hours, temperature operates more fully to surface and inside of the model, the model shows elastic deformation properties again. In view of that, to simulate the actual temperature change and take full account of the negative impact by cumulative plastic deformation, the freeze-thaw cycle of physical model test should not more than 24 hours in experimental technique specifications. During the freeze-thaw cycles, deformation is sensitive to the cooling process in the cement plane, and compressive stress, compressive strain and maximum shear stress increase significantly. In contrast, deformation is more sensitive to the heating process in the perpendicular direction to the plane (including the surface), and tensile stress and tensile strain increase significantly. When temperature rises, the maximum shear force on model surface reduces, and when temperature drops, the maximum shear force increases. In addition, whether on the surfaces of rock, concrete or lateral surface of the cement plane, principal stress direction angles are concentrated in a 90 degree of the quadrant. Even to the two-point very near on the lateral surface of the cement plane, the principal stress directions of them are still different, but their ranges have some overlap. In the horizontal direction to the cement plane of internal model, during temperature changes, more pronounced increase in tensile strain and the change fluctuation of tensile strain is the smallest, the phenomenon of frost heave and thawing settlement appears. In the perpendicular direction to the cement plane, the strain of materials is affected most dramatic by temperature change and the change fluctuation of is the largest strain. In the cement plane, the compressive strain increases more significantly and the change fluctuation of strain is large during temperature changes.
     The innovation points are as follows:
     (1) A set of dedicated environmental control systems with cooperating large-scale rock MTS has been developed independently. The system has the characteristics of a large interior space, convenience for cycling, a continuous freeze-thaw stable, freeze-thaw speed, the temperature can be programmed and has a dedicated loading facilities, etc. The system reach the domestic advanced level in the fields of the net volume inside, high and low temperature control performance, rock and soil mass lifting and loading convenience and so on.
     (2) The damage pattern, stress-strain curves, strength yield criteria and strength indexes of rock, interaction body made up of rock mass and retaining wall supporting structure and interaction body made up of rock mass and anchor-shotcrete supporting structure under the action of multiple factors such as temperature, moisture, freeze-thaw method etc are presented under extreme ice and snow disaster condition. Based on the above results, two kind of three-dimensional damage softening statistical constitutive model for sandstone and interaction between sandstone and shotcrete in ordinary temperatures are provided. In addition, the one-dimensional damage softening statistical constitutive model for interaction between sandstone and shotcrete after 3 open freeze-thaw cycles has been built up at the same time. The result shows that the damage softening statistical constitutive models are reliable.
     (3) A medium physical model test of interaction between rock mass and supporting structure under extreme ice and snow disaster condition was presented. This dissertation researches and works out the dynamic response law and failure mechanism of interaction between two kinds of material. In addition, the dissertation proposed some researches on methods and recommendations useable for the physical model test of interaction between rock mass and supporting structure under extreme ice and snow disaster condition.
引文
[1]王遵娅,张强,陈峪等.2008年初我国低温雨雪冰冻灾害的气候特征[J].气候变化研究进展,2008,4(2):63-67.
    [2]杨贵名,孔期,毛冬艳等.2008年初“低温雨雪冰冻”灾害天气的持续性原因分析[J].气象学报,2008,66(5):836-849.
    [3]王东海,柳崇健,刘英等.2008年1月中国南方低温雨雪冰冻天气特征及其天气动力学成因的初步分析[J].气象学报,2008,66(3):405-422.
    [4]王凌,高歌,张强等.2008年1月我国大范围低温雨雪冰冻灾害分析Ⅰ.气候特征与影响评估[J].气象,2008,34(4):95-100.
    [5]郭东信,刘铁良,张维信等译.普通冻土学[M].1974.北京:科学出版社.
    [6]H.A.崔托维奇著,水利水电科学研究院译.冻土上的地基与基础[M].北京:中国工业出版社.1962
    [7]H.A.崔托维奇著,张长庆、朱元林译.冻土力学[M].北京:科学出版社.1985
    [8]陈湘生.冻土力学之研究-21世纪岩土力学的重要领域之一[J].煤炭学报1998.23(1):53-57
    [9]程国栋.冻土力学与工程的国际研究进展[J].地球科学进展.2001.16(3):293-299.
    [10]赖远明.寒区隧道温度场、渗流场和应力场耦合问题的非线性分析[D].兰州:中国科学院兰州冰川冻土研究所,1999
    [11]J.F.Nixon and E.C.McRoberts, A study of some factors affecting the thawing of frozen soils[J]. Canadian Geotechnology Journal,1973.10(3):439--452.
    [12]V.H.Sokolov, Laboratory method for determining the shearing strength of soil frozen together with its foundation[J]. Soil Mech. Found. Engng.1973.10(5):364-367.
    [13]V.V.Vrachev and V.V.Rogov, Freeze drying method of studying the strength of frozen clay soils(In Russia)[J].Merzlot Issled,1977.16:230-244.
    [14]Johnson.T.C. D. M.Cole.and E. J.Chamberlain. Effect of freeze-thaw cycles on resilient properties of fine-grained soils[J]. Engineering Geology,1979.13(1-4):247-276.
    [15]L.I.Finborud and A.L.Berggren, Deformation properties of frozen soils[J]. Engng. Geol., 1981.18(1-4):89-96.
    [16]F.H.Sayles, Creep of frozen sands[R].1968, U S Army Cold Regions Research and Engineering Laboratory:Hanover.
    [17]F.H.Sayles, Low temperature soil mechanics[R].1966, U S Army Cold Regions Research and Engineering Laboratory:Hanover.
    [18]B.Ladanyi and F.H.Sayles, General report session II:Mechanical properties[J]. Engineering Geology 1979.13(1-4):7-18.
    [19]F.J.Sanger and F.H.Sayles, Thermal and rheological computations for artificially frozen ground construction:US Army Cold Regions Research and Engineering Lab report MP 1078,1978,14P. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts,1979.16(2):45.
    [20]F.J.Sanger and F.H.Sayles, Thermal and rheological computations for artificially frozen ground construction [J]. Engineering Geology,1979.13(1-4):311-337.
    [21]Roman, L.T., Effect of chemical composition of soils on the strength and deformability of frozen saline soils[J]. Soil Mechanics & Foundation Engineering,1995.31(6):205-210.
    [22]朱元林,王显旭.应变率及温度对冻结粉土抗拉强度的影响[J].冰川冻土1995.17(增刊).
    [23]朱元林,张家懿.冻土的单轴本构关系[J].冰川冻土.1992.14(4):p.210-217.
    [24]朱元林,吴紫汪,何平等.我国冻土力学研究新进展及展望[J].冰川冻土.1995.17(增刊):p.6-14.
    [25]何平,张家懿.振动频率对冻土破坏之影响[J]岩土工程学报1995.17(3):78-81.
    [26]何平,朱元林.饱和冻结粉土的动弹模与动强度[J].冰川冻土1993.15(1):170-17-4.
    [27]Wei Ma.Z.W., Lixin Zhang, Xiaoliao Chang, Analyses of process on the strength decrease in frozen soils under high confining pressures[J]. Cold Regions Science and Technology,1999. 29(1):1-7.
    [28]马巍,王大雁,常小晓.模拟K0固结后不同初始围压下冻土应力-应变特性研究[J].自然科学进展.2004.14(3):344-348.
    [29]盛煌,吴紫汪,苗丽娜等.冻土单轴压缩里面变的归一化模型[J].自然科学进展.1996.6(3):357-360.
    [30]何平,程国栋,朱元林.土体冻结过程中的热质迁移研究进展[J].冰川冻土2001.23(1):92-98.
    [31]R.D.Miller. Freezing and heaving of saturated and unsaturated soils[J]. Highway Research Record,1972.393:1-11.
    [32]Akagawa,S.,Experimental study of frozen fringe characteristics[J]. Cold Regions Sciences and Technology,1988.15:209-223.
    [33]F.J.Radd and D.H.Oertle. Experimental pressure studies of frost heave mechanisms and the growth fusion behavior[A].in 2th International Conference on Permafrost[C].1973. Washington D.C.:National Academy Press.
    [34]R.D.Miller, Freezing and heaving of saturated and unsaturated soils[J]. Highway Research Record,1972.393:1-11.
    [35]J.P.GLoch and RD.Miller, Tests of the concept of secondary frost heaving[J]. Soil Sci. Soc. Am. Proc.1975.39(1036-1041).
    [36]Watanabe, K..M. Mizoguchi.and T.Ishizaki. Experimental study on microstructure near freezing front during soil freezing[A].in Ground Freezing 97[C].1997. Netherlands:Lulca University of Technology.
    [37]Muto.Y.K. Watanabe, and T. Ishizaki. Microscopic observation of ice lensing and frost heaves in glass beads[J]. in The 7th International Permafrost Conference[C].1998. Canada: Laval University.
    [38]Takeda, K. and A. Okamura. Microstructure of freezing front in freezing soils[A]. in Ground Freezing 97[C].1997. Netherlands:Lulea University of Technology.
    [39]Konrad, J.M. and C.A. Duquennoi, A model for water transport and ice lensing in freezing soil[J]. Water Resources Research,1993.29:3109-3123.
    [40]Konrad, J.M.M., N R Can, Segregation potential of a freezing soil[J]. Geotech. Testing J., 1981.18(4):482--491.
    [41]李萍,徐学祖,蒲毅彬等.利用图像数字化技术分析冻结缘特征[J].冰川冻土1999.21(2):175.
    [42]徐学祖,王家澄,张立新等.土体冻胀和盐胀机理[M].1995北京:科学出版社.
    [43]李宁,程国栋,徐学祖等.冻土力学的研究进展与思考[J].力学进展2001.31(1):95-102.
    [44]李萍,徐学祖,陈峰峰.冻结缘和冻胀模型的研究现状与进展[J].冰川冻土.2000.22(1):90-95.
    [45]R.L.Harlan. Analysis of coupled heat-fluid transport in partially frozen soil[J]. Water Resources Research 1973.9:1314-1323.
    [46]M.Sheppard, B.Kay, and J.Loch. Development and testing of a computer model for heat and mass flow in freezing soils[A]. in The 3rd International Conference on Permafrost[C].1978. Edmonton:Alberta.
    [47]G.S.Taylor and J.N.Luthin,A model for coupled heat and moisture transfer during soil freezing[J]. Can. Geotech. J.,1978.15(548-555).
    [48]P.E.Jansson and S.Halldin. Model for annual water and energy flow in a layered soil[A]. in Comparasion of Frost and Energy Exchange Models[C].1979. Copenhagen.
    [49]M.Fukuda, Experimental studies of coupled heat and moisture transfer in soils during freezing[R].1982 Institute of Low Temperature Science,Hokkaido University:Sapporo,Japan. 35-91.
    [50]M.Fukuda and S.Nakagawa. Numerical analysis of frost heaving based upon the coupled heat and water flow model[A]. in 4th International Symposium on Ground Freezing[C].1985. Sapporo,Japan.
    [51]雷志栋,尚松浩,杨诗秀等.地下水浅埋条件下越冬期土壤水热迁移的数值模拟[J].冰川冻土1998.20(1):52-54.
    [52]F.Ling, Z.Zeng, and L.X.Zhang. The effect of the construction of revetment in the side of embankment [A].in Ground Freezing 2000 [C].2000. Rotterdam:Balkema.
    [53]D.Li, Z.Wu, and J.Fang. Calculating determination on the critical hights of embankment in the degrading permafrost regions [A]. in Ground Freezing 2000 [C].2000.
    [54]Lai, YM., et al., Nonlinear analysis for the coupled problem of temperature and seepage fields in cold regions tunnels[J]. Science in China, Ser.D,1999.42(sl):23-29.
    [55]O'Neill, K. and R.D. Miller, Exploration a rigid-ice of frost heave[J]. Water Resources Research,1985.21:281-296.
    [56]Holden, J.T., D. Piper, and R.H. Jones. A mathematical model of frost heave in granular materials[A]. in 4th International Conference on Permafrost[C].1983. Washing,D C:National Academy Press.
    [57]Piper, D., J.T. Holden, and R.H. Jones. A mathematical model of frost heave in granular materials[A]. in 5th International Conference on Pemafrost[C].1988. Norway:Tapir Publication.
    [58]Inshizaki, T. and N. Nishio. Experimental study of frost heaving of a saturated soils[J]. in 5th International Symposium on Ground Freezing[C].1988. UK:Balkema,Rotterdam.
    [59]Gorelik, J.B., VS. Kolunin, and A.K. Reshetnikov. Rigid-ice model and stationary growth of ice[A]. in The 7th International Permafrost Conference[C].1998. Canada:Laval University.
    [60]Fremond, M. and M. Mikkola. Thermomechanical modelling of freezing soil[A]. in Ground Freezing 91.Proceedings of the 6th International Symposium on Ground Freezing Days[C]. 1991.Balkema:Rotterdam
    [61]Mikkola, M. and J. Hartikainen. Computational aspects of soil freezing problem[A]. in Fifth World Congress on Computational Mechanics[C].2002. Vienna, Austria.
    [62]Mikkola, M. and J. Hartikainen, Mathematical model of soil freezing and its numerical implementation[J].International Journal for numerical methods in engineering, 2001.52:543-557.
    [63]苗天德,郭力,牛永红等.正冻土中水热迁移问题的混合物理论模型[J].中国科学((D辑)1999.29(增刊1):8-14.
    [64]牛永红.含相变混合物理论与正冻土本构问题[D].兰州:兰州大学,2001
    [65]Winkler.E.M.,Frost damage to stone and concrete:geological considerations[J]. Engineering Geology 1968.2(5):315-323.
    [66]Kostromitinov, K., B. Nikolenko, and V Nikitin, eds. Testing the strength of frozen rocks on samples of various forms(In Russian). Increasing the effectiveness of mining industry in Yakutia[M].1974 Novosibirsk
    [67]Inada, Y and K. Yokota, Some studies of low temperature rock strength[J]. Int. J. Rock Mech. Min. Sci.& Geomech. Abstr.1984.21(3):145-153.
    [68]Yamabe, T. and K.M. Neaupane, Determination of some thermo-mechanical properties of Sirahamasandstone under subzero temperature conditions[J]. International Journal of Rock Mechanics & Mining Science,2001.38(7):1029-1034.
    [69]Park, C., J.H. Synn, and D.S. Shin, Experimental study on the thermal characteristics of rock at low temperatures[J]. International Journal of Rock Mechanics & Mining Science,2004. 41(Supp.l):81-86.
    [70]Nekrasov. L.B.. I.M. Misnik.and S.D. Movshina. eds. Technical and economic evaluation of high-frequency electrical thermo-hammers for breaking frozen rocks(In Russian). Development of Minning Resources of the North[M].1972:Leningrad.
    [71]Misnik, LU. and N.D. Kiev. Basic problems of frozen rock excavation by electric thermal drills(In Russian)[A]. in Thermomechanical Methods of Rock Shattering[C].1972.
    [72]Misnik, LM. and L.B. Nekrasov, Strength of frozen rocks in high frequency electric fields(In Russian)[R].1969, New Investigations in Mining, Leningrad, p.143-150.
    [73]Goriaev, VE., VV Refiner,and N.D.Kiev. Studying frozen ground excavation by thermal means(In Russian)[A]. in Thermomechanical methods of rock shattering[C].1972.
    [74]李宁,张平,程国动.冻结裂隙砂岩低周循环动力特性试验研究[J].自然科学进展2001.11(11):1175-1180.
    [75]杨更社,张全胜,蒲毅彬.冻结温度对岩石细观损伤特性的影响[J].西安科技学院学报2003.23(2):139-142.
    [76]杨更社,张全胜,蒲毅彬.冻结温度影响下岩石细观损伤演化CT扫描[J].长安大学学报:自然科学版2004.24(6):40-42,46.
    [77]杨更社,张全胜,任建喜等.冻结速度对铜川砂岩损伤CT数变化规律研究[[J].岩石力学与工程学报2004.23(24):4099-4104.
    [78]McGreevy, J.P., Some perspective on frost shattering[J]. Prog. Phys. Geogr.,1981.5(1): 56-75.
    [79]Fukuda, M., Rock weathering by freeze-thaw cycles[J]. Low Temp. Sci. Series A. Phys. Sci., 1974.32:243-249.
    [80]徐光苗,刘泉声.岩石冻融破坏机理分析及冻融力学试验研[J].岩石力学与工程学报2005.2-4(17):3076-3082.
    [81]Prick, A., Dilatometrical behaviour of porous calcareous rock samples subjected to freeze-thaw cycles[J].Catena,1995.25:7-20.
    [82]Fahey, B.D., Frost action and hydration as rock weathering mechanisms on schist:a laboratory study[J]. Earth Surface Processrd and Landforms,1983.8(6):535-545.
    [83]Matsuoka, N., Mechanisms of rock breakdown by frost action:an experimental approach[J]. Cold Regions Science and Technology,1990.17:253-270.
    [84]Hall, K., A laboratory simulation of rock breakdown due to freeze-thaw in a Maritime Antarcticenvironment[J]. Earth Surface Processes and Landforms,1988.13:369-382.
    [85]Bellanger, M., F. Homand, and J.M. Remy, Water behaviour in limestones as a function of pores structure:Application to frost resistance of some Lorraine limestones[J]. Engineering Geology,1993.36(1-2):99-108.
    [86]Nicholson, D.T. and F.H. Nicholson, Physical deterioration of sedimentary rocks subjected to experimental freeze-thaw weathering[J]. Earth Surface Processes and Landforms,2000.25: 1295-1307.
    [87]. Chen, T.C., M.R. Yeung, and N. Moric, Effect of water saturation on deterioration of welded tuff due to freeze-thaw action[J]. Cold Regions Science and Technology,2004.38:127-136.
    [88]赖远明,吴紫汪.大坂山隧道围岩冻融损伤的CT分析[J].冰川冻土2000.22(3):206-210.
    [89]杨更社,蒲毅彬.寒区冻融环境条件下岩石损伤扩展研究探讨[J].实验力学2002.17(2):220-226.
    [90]张淑娟,赖远明,苏新民等.风火山隧道冻融循环条件下岩石损伤扩展室内模拟研究[[J]. 岩石力学与工程学报2004.32(24):
    [91]Walder J. and B. Hallet, A theoretical model of the fracture of rock during freezing[J]. Geological Society of America Bulletin,1985.96(3):336-346.
    [92]Hori, M., Micromechanical analysis on deterioration due to freezing and thawing in porous brittle materials[J]. International Journal of Engineering Science,1998.36(4):511-522.
    [93]中国水利水电科学研究院.大体积混凝土[M].北京:水利水电出版社,1990
    [94]Powers T C. A working hypothesis for further studies of frost resistance of concrete. ACI, 1945,41:245-272
    [95]Fagerlund G. The significance of critical degrees of saturation at freezing of porous and brittle materials. In:Scholer C F, eds. Durability of concrete. Detroit:American concrete institute, 1975:13-65
    [96]张誉.混凝土结构耐久性概论[M].上海:上海科学出版社,2003
    [97]Powers T. C, Helmuth R A. Theory of volume change in hardened porland cement paste during freezing. Proceedings[J]. Highway research board,1953,32:285-297
    [98]Mihta P K, Schiessl P Raupach M.Performance and durability of concrete systems.Proceedings of 9th international congress on the chemistry cement,1992,1:571-659
    [99]李金玉、曹建国等,混凝土冻融破坏机理的研究[J].水利学报,1999(1):4149
    [100].覃丽坤,高温及冻融循环后混凝土多轴强度和变形试验研究[D].大连:大连理工大学,2004
    [101]程红强,张雷顺,李平先,冻融对混凝土强度的影响[J].河南科学,2003.21(2):215-216
    [102]Pigeon M., Lemaire F. Study of the basic properties of standard concrete subjected to long freeze/thaw cycles, Canadian Journal of Civil Engineering Issue:Sept.1980:13
    [103].宋玉普.冻融条件下混凝土的多轴强度和破坏准则(50479059).国家自然科学基金资助项目,2004.1-2007.12
    [104]. Yixia Zhou, Menashi D.cohen, etc. Effect of external loads on the frost-resistant properties of Mortar with and without silica fume[J]. ACI Mat. Journal,1994,91(6):547-555
    [105]赵霄龙,卫军等.高性能混凝土在盐溶液中的抗冻性[J].建筑材料学报,2004,7(1):85-89
    [106]覃丽坤,宋玉普等.冻融循环对海水中混凝土抗压性能的影响[J].混凝土,2004,1:16-19
    [107]Christiane F., Michel Pigeon,etc.Freeze-thaw durability and deicer salt scaling resistance of a 0.25 w/c ration concrete. Cem. Conc. Res.,1988,18 (4):604-614
    [108]C. Maclnnis, J. D. IYhiting. The frost resistace of concrete subjected to a deicing agent. Cem. Conc. Res.,1979,9 (3):325-336
    [109]慕儒.冻融循环与外部弯曲应力、盐溶液作用下混凝土耐久性与寿命预测[D].南京:东南大学,2000
    [110]慕儒,严安等.荷载与冻融同时作用下下HSC和SFRHSC的耐久性[J].工业建筑,1998,28: 11-15
    [111]W. Sun, Y. M.zhang, etc.Damage and damage resistance of high strength concrete under the action of load and freeze-thaw cycles. Cem.Conc.Res.,1999,29:1519-1523
    [112]E.Ⅱ.叶米里扬诺娃著.铁道部科学研究院西北所滑坡室译.滑坡作用的基本规律[M]重庆:重庆出版社,1986
    [113]周幼吾,郭东信等.中国冻土[M].北京:科学出版社,2000
    [114]McRoberts EC,&Morgenstern N. R. The stability of thawing slopes. Can.Geotech,1974(11): 447-469
    [115]Clark. MJ. Advance in Periglacial Geomorphology. New York:John wiley & SonsLtd,1988, 325-359
    [116]Niu Fujun, Cheng Guodong,Xie Qun. Study on Instability of slopes in permafrost Regions of Qinghai-Tibet High Plateau:Proceedings of the 5th International Symposium on Permafrost Engineering.Yakutsk:Permafrost Inst.SBRas.Press,2002,192-197.
    [117]殷坤龙等.国际滑坡研究新进展[J].水文地质工程地质.2000,27(5):1-3
    [118]Zhu Cheng, Zhang Jianxin, Cheng Peng.Rock Glaciers in thecentral Tianshan Moutain. China. Permafrost and Periglacial Processes,1996(7):69-78
    [119]郭东信等.青藏公路风火山娅口盆地融冻泥流阶地的初步研究[J].冰川冻土.1993,15(1):58-62
    [120]Wang.B,French H M. In Situ Creep of Frozen Soil. Tibet Pleateau, China. Can. Geotech J., 1995,23:545-552
    [121]王绍令.青藏公路风火山地区的热融滑塌[J].冰川冻土.1990,12(1):63-70
    [122]孙颖娜.北部引嫩干渠渠道滑坡机理研究:[D].哈尔滨:东北农业大学,2002
    [123]靳德武.青藏高原多年冻土区斜坡稳定性研究:[D].西安:长安大学,2004
    [124]武鹤等.寒区路堑人工土质边坡滑塌原因与稳定技术研究[J].黑龙江工程学院学报.2005,19(2):1-4
    [125]G.P. DavidsonandJ. F. Nye. A photo elastic Study of Ice Pressure in Rock Cracks[J]. Cold Regions and Technology.1985(11):141-153
    [126]Karl Terzaghi, Hon. M. A.S.C. E. M. I. C. E. Stability of Steep Slopes on HarDun weathered Rock[J]. Geotechnique.1963:251-270
    [127]掘场夏峰等.凝灰岩采石场的热应力测量.第51回年次学术讲演会论文集.1996:884-Ⅴ885
    [128]陈天城,魏炳乾.冻结融解作用对岩石边坡稳定的影响[J].西北水利发电2003,19(3):5-7
    [129]陈天城.寒冷地区软岩边坡方案设计[J].水利科技,2003(3):31-33
    [130]陈天城.关于冻结融解作用引起的溶结凝灰岩裂缝发展过程的研究[J].资源与素材.2000,116(1):7-12
    [131]马富廷.冻土区露天矿边坡稳定性分析[J].露天采矿技术.2005(4):9-10
    [132]谢和平.灾害环境下重大工程安全性的基础研究进展.第八次全国岩石力学与工程学术大会论文集.北京:科学出版社,2004.68-73
    [133]安维东.冻土的温度水分应力及其相互作用[M].兰州:兰州大学出版社,1990.21-71
    [134]苗天德.正冻土中水热迁移问题的混合物理论模型[J].中国科学(D辑).1999(SI):8-14
    [135]何平,程国栋等.饱和正冻土中的水、热、力场耦合模型[J].冰川冻土.2000,22(2):135-138
    [136]陈飞熊,李宁.饱和冻土体的各向异性力学模型.冻土工程国家重点实验室年报.兰州:冻土工程国家重点实验室,2001.43-50
    [137]陈飞熊,李宁.非饱和冻土的三场耦合理论框架.冻土工程国家重点实验室年报.兰州:冻土工程国家重点实验室,2001.89-101
    [138]李宁等.寒区复合地基的温度场、水分场与变形场三场耦合模型.冻土工程国家重点实验室年报.兰州:冻土工程国家重点实验室,1999.157-165
    [139]赖远明等.挡土墙温度场、渗流场和应力场耦合问题的非线性分析[J].土木工程学报.2003,36(6):88^95
    [140]赖远明等.寒区隧道温度场、渗流场和应力场耦合问题的非线性分析[J].岩土工程学报.1999,21(5):529-533
    []41]张学富.寒区隧道多场耦合问题的计算模型研究及其有限元分析:[D].兰州:中国科学院寒区早区环境与工程研究所,2004
    [142]朱珍德等.岩石一混凝土两相介质胶结面抗剪强度分形描述[J].岩土力学与工程学报.2006,25(增1):2910-2917
    [143]李云安等.岩-土-混凝土破坏准则及其强度参数估算[J].岩土力学与工程学报.2004,23(5):770-776
    [144]古兴伟等.鹿马登水电站混凝土与岩体接触面抗剪特性研究[J].昆明理工大学学报(理工版).2009.34(2):54-57
    [145]燕柳斌.结构与岩土介质相互作用分析方法及其应用:[D].南宁:广西大学,2004
    [146]蒋良潍.松散斜坡体锚、桩加固作用机理与工程应用研究:[D]威都:成都理工大学,2006
    [147]王刚.节理剪切渗流耦合特性及加锚节理岩体计算方法研究:[D].济南:山东大学,2008
    [148]张强勇;朱维申.裂隙岩体弹塑性损伤本构模型及其加锚计算(英文)[J].岩土工程学报,1998,20(6):90-95.
    [149]陈浩.地下工程围岩与支护体相互作用的模型试验研究与理论分析:[D].武汉:中国科学院武汉岩土力学研究所,2008
    [150]李长冬.抗滑桩与滑坡体相互作用机理及其优化研究:[D].武汉:中国地质大学(武汉),2009
    [151]刘佑容,唐辉明.岩体力学[M].1999武汉:中国地质大学出版社.
    [152]黄荫增.湖北省宜昌市地质图说明书[科技报告].武汉:湖北省鄂西地质大队,1990:47
    []53]尤明庆岩石的力学性质[M].2007北京:地质出版社.
    [154]黄克智,肖纪美.材料的损伤断裂机理和宏微观力学理论[M]北京:清华大学出版社,1999.
    [155]谢和平.岩石、混凝上损伤力学[M]北京:中国矿业出版社,1990.
    [156]KRAJCINOVIC D, SILVA M A G. Statistical aspects of the continuous damage theory [J].International Journal of Solids and Structures,1982,18(7):551-562
    [157]KRAJCINOVIC D. Continuous damage mechanics[J].Applied Mechanics Review, 1984,37(1):1-5
    [158]唐春安.岩石破裂过程中的灾变[M]北京:煤炭工业出版社,1993
    [159]曹文贵,方祖烈,唐学军.岩石损伤软化统计本构模型之研究[J]岩石力学与工程学报,1998,17(6):628-633
    [160]杨明辉,赵明华,曹文贵.岩石损伤软化统计本构模型参数的确定方法[J]水利学报,2005 36(3):345-349
    [161]曹文贵,赵明华,刘成学.岩石损伤统计强度理论研究[J].岩土工程学报,2004,26(6):820-823.
    [162]曹文贵,李翔,岩石损伤软化统计本构模型及参数确定方法的新探讨[J].岩土力学,2008,29(11):2952-2956
    [163]冯夏庭.智能岩石力学导论[M].北京:科学出版社,2000
    [164]顾大钊.相似材料和相似模型[M].徐州:中国矿业大学出版社,1995
    [165]韩伯鲤,陈霞龄,宋一乐,李宏明.岩体相似材料的研制[J].武汉水利电力大学学报,1997,30(2):6-9
    [166]崔广心.相似理论与模型试验[M].徐州:中国矿业大学出版社,1991
    [167]王杏根等.工程力学实验(理论力学与材料力学实验)[M].武汉:华中科技大学出版社,2008
    [168]康宜华.工程测试技术[M].北京:机械工业出版社出版,2005
    [169]黄河水利学校.工程力学(上册)[M].北京:水利电力出版社,1978
    [170]MOREY W W,MELTZG, GLENN W H. Fiber optic Bragg grating sensors[C]// Proceedurgs of SPIE(vol.1169). [S.1.]:[s. n.],1989:98-107
    [171]OTHONOS A, KALLIK. Fiber Bragg gratings:fundamentals and applications in telecommunications and sensing[M]. London:Artech House,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700