用户名: 密码: 验证码:
粗糙节理网络模拟及裂隙岩体水力耦合特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,节理是控制岩体水力学行为的重要因素,研究节理的变形行为及渗透行为是对裂隙岩体工程安全评估的重要组成部分。随着地下开采、隧道、边坡及核废料地下处置库等岩体工程的兴建,对裂隙岩体水力耦合研究的需求越来越迫切。然而目前有关节理变形行为及渗透行为的描述和数值模拟,均局限于光滑、平行板模型,节理产状参数相互独立且节理处于常法向应力边界等假设;在使用裂隙岩体水力学模型时,常常忽略了其前提条件。针对目前研究的不足,结合国际合作项目DECOVALEX,以核废料地下处置库安全评估为最终目的,在国内外研究的基础上,采用离散裂隙网络模型方法,通过离散元数值计算(DEM)分析了节理粗糙性、非贯通节理的弱化作用、产状参数相关性以及应力状态等多因素对裂隙岩体水力耦合特性的影响,为分析实际裂隙岩体的水力学特性提供研究方法,其具体内容如下:
     1)提出了一种新的粗糙节理网络模拟方法—SAW法,将粗糙节理视为不断行走的SAW链,通过控制SAW链的一些基本参数(如键长、凸起高度等)来控制粗糙节理形态。本文详细讲述了SAW法的主要思想、实现程序、基本参数的取值以及其使用条件,最终给出了较为系统的粗糙节理网络模拟方法。且应用SAW,研究了不同取样长度下,描述节理粗糙性的各统计参数与JRC之间的相关关系。
     2)考虑节理模型的广泛适用性以及其参数取值的方便性,引入适用于任何边界条件下的粗糙节理本构模型—SA模型,将其嵌入UDEC自定义节理本构模型,并通过数值单轴压缩试验和直剪实验验证了该自定义节理本构模型的正确性,为水、力学计算提供基础。
     3)基于SAW,生成单条变隙宽、粗糙节理,对其进行数值渗透实验,分析了其水流规律,得出:节理等效水力隙宽与力学隙宽均值呈指数关系,与节理粗糙度系数JRC呈负指数关系。拟合三者的关系,将其与BB模型修正立方定律进行对比分析,得到了较好的相似性,从数值模拟的角度验证了BB模型的修正立方定律,并将修正的立方定律与SA节理模型联合使用,最终给出了粗糙节理水力学本构模型,为研究裂隙岩体水力学特性打下基础。
     4)为考虑非贯通节理对裂隙岩体力学强度的弱化作用,引入一损伤变量D,将其定义为块体内所有非贯通节理的实际长度总和与延长至块体边界的长度总和之比。并给出了各块体内损伤变量D的实现程序,然后将含有非贯通节理的岩块弹性模量进行折减,分析非贯通节理对裂隙岩体水力学特性的影响规律,得出:非贯通节理的弱化作用对裂隙岩体力学REV的影响较小,对岩体等效弹性模量有较大的消减作用;其弱化作用对裂隙岩体水力耦合REV的影响较小,对裂隙岩体渗透特性有消弱作用;尤其对岩体渗透率的最大值影响较大,对渗透率的最小值和渗透主方向的影响较小。在实际应用中,应考虑非贯通节理弱化作用的影响。
     5)研究不同分布规律的节理迹长与隙宽的相关性,重点讲述了迹长与隙宽均符合幂律分布时的相关性,在此基础上,对比分析了常隙宽情况下、变隙宽且不相关情况下以及变隙宽且相关情况下裂隙岩体的水力耦合特性,得出:考虑迹长与隙宽相关性对裂隙岩体的渗透REV、渗透率张量均有很大影响;只考虑隙宽的变化对裂隙岩体渗透REV的影响较小,但对其渗透率张量的影响较大。因此,在实际工程中,应根据地质调查结果对其分别进行研究。
     6)基于上述研究的基础,结合国际合作项目DECOVALEXⅢBMT 2,计算了Sellafield处核废料处置库各个区域内裂隙岩体的等效渗透系数张量,并研究了不同地应力状态下,其渗透系数张量的变化规律,得出:A)区域1裂隙岩体的等效渗透系数张量主渗透系数K1和K2分别为3.89×10-6m/s和2.27×10-6m/s,其主渗透方向为-15.32°;B)区域2裂隙岩体的等效渗透系数张量主渗透系数K1和K2分别为5.76×10-6m/s和1.06×10-6m/s,其主渗透方向为-32.03°;C)断层带裂隙岩体的等效渗透系数张量主渗透系数K1和K2分别为5.75×10-6m/s和1.97×10-6m/s,其主渗透方向为-31.33°;D)区域1裂隙岩体等效渗透系数张量随深度的变化规律为:Kxx=8.209×10-6·d-0.536, Kxy=3.081×10-6·d-0905,Kyy=2.205×10-6·d-0.635;E)区域2裂隙岩体等效渗透系数张量随深度的变化规律为:Kxx=4.275×10-6·d-0.255,Kxy=5.299×10-6·d-0.325,Kyy=5.971×10-6·d-0.115;F)断层带裂隙岩体等效渗透系数张量随深度的变化规律为:Kxx=4.04×10-6·d-0.141,Kxy=3.048×10-6·d-0.246,Kyy=5.99×10-6·d-0.114;G)与Blum等人的研究结果对比得,本文的计算结果偏小,这是因为本文考虑了节理的粗糙性及非贯通节理的弱化作用的影响。
It is known that fracture is the important factor which controls the Hydro-Mechanical behavior of rock mass. Research on deformation and seepage behavior of fracture is a key component of performance assessment for rock mass engineering. With the construction of rock mass engineering such as underground mining, slopes, excavations, nuclear waste disposal and so on, the requirement of research on Hydro-Mechanical behavior of fractured rock mass is more and more strong. But, the present studies on deformation and seepage behavior of fracture are limited to the smooth and parallel fracture and the joint papameters (such as trace, aperture, dip) are assumed to be independent with each other. And the joint is assumed to be under the constant normal load condition. On the application of Hydro-Mechanical model of fractured rock mass, the related prerequisite is ignored. Aiming at those shortage of present studies, combining the international coorperated project DECOVALEX, with a view of performance assessment for nuclear waste disposal, the discrete fracture network (DFN) model and the discrete element method are adopted to analyze the effect of joint roughness, non-persistent joint, correlations between joint parameters and stress boundary on Hydro-Mechanical characteristics of fractured rock mass. A methodology for Hydro-Mechanical analysis of fractured rock mass in nature is presented. The content is list as following:
     1) A new method for generation of rough fracture network is proposed which is named SAW method. The rough joint is regard as a self-avoiding work. The morphology of fracture is controlled by changing the basic parameters of SAW, such as bone length, the pile-up height and so on. The main idea, implementation program and the determination of basic parameters are presented in this paper. At last, a systematic method for generation of rough joint network is presented. Considering the effect of sampling length on morphology of rough joint, SAW method is applied to analyze the relationship between JRC and other statistic parameters on description of joint roughness.
     2) Considering the broad applicability of joint constitutive model and the convenience of determination on the related material parameters, the SA joint model is adopted for any kind of boundary condition and is implemented into UDEC as user defined joint model. The numerical uniaxial compression test and direct shear test are used to verify the user defined joint model. This is a foundation for Hydro-Mechanical calculation of fractured rock mass.
     3) Based on SAW method, a rough joint with variable aperture is generated and the numerical seepage test is done to analyze the flow rule. It is concluded that the relationship between equivalent hydraulic aperture and mean mechanical aperture is an exponential function and the relationship between equivalent hydraulic aperture and JRC is a negative exponential function. After fitting these three parameters, the result of flow rule is similar with that of Banton-Bandis model (BB model). The modified cubic law of BB model is verified from a numerical simulation. SA joint model is used, combining with this modified cubic law. And then the Hydro-Mechanical joint constitutive model is presented for rough joint which is the base of study on Hydro-Mechanical characteristics of fractured rock mass.
     4) To consider the weakened effect of non-persistent joint on mechanical strength of fractured rock mass, a damage variable D is defined as the ratio of total trace length of non-persistent joints in a block to the total trace length of fiction joints which are the extention of non-persistent joints to the block boundaries. The implementation program of damage variable for each block is presented and the Young's modulus of intact rock is deduced with the damage variable. Then, the effect of non-persistent joints on Hydro-Mechanical characteristics of fractured rock mass is analyzed. It is concluded that the non-persistent joints have a little effect on mechanical REV and a large weakened effect on the equivalent elasitic modulus of fractured rock mass. It is shown that the non-persistent joints have a little effect on Hydro-Mechanical REV and a certain weakened effect on the equivalent elasitic modulus of fractured rock mass. Especially, the maximum equivalent permeability reduces very significantly, while the minimum equivalent permeability and the main permeability direction change very little. In practical application, the weakened effect of non-persistent joint should be considered.
     5) The correlation between trace length and aperture with different distribution is studied. Especially, the correlation between trace length and aperture with power-law distribution is analyzed. And the effect of correlation on Hydro-Mechanical behavior of fractured rock mass is studied. Three cases are analyzed. The first one is the fracture with constant aperture. The second one is the fracture with variable aperture following a power-law distribution which is not correlated with trace length. The last one is the fracture with variable aperture which is correlated with trace length both following a power-law distribution. It is concluded that the correlation has a significant effect on hydraulic REV and permeability of fractured rock mass. The variable aperture has a little effect on hydraulic REV, but a significant effect on permeability. Thus, the correlation between trace and aperture should be analyzed based on the geological investigations and then the research should be done for different cases in practical engineering.
     6) based on the above research and combining with the international cooperated project DECOVALEXⅢBMT 2, the permeability of fractured rock mass for each zone in nuclear waste disposal in Sellafield is calculated. And the permeability under different stress boundaries is analyzed. It is concluded that the permeability of fractured rock mass for zone 1, zone 2 and the fault zone respectively. The maximum permeability for zone 1, zone 2 and the fault zone are 3.89×10-6 m/s,5.76×10-6 m/s and 5.75×10-6 m/s respectively. The minimum permeability for zone 1, zone 2 and the fault zone are 2.27×10-6 m/s, 1.06×10-6 m/s and 1.97×10-6 m/s respectively. The permeability direction for zone 1, zone 2 and the fault zone are -15.32°,-32.03°and -31.33°. The permeability compenents in zone 1 change with deep and the relationships are Kxx=8.209×10-6·d-0.536,Kxy=3.081×10-6·d-0.905 and Kyy=2.205×10-6·d-0.635 respectively.The permeability compenents in zone 2 change with deep and the relationships are Kxx=4.275×10-6·d-0.255,Kxy=5.299×10-6·d-0.325 and Kyy=5.971×10-6·d-0.115 respectively.The permeability compenents in fault zone change with deep and the relationships are Kxx=4.04×10-6·d-0.141, Kxy=3.048×10-6·d-0.246 and Kyy=5.99×10-6·d-0.114 respectively.Compared with the result of Blum,the calculation result in this paper is smaller.The reason for that difference is the joint roughness and the weakened effect of non-persistent joint which is considered in this paper.
引文
[1]张有天,岩石水力学与工程[M].北京:中国水利水电出版社,2005
    [2]Baecher G B, Lanney N A and Einstein H H. Statistical Description of Rock Properties and Sampling [A]. In:Proc.18th Us Symp. Rock Mechanics [C].1978 (5c):1-8
    [3]Cruden D E. Describing the Size of Discontinuities [J]. International Journal Of Rock Mechanics And Mining Sciences& Geomechanics Abstracts,1977,14:133-137
    [4]Priest S D and Hudson J A. Estimation of Discontinuity Spacing and Trace Length Using Scanline Surveys [J]. International Journal Of Rock Mechanics And Mining Sciences& Geomechanics Abstracts,1981,18:183-197
    [5]王贵宾,岩体节理三维模拟及渗透张量分析[博士论文].武汉:中国科学院武汉岩土力学研究所,2006
    [6]Pahl P J. Estimating the Mean Length of Discontinuity Traces [J]. International Journal of Rock Mechanics and Mining Sciences& Geomechanics Abstracts,1981,18:221-228
    [7]Kulatilake P H S W and Wu T H. The Density of Discontinuity Traces in Sampling Windows [J]. International Journal Of Rock Mechanics And Mining Sciences& Geomechanics Abstracts,1984,21:347-354
    [8]Zhang L, Einstein H H. Estimating the Mean Trace Length of Rock Discontinuities [J]. Rock Mechanics and Rock Engineering.1998,31(4):217-235
    [9]殷黎明,甘肃北山花岗岩节理水力、力学特性研究[博士论文].武汉:中国科学院武汉岩土力学研究所,2008
    [10]Priest S D. Hemispherical Projection Methods in Rock Mechanics [M]. London:George Allen And Unwin,1985
    [11]袁绍国,王震.节理测量误差的来源及其分析[J].包头钢铁学院院报.1998,17(4):253-257
    [12]Kulatilake P H S W and Wu T H. Estimation of Mean Trace Length of Discontinuities [J]. Rock Mechanics and Rock Engineering.1984,17(4):215-232
    [13]Kulatilake P H S W. Brivariate Normal Distribution Fitting on Discontinuity Orientation Clusters [J]. Mathematical Geology.1986,18(2):181-195
    [14]ISRM. Suggested Methods for the Quantitative Description of in Discontinuities Rock Mass Discontinuities [J]. International Journal o Rock Mechanics and Mining Sciences& Geomechanics Abstracts,1978,15:319-368
    [15]Alireza Baghbanan and Lanru Jing. Hydraulic Properties of Fractured Rock Mass With Correlated Fracture Length and Aperture [J]. International Journal of Rock Mechanics and Mining Sciences,2007,44:704-719
    [16]Call R D. Estimation of Joint Set Characteristics from Surface Mappings [A]. In:Proc 17th U.S Symp Rock Mech[C],1976.2b2:1-9
    [17]Barton N R and Choubey V. the Shear Strength of Rock Joints in Theory and Practice. Rock Mechanics,1977,10:1-54
    [18]Einstein H H Et Al. the Effect of Discontinuity Persistency on Rock Slope Study [J]. International Journal Of Rock Mechanics And Mining Sciences& Geomechanics Abstracts, 1983,20(5):227-236
    [19]张宜虎,岩体等效水力学参数研究[博士论文].武汉:中国地质大学,2006
    [20]杨建平,裂隙岩体宏观力学参数评价研究[博士论文].武汉:中国科学院武汉岩土力学研究所,2009
    [21]Phillip Blum, Mackay R, Riley M S and Knight J L. Performance Assessment of A Nuclear Waste Repository:Upscaling Coupled Hydro-Mechanical Properties For Far-Field Transport Analysis [J]. International Journal of Rock Mechanics and Mining Sciences,2005,42: 781-792
    [22]Einstein H H and Baecher G B. Probabilistic and Statistical Methods in Engineering Geology [J]. Rock Mechanics and Rock Engineering.1983,16:39-72
    [23]张秀丽,断续节理岩体破坏过程的数值分析方法研究[博士论文].武汉:中国科学院武汉岩土力学研究所,2007
    [24]Bingham C. Distribution on the Sphere and on the Projective Plane [D]. New Haven:Yale University,1964
    [25]Cacas M C, Ledoux B, Marsity G De et al. Modeling Fracture Flow with a Stochastic Discrete Fracture Network:Calibration and Validation.1. The Flow Model [J], Water Resources Research.1990,26(3):479-489
    [26]Dreuzy J R De, Davy P, Bour O. Hydraulic Properties Of Two-Dimentional Random Fracture Networks Following Power Law Distributions Of Length And Aperture [J], Water Resources Research,2002,38(12):1-9
    [27]Wong T F. Crack Aperture Statistics and Pore Space Fractal Geometry of Westerly Cranite snd Ruland Quartzite:Implications for an Elastic Contact Model of Rock Compressibility [J]. Journal of Geophysical Research.1989.94(B8):267-278
    [28]Kulatilake P H S W. Fitting Fisher Distributions to Discontinuity Orientation Data [J]. Journal of Geological Education.1985,33:266-269
    [29]Gale J E. Comparison of coupled fracture deformation and fluid flow models with direct measurements of fracture pore structure and stress-flow properties [A]. Proceeding of 28th US symposium on rock mechanics [C]. Tucson.1987:1213-1222.
    [30]Hakami E, Barton N. Aperture measurements and flow experiments using transparent replicas of rock joints [A]. Proceedings of the international symposium on rock joints [C]. Balkema.1990:383-390.
    [31]Hakami E, Einstein H H, Gentier S, Iwano M. Characterization of fracture aperture-methods and parameters [A]. Proceedings of the eighth international congress on rock mechanics [C]. Tokyo.1995:751-754.
    [32]Iwano M, Einstein H H. Stochastic analysis of surface roughness, aperture and flow in a single fracture [A]. Proceedings of the international symposium EUROCK [C]. Lisbon. 1993:135-141
    [33]Johns R A, Steude J S, Castanier L M, Roberts P V. Nondestructive measurements of fracture aperture in crystalline rock cores using X-ray computed tomography [J]. Journal of geophysical research.1993.98(B2):1889-900
    [34]Pyrak-Nolte L J, Montemagno C D, Nolte D D. Volumetric imaging of aperture distributions in connected fracture networks. Geophysical Research Letters.1997.24(18): 2343-2346
    [35]Margolin G, Berkowitz B, Scher H. Structure, flow, and generalized conductivity scaling in fracture networks [J]. Water Resources Research.1998,34(9):2103-21.
    [36]Park YJ, de Dreuzy JR, Lee KK, Berkowitz B. Transport and intersection mixing in random fracture networks with power law length distributions [J]. Water Resources Research.2001.37(10):2493-2502.
    [37]Dverstop B, Andersson J. Application of the discrete fracture network concept with field data:possibilities of model calibration and validation [J]. Water Resources Research,1989. 25(3):540-50.
    [38]方涛,柴军瑞,胡海浪,徐文彬.Monte Carlo方法在岩体裂隙结构面模拟中的应用[J].露天采矿技术.2007,1:7-13
    [39]朱文彬.三维结构面网络模拟在岩体变形特性中的应用[J].长沙铁道学院院报.1998,3:18-23
    [40]赵文,林韵梅.结构面岩体的网络模拟研究[J].东北大学学报.1994,15(2):128-130
    [41]宋晓晨,徐卫亚.裂隙岩体渗流模拟的三维离散裂隙网络数值模型(Ⅰ):裂隙网络的随机生成[J].岩石力学与工程学报.2004,23(12):2015-2020
    [42]王家臣,常来山,陈亚军,肖辉.露天矿节理岩体三维网络模拟与概率损伤分析[J].北京科技大学学报.2005,27(1):1-4
    [43]荣冠,周创兵,朱焕春,刘佑荣.三峡水库某段岩体裂隙网络模拟研究[J].岩土力学.2004,25(7):1122-1126
    [44]陈剑平.岩体随机不连续面三维网络数值模拟技术[J].岩土工程学报.2001,23(4):397-402
    [45]陶振宁,王宏.岩石力学中节理网络模拟技术[J].长江科学院院报.1990,4:18-26
    [46]陈国良,廖国华.岩体节理网络的计算机模拟[J].有色金属.1989,6:23-28
    [47]陈征宙,胡伏生,方磊,Salah Bishir.岩体节理网络模拟技术研究[J].岩土工程学报.1998,20(1):22-25
    [48]尹彦波,李爱兵,袁节平,刘国文.岩体结构面二维网络模拟的计算机辅助技术研究[J].采矿技术.2006,6(4):19-22
    [49]贾洪彪,唐辉明,刘佑荣.岩体结构面网络模拟技术研究进展[J].地质科技情报.2001,20(1):105-108
    [50]龙治国,刘佑荣,倪恒.岩体结构面网络模拟在滑坡中的应用[J].土工基础.2002,16(4):34-39
    [5l]魏安.岩体裂隙网络的计算机模拟及其应用[J].西南交通大学学报.1995,30(2):200-205
    [52]黄勇,周志芳,岩体渗流模拟的二维随机裂隙网络模型[J].河海大学学报,2004,32(1):91-94
    [53]Yamatomo H, Kojima K, Tosaka H. Fractal Clustering Of Rock Fractures and Its Modeling Using Cascade Process [A]. In:Pinto da ed. Scale Effect in Rock Masses 93[C]. Rotterdam: Balkema,1993:81-86
    [54]Kojima K, Tosaka H, Ohno H. An Approach to Wide-Ranging Correlation of Fracture Distributions Using the Concept of Fractual [A]. In:Khair Ed. Rock Mechanics as Guide for Efficient Utilization of Natural Resources. Rotterdam:Balkema.1989:211-218
    [55]赵阳升,文再明,冯增朝,岩体裂隙面数量的三维分形分布仿真理论与技术,岩石力学与工程学报,2005,24(6):994-998
    [56]孙修礼,岩体节理网络分形分布的模拟研究[硕士论文],青岛:青岛建筑工程学院,2003
    [57]马宇,赵阳升,段康廉,岩体裂隙网络的二维分形仿真,太原理工大学学报,1999,30(5): 479-482
    [58]赵阳升,王笑海,杨栋,岩体裂隙走向分组分布特征的分形研究,岩土力学,1997,18:50-53.
    [59]谢和平,岩石节理的分形描述,岩土工程学报,1995,17(1):18-23
    [60]仵彦卿.岩体水力学基础(一)[J].水文地质工程地质.1996,6:24-28
    [61]仵彦卿.岩体水力学基础(二)[J].水文地质工程地质.1997,1:24-28
    [62]仵彦卿.岩体水力学基础(三)[J].水文地质工程地质.1997,2:54-57
    [63]仵彦卿.岩体水力学基础(四)[J].水文地质工程地质.1997,3:10-14
    [64]仵彦卿.岩体水力学基础(五)[J].水文地质工程地质.1997,5:41-45
    [65]仵彦卿.岩体水力学基础(六)[J].水文地质工程地质.1998,1:43-46
    [66]仵彦卿.岩体水力学基础(七)[J].水文地质工程地质.1998,2:42-48
    [67]王媛,速宝玉,徐志英.等效连续裂隙岩体渗流与应力全耦合分析[J].河海大学学报,1998,26(2):26-30
    [68]Min Ki-Bok, Jing Lanru. Numerical determination of the equivalent elastic compliance tensor for fractured rock masses using the distinct element method [J]. International Journal of Rock Mechanics and Mining Sciences,2003,40:795-816
    [69]Wei Z Q. permeability predictions for jointed rock masses [J]. International Journal Of Rock Mechanics and Mining Sciences& Geomechanics Abstracts,1995,32(3):251-261
    [70]Long J C S, Remer J S, Wilson C R, Witherspoon P A. Porous Media Equivalents for Networks of Discontinuous Fractures [J]. Water Resources Research,1982,18(3):645-658
    [71]向文飞.裂隙岩体表征单元体及力学特性尺寸效应研究[博士论文].武汉:武汉大学,2005
    [72]Peters R R and Klavetter E A. a Continuum Model for Water Movement in an Unsaturated Fractured Rock Mass [J]. Water Resources Research,1988,24(3):416-430
    [73]杨栋,赵阳升,段康廉,郑少河.广义双重介质岩体水力学模型及有限元模拟,岩石力学与工程学报,2000,19(2):182-185
    [74]Kevin Hestir, Long J S C. Analytical Expressions for the Permeability of Random Two-Dimensional Poisson Fracture Networks Based on Regular Lattice Percolation and Equivalent Media Theories[J]. Journal of Geophysical Research,1990,95(B13): 21565-21581
    [75]Shehata W M. quoted in Sharp JC and Maini YNT, in fundamental considerations on the hydraulic characteristics of joints in rock [A]. Proceedings of the Symposium on Percolation through Fissured Rock [C]. Stuttgart.1972.
    [76]Bandis S C, Lumsden A C, Barton N R. Fundamentals of rock joint deformation [J]. International Journal of Rock Mechanics and Mining Sciences& Geomechanics Abstracts, 1983,20(6):249-68
    [77]Goodman R E. the mechanical properties of joints [A]. Proceedings of the Third Congress on ISRM [D], Washington D C,1974,1A:127-140
    [78]Goodman R E. Methods of geological engineering in discontinuous rock [M]. New York: West,1976
    [79]Barton N R, Bandis S C, Bakhtar K. Strength, deformation and conductivity coupling of rock joints [J]. International Journal of Rock Mechanics and Mining Sciences& Geomechanics Abstracts,1985,22(3):121-40
    [80]Swan G. Determination of stiffness and other joint properties from roughness measurements [J]. Rock Mechanics and Rock Engineering.1983,16:19-38
    [81]Malama B, Kulatilake P H S W. Models for normal fracture deformation under compressive loading [J]. International Journal of Rock Mechanics and Mining Sciences,2003,40: 893-901
    [82]Patton F D. Multiple modes of shear failure in rock [A]. Proc.1st Cong [C]. ISRM. Lisbon, 1966,1:509-513
    [83]Ladanyi B and Archambault G. Stimulation of shear behaviour of a jointed rock mass [A]. In Proc.11th Symp. on Rock Mechanics, Theory and Practice[C], New York,1970:105-125
    [84]Seidel Julian P, Haberfield Chris M. A theoretical model for rock joints subjected to constant normal stiffness direct shear [J]. International Journal of Rock Mechanics and Mining Sciences,2002,39:539-553
    [85]Pearce H. A micro-mechanical approach to the shear behaviour of rock joints [Ph D thesis]. Australia:Department of Civil Engineering, Monash University,2001
    [86]Amadei B, Wibowo J, Sture S and Price R H. Applicability of existing models to predict the behavior of replicas of natural fractures of welded tuff under different boundary conditions, Geotechnical and Geological Engineering.1998.16:79-128
    [87]Saeb S, Amadei B. Modeling Rock Joints under Shear and Normal Loading [J]. International Journal of Rock Mechanics and Mining Sciences& Geomechanics Abstracts, 1992,29(3):267-278
    [88]Souley M, Homand F. Stability of Jointed Rock Masses Evaluated by UDEC With An Extended Saeb-Amadei Constitutive Law [J]. International Journal of Rock Mechanics and Mining Sciences& Geomechanics Abstracts,1996,33(3):233-244
    [89]Souley M, Homand F and Amadei B. An extension to the Saeb and Amadei constitutive model for rock joints to include cyclic loading paths [J]. International Journal of Rock Mechanics and Mining Sciences& Geomechanics Abstracts,1995,32:101-109
    [90]Hoek E, Brown E T. Empirical Strength Criterion for Rock Masses[J]. Journal of Geotechnical Engineering Division, Asce,1980,106(Gt9):1013-1035.
    [91]Wu Yuexiu, Liu Quansheng, Liu Xiaoyan. Numerical simulation of rough joint [A]. sinorock[C], Hong Kong,2009.
    [92]Myers N O. Characterization of Surface Roughness [J]. wear,1962,5:182-189
    [93]Tse R, Cruden D.M. estimating joint roughness coefficients [J]. International Journal of Rock Mechanics and Mining Sciences& Geomechanics Abstracts,1979,16:303-307
    [94]Reeves M. J. Rock Surface Roughness and Frictional Strength [J]. International Journal of Rock Mechanics and Mining Sciences& Geomechanics Abstracts.1985,22:429-442
    [95]Maerz N H, Franklin J A. C.P. Bennett. Joint Roughness Measurement Using Shadow Profilometry [J]. International Journal of Rock Mechanics and Mining Sciences& Geomechanics Abstracts.1990,27(5):329-343.
    [96]Yu Xianbin, Vayssade. Joint profiles and their roughness parameters [J]. International Journal of Rock Mechanics and Mining Sciences& Geomechanics Abstracts.1991,28(4): 333-336.
    [97]Lee S D, Lee C I. characterization of joint profiles and their roughness parameters [J]. International Journal of Rock Mechanics and Mining Sciences.1997,34:3-4
    [98]Yang Z Y, Lo S C, Di C C. Reassessing The Joint Roughness Coefficient (JRC) Estimation Using Z2 [J]. Rock Mechanical and Rock Engineering.2001,34(3):243-251
    [99]Belem T, Etienne F Homand, Souley M. quantitative parameters for rock joint surface roughness [J]. Rock Mechanical and Rock Engineering.2000,33(4):217-242
    [100]Seidel J P, Haberfield C M. towards an understanding of joint roughness [J], Rock Mechanical and Rock Engineering.1995,28(2):69-92
    [101]Gadelmawla E S, Koura M M, Maksoud T M A. Roughness Parameters [J]. Journal of materials processing technology.2002,123:133-145
    [102]Hong Eun-Soo, Lee Jong-Sub, Lee In Mo. underestimation of roughness in rough rock joints [J]. International journal for numberical and analytical methods in geomechanics. 2008,32:1385-1403
    [103]Zhou Hong Wei, Xie He Ping, Kwasniewski M A. Developments in Characterization Of Surface Topography Of Rock Joint [J]. Progress in Natural Science.2001,11(7):481-489
    [104]Miller S M et al. ambiguities is estimations of rock fracture surfaces, in:rock mechanics contributions and challenges [M]. belkema,1995
    [105]Odling N E. natural fracture profiles, fractal dimension and joint roughness coefficients[J], Rock Mechanical and Rock Engineering.1994,27(3):135-153
    [106]Pal S K, Chakravarty D. rock mass characterization using fractals [J]. National conference on nonlinear systems& dynamics.2003:217-220
    [107]Murata S and Saito T. a new evaluation method of JRC and its size effect [J]. technology roadmap for rock mechanics, south african institute of mining and metallurgy,2003: 855-858
    [108]Jang Bo-An, Jang Hyun-Sic. a new method for determination of joint roughness coefficient [J]. IAEG, London,2006
    [109]Kulatilake P H S W, Balasingam P, Park Jinyong, Morgan R. natural rock joint roughness quantification through fractal techniques[J]. geotechnical and geological engineering.2006, 24:1181-1202
    [110]胡晓飞,杜时贵.结构面粗糙度系数Barton直边法的简明公式[],工程地质学报,2008,16(2):196-200
    [111]Tien H. Wu, Elfatih M. Ali. statistical representation of joint roughness[J]. Int. J. Rock. Mech. Min. Sci.& Geomech. Abstr Vol 15,1978:259-262.
    [112]谢卫红,谢和平,赵鹏,分形节理粗糙度对应力状态影响的研究[J],岩石力学与工程学报,1998,17(3):253-258.
    [113]Bandis S C. Mechanical properties of rock joints [A]. Proceedings of the international symposium on rock joints [C]. Balkema.1990:125-140
    [114]Baghbanan Alireza, Jing Lanru. Stress effects on permeability in a fractured rock mass with correlated fracture length and aperture [J]. International Journal of Rock Mechanics and Mining Sciences.2008,45:1320-1334
    [115]Julian P. Seidel, Chris M. Haberfield. A theoretical model for rock joints subjected to constant normal stiffness direct shear [J]. International Journal of Rock Mechanics and Mining Sciences.2002,39:539-553
    [116]Jiang Yujing, Li Bo, Tanabashi Yosihiko. Estimating the relation between surface roughness and mechanical properties of rock joints [J]. International Journal of Rock Mechanics and Mining Sciences.2006,43:837-846
    [117]Lomize G M. Flow in Fractured Rocks [M]. Moscow.1951
    [118]Louis C. A study of groundwater flow in jointed rock and its influence on the stability of rock masses [R]. Rock Mech Res Rep 10, Imp Coll, London,1969:91-98.
    [119]Neuzil C E, Tracy J V. Flow through fractures [J]. Water Resource Research.1981.17(1): 191-194.
    [120]Tsang Y W, Witherspoon P A. Hydro-mechanical Behavior of a deformable rock fracture subject to normal stress [J]. Journal of Geophysics Research,1981,86(B10):9187-9298.
    [121]Elsworth D, Goodman R E. Characterization of rock fissure hydraulic conductivity using idealized wall roughness profiles [J]. International Journal Of Rock Mechanics And Mining Sciences& Geomechanics Abstracts,1986,23(3):233-243.
    [122]Walsh J B. Effect of pore pressure and confining pressure on fracture permeability [J]. International Journal of Rock Mechanics And Mining Sciences& Geomechanics Abstracts, 1981,18:429-435.
    [123]周创兵,熊文林.岩石节理的渗流广义立方定理[J].岩土力学,1996,17(4):1-7.
    [124]王媛,速宝玉.单裂隙面渗流特性及等效水力隙宽[J].水科学进展.2002,13(1):61-68
    [125]Leichnitz W, Mechanical properties of rock joints [J]. International Journal of Rock Mechanics And Mining Sciences& Geomechanics Abstracts.1985,22:313-321
    [126]Goodman R E and Boyle W, Non-linear analysis for calculating the support of a rock block with dilatant joint faces [A].34th Geo-mechanics Colloquy [C]. Austria Salzburg. 1985
    [127]Goodman R E, Introduction in Rock Mechanics. New York:Wiley.1980
    [128]Obert L, Brady B T and Schmechel F W. The effect of normal stiffness on the shear resistance of rock. Rock Mechanics.1976,8:57-72
    [129]Hutson R W. Preparation of duplicate rock joints and their changing dilatancy under cyclic shear [Ph.D. Dissertation]. US:Northwestern University (1987).
    [130]Ohnishi Y. and Dharmaratne P G R. Shear behavior of physical models of rock joints under constant normal stiffness conditions [A]. Proceedings of the international symposium on rock joints [C]. Balkema.1990:267-273
    [131]Saeb S. and Amadei B. Effect of boundary conditions on the shear behaviour of a dilatant rock joint [A]. Proc.30th U.S. Symp.Rock Mech[C]. Morsantown,1989:107-114
    [132]Saeb S. and Amadei B. Modelling joint response under constant or variable normal stiffness boundary conditions [J]. International Journal of Rock Mechanics and Mining Sciences& Geomechanics Abstracts.1990,27:213-217
    [133]Archamhault G, Fortin M, Gill D E., Aubertin M and Ladanyi B. Experimental investigation for an algorithm simulating the effect of variable normal stiffness on discontinuities shear strength [A]. Proceedings of the international symposium on rock joints [C]. Balkema.1990:141-148
    [134]Cuisiat F D E, Hyett A J and Hudson J A. Numerical investigation of the boundary conditions effect on rock joint behavior [A]. Proceedings of the international symposium on rock joints [C]. Balkema.1990:611-616
    [135]Haberfield C M, Johnston I M. A Mechanistically-based Model for Rough Rock Joints [J]. International Journal of Rock Mechanics and Mining Sciences& Geomechanics Abstracts. 1994.31(4):279-292
    [136]Johnston I W and Lam T S K. Shear Behaviour of Regularmtriangular Concrete/Rock Joints-Analysis [A]. Journal of the Geotechnical Engineering Division.1989.115: 711-727
    [137]Lam T S K and Johnston I W. Shear behaviour of regular triangular concrete/rock joints---evaluation [A]. Journal of the Geotechnical Engineering Division.1989.115: 728-740
    [138]Laura Scesi, Paola Gattinoni. Roughness control on hydraulic conductivity in fractured rocks [J]. Hydrogeology Journal.2007,15:201-211
    [139]陈蕴生,马立新,李宁,韩信.非贯通节理介质损伤演化分形特征分析.西安理工大学学报.2006.22(1):1-4
    [140]陈蕴生,李宁,李爱国等.非贯通节理介质细观损伤演化的CT分析.岩石力学与工程学报.2000,19(6):702-706
    [141]李浩,陶振宇.非贯通节理岩体的有效场和损伤本构关系.武汉水利电力大学学报.2000.33(3):5-8
    [142]晏石林,黄玉盈,陈传尧.非贯通节理岩体等效模型与弹性参数确定.华中科技大学学报.2001.29(6):64-67
    [143]刘远明,夏才初.非贯通节理岩体直剪试验研究进展.岩土力学.2007.28(8):1719-1724
    [144]刘远明,夏才初,李宏哲.节理研究进展及在非贯通节理岩体研究的应用.地下空间与工程学报.2007,3(4):682-693
    [145]刘爱华,罗荣武,黎鸿,张艺晋.人工非贯通节理试样力学强度特征试验研究.西安科技大学学报.2009.29(6):726-730
    [146]向文飞,周创兵.裂隙岩体表征单元体研究进展[J].岩石力学与工程学报.2005,24(2):5686-5692
    [147]张贵科,徐卫亚.裂隙网络模拟与REV尺度研究[J].岩土力学.2008.29(6):1675-1680
    [148]Stone D. Sub-Surface Maps Predicted From Borehole Data:An Example from The Eye-Dashwa Pluton, Atikokan, Canada [J]. International Journal of Rock Mechanics and Mining Sciences& Geomechanics Abstracts.1984.21:183-194.
    [149]Hatton C G, Main I G, Meredith P G. Non-Universal Scaling Of Fracture Length and Opening Displacement [J]. Nature.367:160-162
    [150]Vermilye J M and Scholz C. Relation between Vein Length and Aperture [J]. Journal of Structure Geology.1995.17:423-434.
    [151]Hwalmann T, Malthe-S(?)renssen A, Feder J, J(?)ssang T, Meakin P and Hardy H H. Scaling Relations for the Lengths and Widths of Fractures [J]. Physical Review Letters.1996.77: 5393-5396
    [152]Renshaw C, Park J. Effect of Mechanical Interactions on the Scaling of Fracture Length and Aperture [J]. Nature.1997.386:482-484.
    [153]Odling N E. Scaling and Connectivity of Joint Systems in Sandstones from Western Norway [J]. Journal of Structure Geology.1997.19:1257-1271.
    [154]Hamm Se-Yeong, Kim Moonsu, Cheong Jae-Yeol et. al. Relationship between Hydraulic Conductivity and Fracture Properties Estimated from Packer Tests and Borehole Data in A Fractured Granite [J]. Engineering Geology.2007.92:73-87
    [155]Dreuzy J R De, Davy P, and Bour O. Hydraulic Properties of Two-Dimensional Random Fracture Networks Following Power Law Distributions of Length and Aperture [J]. Water Resources Research.2002.38(12):1-9
    [156]Rouai Mohamed. Application of Fractal Geometry to 2d Fracture Networks in the Middle Atlas Aquifer (Morocco) [A]. At The 9th Agile Conference on Geographic Information Science [C]. Visegrad.2006:339-344.
    [157]Wong T F, Fredrich J T, Gwanmesia G D. Crack Aperture Statistics and Pore Space Fractal Geometry of Westerly Granite and Rutland Quartzite:Implications for an Elastic Contact Model of Rock Compressibility [J]. Journal of Geophysical Research.1989.94(B8): 10267-10278.
    [158]Davy P. on the Frequency-Length Distribution of the San Andreas Fault System [J]. Journal of Geophysical Research.1993.98(B7):12141-12151
    [159]Bonnet E, Bour 0, Odling N E, et al. Scaling of Fracture Systems in Geological Media [J]. Reviews of Geophysics.2001.39(3):347-383
    [160]Colleen A, Barton, Zoback Mark D. Self-Similar Distribution and Properties of Macroscopic Fractures at Depth in Crystalline Rock in the Cajon Pass Scientific Drill Hole [J]. Journal of Geophysical Research.1992.97(B4):5181-5200
    [161]Johnston J, Mccaffrey K J W. Fractal Geometries of Vein Systems and the Variation of Scaling Relationships With Mechanism [J]. Journal of Structure Geology.1996.18: 349-358,
    [162]Belfield W C, and Sovitch J, Fractures Statistics from Horizontal Wellbores [J]. Journal of Canadian Petroleum Technology.1995.34:47-50
    [163]Jourde H, Fenart P, Vinches M, Pistre S, Vayssade B. Relationship between the Geometrical and Structural Properties of Layered Fractured Rocks and Their Effective Permeability Tensor:A Simulation Study[J]. Journal of Hydrology.2007.337:117-132
    [164]Neuman Shlomo P. Multiscale Relationships between Fracture Length, Aperture, Density and Permeability [J]. Geophysical Research Letters.2008.35(L22402):1-6
    [165]Tsang Chin-Fu, Stephansson Ove, Jing Lanru, Kautsky Fritz. DECOVALEX project:from 1992 to 2007[J]. Environmental Geology.2009.57:1221-1237
    [166]Jing Lanru,Tsang Chin-Fu, Stephansson Ove. DECOVALEX-an international coorperative research project on mathematical models of coupled THM processes for safety analysis of radioactive waste repositories [J]. International Journal of Rock Mechanics and Mining Sciences& Geomechanics Abstracts.1995.32(5):389-398
    [167]Johan Andersson, DECOVALEX Ⅲ PROJECT Thermal-Hydro-Mechanical Coupled Processes in Safety Assessments. SKI report.2005
    [168]Jing L, Nguyen T S. DECOVALEX III/BENCHPAR PROJECTS Implications of Thermal-Hydro-Mechanical Coupling on the Near-Field Safety of a Nuclear Waste Repository. SKI report.2005
    [169]Nirex. Data summary sheets in support of gross geo-technical predictions. Nirex Report. 1997
    [170]Nirex. Evaluation of heterogeneity and scaling of fractures in the Borrowdale Volcanic Group in the Sellafield area. Nirex Report.1997
    [171]Blum Phillip, Upscaling of Hydro-Mechanical Processes in Fractured Rock [PHD thesis]. UK:The University of Birmingham.2004
    [172]Philipp Blum, Rae Mackay, Michael S. Riley. Stochastic simulations of regional scale advective transport in fractured rock masses using block upscaled hydro-mechanical rock property data [J]. Journal of Hydrology.2009.369:318-325

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700