用户名: 密码: 验证码:
Boom Clay渗流—应力耦合长期力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在核废料地质贮存库的岩体材料选取中,比利时、法国、瑞士和德国等国将粘土岩(Argillaceous rock)作为一种主要的备选介质加以研究。Boom Clay由于具有膨胀性、低渗透性和损伤自修复等特性,被认为是一种合理的放射性核废料处置的地质屏障。比利时核研究中心HADES大型地下实验室从80年代起就开始从事高放核废物地下处置方面的长期现场实验研究。
     结合比利时HADES试验室正开展的Boom Clay研究课题,本文从Boom Clay的长期流变特性、渗流-应力耦合特性以及泥岩巷道长期稳定性等方面开展研究工作,主要进展如下:
     (1)通过Boom Clay X衍射试验和扫描电镜试验,得到了该泥岩的矿物组成情况及微观结构:Boom Clay主要由粘土矿物(平均60%)组成,包括伊利石、蒙脱石、伊利石-蒙脱石混层以及高岭石,非粘土矿物部分主要由石英和长石组成;扫描电镜试验进一步证实,Boom Clay中粘土颗粒含量较高,这些细小的粘土颗粒构成了较大的集粒,呈絮凝状结构。
     (2)进行Boom Clay固结试验,主要包括标准固结试验和加盐水固结试验。由标准固结试验,确定了Boom Clay的基本物理力学参数,主要包括前期固结压力(约为5MPa)、压缩指数(约为0.19)等;由加盐水固结试验,初步了解该泥岩在渗流-应力耦合作用下的力学特性,试验表明:在盐水作用下,该泥岩具有明显的膨胀性。
     (3)进行Boom Clay渗流-应力耦合固结不排水三轴剪切试验及扫描电镜试验。固结不排水三轴剪切试验采用在静水压力作用下将试样两端加反压进行饱和后,对其进行低速率下的不排水剪切试验,用以进一步研究Boom Clay渗流-应力耦合力学特性,试验表明:在饱和过程中,试样不断吸水产生膨胀变形;不排水剪切过程中,超孔隙水压力变化与时间相关,在有效围压2.5MPa作用下该泥岩压缩强度约为3.0MPa。试验完成后,通过扫描电镜试验对剪切试验前后试样的微观结构变化情况进行分析,分析表明,该泥岩在经历剪切作用后,试样微观结构排列定向性更加明显。
     (4)建立了Boom Clay横观各向同性弹塑性损伤本构模型并给出了损伤演化方程,该模型可以考虑泥岩的强化和软化行为。根据固结不排水三轴剪切试验结果并通过编制反分析程序,采用优化反分析法确定了泥岩本构模型中各项参数,为后续计算研究奠定了基础。
     (5)通过对Boom Clay进行渗流-应力耦合作用下的长期(1年以上)一维固结流变试验及扫描电镜试验,研究该泥岩渗流-应力耦合作用下的长期力学特性。固结流变试验表明:Boom Clay具有明显的流变性;固结流变过程中随载荷的增大,主固结时间不断增长。对试验前后试样的微观结构变化进行分析,分析表明:在经历固结流变试验后,Boom Clay孔隙度明显减小,泥岩微观结构排列变得非常紧密。根据固结流变试验建立Boom Clay一维流变本构模型,同时将模型计算结果与试验结果进行对比,分析表明,该模型能够很好的反映泥岩一维固结流变特性;
     (6)进行Boom Clay渗流-应力耦合长期三轴流变试验(1年以上),进一步研究该泥岩渗流-应力耦合作用下的长期力学特性。依据三轴流变试验结果,考虑Boom Clay的非线性蠕变变形特点,运用损伤力学理论建立了该泥岩非线性蠕变损伤本构模型,并构造了蠕变损伤与蠕变应变的关系式;根据Boom Clay渗流-应力耦合长期流变试验结果,通过计算分析,获得了蠕变损伤模型中的待定参数;以ABAQUS软件为平台,编制了UMAT子程序,并通过模拟Boom Clay三轴流变试验过程,对UMAT子程序进行了验证;结果表明,本文提出的Boom Clay蠕变损伤模型能较好地反映泥岩的非线性蠕变损伤过程,且材料参数较少,具有一定的参考价值。
     (7)在Boom Clay力学特性、本构模型及长期强度准则等研究成果的基础上,建立了高放废物处置库(HADES)三维有限元模型,研究了处置库围岩的蠕变损伤演化过程、孔隙水压力变化等规律,并对围岩稳定性进行评价;分析了衬砌的蠕变变形规律及受力状态,并与现场监测的结果进行了对比,验证了模型的可靠性,研究结果可为处置库的长期稳定性预测提供参考。
Argillaceous rock is considered as a kind of alternative medium for underground nuclear waste repository storage in Europe. Boom Clay is studied as a reasonable geological barrier in geological disposal of high level radioactive waste because of its swelling, low permeability and self-healing, et al. In Belgium, a series of in situ tests have been investigated in HADES underground laboratory since 1980. The main research work of the dissertation has been focused on long-term mechanical behavior, hydro-mechanical coupled behavior, creep damage behavior of Boom Clay. The main achievements are stated as follows:
     (1) The mineral composition and microstructure of Boom Clay is obtained by X diffraction test and scanning electron microscopic (SEM) test, respectively. As the average contents of 60%, clay mineral containing illite, smectite, illite-smectite mixed layer and kaolinite is the main composition of Boom Clay, and quartz and feldspar is the main composition of non-clay minerals for Boom Clay. The SEM test further conform the high contents of clay particles of Boom Clay, and those fine clay particles make up of larger particle sets, which present flocculated structure.
     (2) Oedometer tests containing standard oedometer test and hydrated oedometer test are carried out. Basic physical and mechanical parameters such as preconsolidation stress (about 5MPa) and compressibility coefficient (about 0.19) are obtained from standard oedometer test of Boom Clay. The hydrated oedometer test results show that Boom clay has significant swelling behavior under synthetic Boom Clay (SBC) water.
     (3) Triaxial consolidated undrained shearing tests have been conducted in order to further study the hydro-mechanical coupled behavior of Boom Clay. After the sample saturated by back pressure in both ends under hydrostatic pressure, the triaxial consolidated shearing test is processed under very low shearing rate (20μm/min) with deformation and pore pressure measured. Test results show that the swelling deformation and the excess pore pressure are gradually increasing with time during shearing process. The shear strength under effective confining stress 2.5MPa is about 3.0MPa. The variation of micro structure before and after the shearing tests are studied by SEM. It shows that the micro structure arrangement of Boom Clay after test is more directional than undisturbed Boom Clay.
     (4) Transversely isotropic elasto-plastic damage constitutive model and the damage evolution equation are established considering modified Mohr-Coulomb criterion. The model can describe the hardening and softening behavior of Boom Clay. Parameters for the developed constitutive model are obtained from triaxial test results by inverse analysis and analytical method.
     (5) Long-term hydro-mechanical coupled behavior of Boom Clay is studied by one dimensional consolidation creep tests (more than 1 year). The test results highlighted the creep potential of Boom Clay. After the creep test, the variations of micro structure before and after the tests are studied through SEM. It shows that the porosity of Boom Clay is decreased and the microstructure directionality is more ordered. Based on the test results, a creep constitutive model is established to describe consolidated creep behavior of Boom Clay.
     (6) Long-term triaxial creep tests (more than 1 year) are conducted to study hydro-mechanical coupled creep behavior of Boom Clay. Based on the triaxial creep test results, a nonlinear creep damage constitutive model is established for Boom Clay. At the same time, the relationship between creep damage and creep strain is developed. The parameters for creep damage constitutive model are obtained from the triaxial creep test results. Taking ABAQUS as a platform, programming UMAT subroutine, the subroutine was verified by simulating the triaxial creep test. The results show that the developed creep damage constitutive model can describe the nonlinear creep damage process very well.
     (7) Based on the achievements of long-term behavior of Boom Clay,3D numerical analysis on stability of tunnels in HADES has been conducted. Comparison between the numerical results and the field measurements has been done, which shows that the variation law of pore water pressure and convergence of the tunnel after excavation is nearly the same as what we obtained from monitoring.
引文
[1]井兰如,冯夏庭.放射性废物地质处置中主要岩石力学问题[J].岩石力学与工程学报,2006,25(4):833-841.
    [2]Savage D. The scientific and regulatory basis for the geological disposal of radioactive waste[M]. Chichester: John Wiley and Sons,1995.
    [3]Geohydrological research in relation to radioactive waste disposal in an argillaceous formation: J Hydrol V109, N3/4, Aug 1989, P267-285.
    [4]Witherspoon, P.A. Geological problems in radioactive waste isolation-second worldwide review.1996.
    [5]F. Bernier, M. Demarche, J. Bel. The belgian demonstration programme related to the disposal of high level and long lived radioactive waste: achievements and future works. WM'04 Conference, February 29-March 4,2004, Tucson, AZ WM-4324.
    [6][法]M.Panet,廖孟杨译.地下工程中随时间变化的变形[z].隧道译丛,1983,(2):9-17.
    [7]张社道.隧道工程设计中的若干岩石力学问题[J].世界隧道,1995,(4):2-11.
    [8]Z.Chen, M.L.Wang, T.Lu. Study of Tertiary Creep of Rock Salt[J]. J.of Engineering Mechanics, 1997, (1):77-82.
    [9]E.Z.Lajtai, R.H.Schmidtke, L.P.Bielus. The effect of water on the Time-dependent Deformation and Fracture of a Granite[J]. Int.J.Rock Mech.Min.Sci.&Geomech Abstr.1987,24(4):247-255.
    [10]刘雄.岩石流变学概论[M].北京:地质出版社.1994.
    [11]金丰年.岩石的非线性流变[M).南京:河海大学出版社,1998,10.
    [12]章根德,何鲜,朱维耀.岩石介质流变学[M].北京:科学出版社,1999,6.
    [13]ChunheYang, J.J.K.Daemen, Jian-Hua Yin. Experimental investigation of creep behavior of salt rock[J]. Int.J. Rock.Mech.Min.Sci.1999,36(3):233-242.
    [14]Maarnini E, Bringoli M. Creep behaviour of a weak rock: experimental characterization[J]. Int.J.Rock.Mech.Min.Sci.1999,36(1):127-138.
    [15]张有天,周维垣.岩石高边坡的变形与稳定[M].北京:中国水利水电出版社,1999.
    [16]Li Yongsheng, Xia Caichu. Time-dependent tests on intact rocks in uniaxial compression[J]. Int.J. Rock.Mech.Min.Sci. and Geomech.Abstr.2000,37(3):467-475.
    [17]Martin.PJ.Schopefr, Gernold Zuluaf. Starin-dependent rheology and the memory of Plasticine[J]. Tectonophysics,2002,354(1/2):85-99.
    [18]J.Slizowski, L.Lankof. Salt-mudstones and rock-salt suitabilities for radioactive-waste Storage systems: rheological Properties[J]. Applied Energy,2003,75(1/2):137-144
    [19]Kazuhiko Miura, Yoshikai Okui, Hideyuki Horii. Micromechanics-based prediction of Creep failure of hard rock for long-term safety of high-level radioactive waste disposal system[J]. Mechanics of Materials,2003,35(3/6):587-601.
    [20]Anthur, J R F. Inherent anisotropy in a sand[J]. Geotechnique,1972,22(1):115-128.
    [21]Anthur, J R F. Induced anisotropy in a sand[J]. Geotechnique,1977,27(1):1-30.
    [22]张学民.岩石材料各向异性特征及其对隧道围岩稳定性影响研究.中南大学.博士学位论文.2007.
    [23]Ribacchi, R. Rock Stress Measurements in Anisotropic Rock Masses. Field Measurements in Rock Mechanics,1977,1 Kovari.K.
    [24]Lekhnitskii S. G. Theory of Elasticity of an Anisotropic Body, Mir publishers Moscow,1981.
    [25]Costin LS. Damage mechanics in the post failure regime. Mech Mater 1985,4:149-160.
    [26]Roberts G, Grampin S. Shear wave polarizations in a hot dry rock geothermal reservoirs anisotropic effects of fractures[J]. INT J Rock Mech Min Sci and Geomech Abstr,1986,23: 291-302.
    [27]陈卫忠,朱维申,李术才.节理岩体断裂损伤耦合的流变模型及其应用[J].水利学报,1999,12:33-34.
    [28]李九红,杨菊生.岩体损伤-弹塑性非线性有限元分析[J].岩石力学与工程学报,2000,19(6):707-711.
    [29]哈秋舱.三峡工程永久船闸陡高边坡各向异性卸荷岩体力学研究[J].岩石力学与工程学报,2001,20(5):603-618.
    [30]刘斌,席道瑛,葛宁洁,王宝善.不同围压下岩石中泊松比的各向异性[J].地球物理学报,2002,45(6):880-890.
    [31]周辉,邵建富,冯夏庭.岩石细观统计渗流模型研究(Ⅰ):理论模型[J].岩土力学,2004,25(2):169-173.
    [32]周辉,邵建富,冯夏庭等.岩石细观统计渗流模型研究(Ⅱ):实例分析[J].岩土力学,2006,27(1):123-126.
    [33]Shao J F, Zhou H, Chau K T. Coupling between anisotropic damage and permeability variation in brittle rocks[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2005,29(12):1231-1247.
    [34]李军,陈勉,柳贡慧.岩石力学性质正交各向异性实验研究[J].西南石油学院学报,2006,28(5):50-56.
    [35]付志亮,高延法,宁伟,许进鹏.含油泥岩各向异性蠕变研究[J].采矿与安全工程学报,2007,24(2):353-356.
    [36]周建军,周辉,邵建富.脆性岩石各向异性损伤和渗流耦合细观模型[J].岩石力学与工程学报,2007,26(2):368-373.
    [37]胡大伟,朱其志,周辉,邵建富,冯夏庭.脆性岩石各向异性损伤和渗透性演化规律研究[J].岩石力学与工程学报,2008,27(9):1822-1827.
    [38]Jaeger JC. Shear failure of anisotropic rocks[J]. Geology Magazine,1960,97:65-72.
    [39]Duveau G, Shao JF. A modified single discontinuity theory for the failure of highly stratified rocks[J]. International Journals of Rock Mechanics& Mining Science,1998,35(6):807-813.
    [40]Hoek E, Brown ET. Underground excavation in rock. London:Institution of Mining and Metallurgy,1980,157-162.
    [41]Hill R. The mathematical theory of plasticity[M]. Oxford:Oxford University Press,1950.
    [42]Pariseau WG. Plasticity theory for anisotropic rocks and soils[A]. Proceedings of the 10th Symposium on Rock Mechanics(AIME)[C],1972,267-95.
    [43]Cazacu O, Cristescu ND, Shao JE Henry JP. A new failure criterion for transversely isotropic rocks[J]. International Journals of Rock Mechanics & Mining Science,1998,35(4-5):130.
    [44]Nova R. The failure of transversely isotropic rocks in triaxial compression[J]. International Journals of Rock Mechanics & Mining Science Geomechanics Abstract,1980,17:325-32.
    [45]Tien YM, Kuo MC. A failure criterion for transversely isotropic rocks[J]. International Journals of Rock Mechanics & Mining Science,2001,38:399-412.
    [46]Tien YM, Tsao PF. Preparation and mechanical properties of artificial transversely isotropic rock. International[J]. Journals of Rock Mechanics & Mining Science,2000,37(6):1001-1012.
    [47]席道瑛,陈林.砂岩的变形各向异性[J].岩石力学与工程学报,1995,14(1):49-58.
    [48]李同林,煤岩层水力压裂造缝机理分析[J].天然气工业,1997,17(4):53-56.
    [49]章根德,朱维耀.岩土介质横观各向同性的模拟.力学进展,1998,28(4):499-508.
    [50]薛松涛,陈镕,秦岭,陈竹昌.横观各向同性层状场地的动力边界条件[J].岩石力学与工程学报,2001,20(1):65-69.
    [51]刘卡丁,张玉军.层状岩体剪切破坏面方向的影响因素[J].岩石力学与工程学报,2002,21(3):335-339.
    [52]梁正召,唐春安,李厚祥,徐涛,杨天鸿.单轴压缩下横观各向同性岩石破裂过程的数值模拟[J].岩土力学,2005,26(1):57-62.
    [53]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999,12
    [54]陈宗基.地下巷道长期稳定性的力学研究[J].岩石力学与工程学报,1982,1(1):1-19.
    [55]E.Hoek, E.T.Brown.岩石地下工程[M].北京:冶金工业出版社,1986.
    [56]Langer M. Rheological behavior of rock masses[A]. In:Proc.of 4th, cong. Of Int.Soci.Rock Mech[C]. [s.1.]:[s.n.],1979.
    [57]Tan Tjong-ki, KangWen-fa. Lock in stress, creep and dilatancy of rocks and constitutive equation. Rock Mechnaics,1980,13:5-22.
    [58]陈宗基.关于岩石变形的基本偏微分方程[J].岩石力学与工程学报.1984,3(1)
    [59]David Griggs. Creep of rocks[J]. Journal of geology,1939,24:225-251.
    [60]N.D.Cristescu, U.Hunsche. Time effects in rock mechanics. Jone Willey & Sons Ltd,1998.
    [61]Shao J.F., Bederiat M., Schroeder Ch. Elasto-viscoplastic modelling of a porous chalk. Mechanics Research Communications,1994,21(1):63-75.
    [62]A.Dahou, J.F.Shao, M.Bederiat. Experimental and numerical investigations on transient creep of porous chalk. Mechanics of Materials,1995,21:147-158.
    [63]E.Maranini, M.Brignoli. Creep behaviour of a weak rock:experimental characterization[J]. Int.J.Roek Mech. Mine. Sci.,1999,36:127-138.
    [64]Fujii Y, Kiyama T. Circumferential strain behaviour during creep tests of brittle rocks[J]. Int.J.Roch Mech.Mine Sci.,1999,6:323-337.
    [65]Mariacristina Bonini, Giovanni Barla, Marco Barla. Characterisation studies of Tectonised Clay Shales and implications in the excavation of large size tunnels. ISRM 2003-Technology roadmap for rock mechanics, South African Institute of Mining and Metallurgy,2003.
    [66]M.Gase-Barbier, S.Chanchole, P.Beerst. Creep behaviour of Bure clayey rocklJ]. Applied Clay Science,2004,26:449-450.
    [67]Geraldine Fabre, Frederic Pellet. Creep and time-dependent damage in argillaceous rocks. International Journal of Rock Mechanics & Mining Sciences,2006,43:950-960.
    [68]J.Sulem, H.Ouffroukh. Shear banding in drained and undrained triaxial tests on a saturated sandstone:Porosity and permeability evolution. International Journal of Rock Mechanics & Mining Sciences,2006,43:292-310.
    [69]Y.Jia, X.C.Song, GDuveau, K.Su, J.F.Shao. Elastoplastic damage modelling of argillite in partially saturated condition and application. Physics and Chemistry of the Earth,2007,32: 656-666.
    [70]A.Abou-Chakra, Guery, F.Cormery, J.F.Shao, D.Kondo. A micromechanical model of elastoplastic and damage behavior of a cohesive geomaterial. International Journal of Solids and Structures, 2008,45:1406-1429.
    [71]孙钧.岩石力学在我国的若干进展[J].西部探矿工程,1999,11(1):1-5.
    [72]张芳枝,陈晓平,吴煌峰,黄国怡.风化泥质软岩变形特性及邓肯模型参数的试验研究[J].岩土力学,2003,24(4):610-613.
    [73]许宝田,阎长虹,许宏发.三轴试验泥岩应力-应变特性分析[J].岩土工程学报,2004,26(6):863-865.
    [74]封志军,周德培,周应华,王毅敏.红层软岩三轴应力-应变全过程试验研究.路基工程.2005,123(6):32-35.
    [75]周应华,周德培,封志军.三种红层岩石常规三轴压缩下的强度与变形特性研究[J].工程地质学报.2005,13(4):477-480.
    [76]李荣,孟英峰,罗勇,韩林.泥页岩三轴蠕变实验及结果应用.西南石油大学学报,2007,29(3):57-59.
    [77]李永盛.单轴压缩条件下四种岩石的蠕变和松弛试验研究[J].岩石力学与工程学报,1995,14(1):39-47.
    [78]杨淑碧,徐进,董孝璧.红层地区砂泥岩互层状斜坡岩体流变特性研究]J].地质灾害与环境保护,1996,7(2):12-24.
    [79]缪协兴,陈至达.岩石材料的一种蠕变损伤方程[J].固体力学学报,1995,(1):343-346.
    [80]邓广哲,朱维申.岩体裂隙非线性蠕变过程特性与应用研究[J].岩石力学与工程学报,1998,17(4):358-365.
    [81]任建喜.单轴压缩岩石蠕变损伤扩展细观机理TC实时试验[J].水利学报,2002,(1):10-11.
    [82]杨春和,陈锋,曾义金.盐岩蠕变损伤关系研究[J].岩石力学与工程学报,2002,21(11):1602-1604.
    [83]朱合华,叶斌.饱水状态下隧道围岩蠕变力学性质的试验研究[J].岩石力学与工程学报,2002,21(12):1791-1796.
    [84]巫德斌,徐卫亚,朱珍德,刘世君.泥板岩流变试验与粘弹性本构模型研究[J].岩石力学与工程学报,2004,23(8):1242-1246.
    [85]万玲,彭向和,杨春和,郭开元.泥岩蠕变行为的实验研究及其描述.岩土力学,2005,26(6):924-928.
    [86]周翠英,邓毅梅,谭祥韶,刘祚秋.饱水软岩力学性质软化的试验研究与应用[J].岩石力学 与工程学报,2005,24(1):33-38.
    [87]郭富利,张顶立,苏洁,肖丛苗.地下水和围压对软岩力学性质影响的试验研究[J].岩石力学与工程学报,2007,26(11):2324-2332.
    [88]孙钧.岩石流变力学及其工程应用研究的若干进展[J].岩石力学与工程学报,2007,26(6):1081-1 106.
    [89]唐立强,谭英杰,郑贵.泥岩本构方程的研究[J].哈尔滨工程大学学报,2004,25(1):90-93.
    [90]刘合,王秀喜.大庆油田泥岩粘弹性本构方程及套管受力计算[J].中国科学技术大学学报,2005,35(1):118-123.
    [91]黄小兰,刘建军,杨春和,何翔.考虑泥岩软化特性的油藏渗流场与地应力场耦合分析[J].西安石油大学学报,2007,22(2):48-51.
    [92]林元华,曾德智,施太和,杜仁德.软岩层引起的套管外载计算方法研究[J].岩石力学与工程学报,2007,26(3):538-543.
    [93]马占国,兰天,潘银光,马继刚,朱发浩.饱和破碎泥岩蠕变过程中孔隙变化规律的试验研究[J].岩石力学与工程学报,2009,28(7):1447-1454.
    [94]齐明山.大变形软岩流变性态及其在隧道工程结构中的应用研究.同济大学.博士学位论文.2006.
    [95]郝庆泽.试验领域的进一步扩展[J].试验技术与试验机,1992,32(3):6-7.
    [96]赵仁义.岩石蠕变试验仪器的研制[J].试验技术与试验机.1992,32(3):11-14
    [97]周火明,郝庆泽,钟作武,胡建敏.RLW-2000岩石三轴流变试验系统研制[J].矿山压力与项板管理,2005,3:55-57
    [98]陈卫忠,于洪丹,王晓全,贾善坡,郝庆泽,黄胜.双联动软岩渗流-应力耦合流变仪的研制[J].岩石力学与工程学报,2009,28(11):2176-2183.
    [99]邓金根,黄荣樽.200MPa,200℃高温高压三轴岩石蠕变仪的研制[J].岩石力学与工程学报,1993,12(1):63-69.
    [100]陈沉江,潘长良,王文星.软岩流变的一种新的试验研究方法[J].力学与实践,2002,24(4):42-45.
    [101]齐明山,徐正良,崔勤,宁佐利.风化破碎类花岗岩三轴流变试验研究[J].地下空间与工程学报,2007,3(5):915-917.
    [102]范庆忠,高延法.软岩蠕变特性及非线性模型研究[J].岩石力学与工程学报,2007,26(2):391-396.
    [103]侯宏江,沈明荣.岩体结构面流变特性及长期强度的试验研究[J].岩土工程技术,2003,6(6):324-326.
    [104]杨圣奇.岩石流变力学特性的研究及其工程应用.河海大学博士学位论文.2006.
    [105]LI Y S, XIA C C. Time-dependent tests on intact rocks in uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,2000,37(3): 467-475.
    [106]葛修润,任建喜,蒲毅彬,马巍,孙红.岩土损伤力学宏细观试验研究.科学出版社,2004.
    [107]吴紫汪,马巍.冻土单轴蠕变过程中结构变化的CT动态监测[J].冰川冻土,1996,18(4):306-311.
    [108]吴紫汪,马巍,蒲毅彬.冻土蠕变过程中结构的CT分析[J].CT理论与应用研究,1995,4(3):31-34.
    [109]蔡美峰.岩石力学与工程[M].北京:科学出版社,2002.
    [110]BoukhmaV GN, Chnada MW. Three process of brittle crystalline rock creep[J]. Int. J. Rock Mech. Min. Sci.&Geomeeh. Absrt,1995,32(4):325-335.
    [111]金丰年,蒲奎英.关于粘弹性模型的讨论[J].岩石力学与工程学报,1995,14(4):335-361.
    [112]王来贵,何峰,刘向峰.岩石试件非线性蠕变模型及其稳定性分析[J].岩石力学与工程学报,2004,23(10):1640-1642.
    [113]刘光廷,胡显,陈凤岐等.软岩多轴流变特性及其对拱坝的影响[J].岩石力学与工程学报,2004,23(8):1237-1241.
    [114]JF Shao, Y Jia, D Kondo, et al. A coupled elastoplastic damage model for semi-brittle materials andextension to unsaturated conditions[J]. Mechanics of Materials,2006,38:218-232.
    [115]Sekiguchi H. Theory of undrained creep rupture of normally consolidated clay based on elasto-viscoplasticity [J]. Clays and Foundation.1984.24(11:129-147
    [116]Sekiguchi H.. Rheoiogicai cnaracteristics or clays [A]. Proceedings of the 9th ICSMFE,1977, Tokyo:289-292.
    [117]Vermeer P A, Stolle D F E, Bonnier P G.. From the classical theory of secondary compression to modern creep analysis [J]. Proc.9th Int. Conf. Comp. Meth. and Adv [A]. Geomech. Wuhan, China,1998,4(SPP):2469-2478.
    [118]詹美礼,钱家欢,陈绪禄.软土流变特性试验及流变模型[J].岩土工程学报,1993,15(3):54-62.
    [119]袁静,龚晓南,刘兴旺等.软土各向异性三屈服面流变模型[[J].岩土工程学报,2004,26(1):88-94.
    [120]Kavazanjian Jr E, Mitchell J K. Time-dependent deformation behavior of clay. Journal of Geotechnical Engineering [J].1980,106 (GT6):611-631.
    [121]Borja R I, Kavaznjian E. A constitutive model for the stress-strain-time behaviour of wet clays [J]. Geotechnique,1985,35:283-298.
    [122]廖红建,俞茂红.粘性土的弹粘塑性本构方程及其应用[J].岩土工程学报.1998,20(2):41-44.
    [123]Z.P. Bazant, et al. Endochronic theory of Inelasticity and Failure of Concrete[J]. J.of Eng.Mech.Div., ASCE.1976,102(EM4):701-755.
    [124]陈沅江,潘长良等.基于内时理论的软岩流变本构模型[J].中国有色金属学报,2003,13(3):736-742.
    [125]薛新华.岩土介质流-固耦合非线性损伤力学理论与数值分析.博士学位论文.2008
    [126]凌建明.节理裂隙岩体损伤力学研究中的若干问题[J].力学进展,1994,25(2):257-264.
    [127]Costin L S. Time-dependent Damage and creep of brittle rock. Damage Mechanics and Continuum Modeling[M]. New York: ASCE,1985.
    [128]Dragon, A and Mroz, Z. A continuum model for plastic-brittle behavior of rock and concrete[J]. Int J.Engng.Sci,1979,17:121-137.
    [129]Franziskonis G., Desai C. and Arizona T. Elasto-plastic model with damage for strain soften geomaterials[J]. Acta.Mech.1987,68:151-170.
    [130]Kachanov M. On modeling of anisotropic damage in elastic-brittle materials-a brief review[C].In Proc ASME Winter Annual Meeting (Edited by A.S. D. Wang and G.K.Haritos, Boston, MA), 1987,99-105.
    [131]Chaboche J L. Continuum damage mechanics:Part Ⅰ-General Concepts, Part Ⅱ-Damage Growth, Crack Initiation, and Crack Growth[J]. J. Applied Mech,1988,55:55-72.
    [132]Krajcinovic D. Damage mechanics[J]. Mechanics of Materials,1989,8:117-197.
    [133]Ju J W, et al. Efective elastic moduli of two-dimensional brittle solids with interacting microcracks, Part Ⅰ:Basic formulations. Part Ⅱ:Evolutionary damage modeIsASME[J]. J.of Appl.Mech,1994,61:349-366.
    [134]Lubarda V A, Drajcinovic D et al. Damage tensors and crack density distribution[J]. Int J.Solids Struct,1995,30:2859-2877.
    [135]Lubarda V A, Drajcinovic D et al. Damage model for brittle elastic solids with unequal tensile and compressive strength[J]. Engineering Fracture Mechanics,1994,49(5):681-699.
    [136]Stumvoll M and Swoboda G. Deformation behavior of ductile solids containing anisotropic damage[J]. J. Eng.Mech. ASCE,1993,119:1331-1352.
    [137]Swoboda G et al. Damage propagation model and its application to rock engineering problems[C]. In Proceedings of the Eighth International Congress on Rock Mechanics(Edited by T.Fujii) Tokyo, Japan,1995,159-164.
    [138]Swoboda G, et al. An energy-based damage model of geomatetials-Ⅰ.formulation and numerical results. Ⅱ. Deduction of damage evolution laws[J]. Int.J.of Solids and Structures,1999,36:1 719-1755.
    [139]Grabinsky Mw, Kamaleddine Ff. Numerical analysis of an extended arrangement of periodic discrete fractures [J]. Int J Rock Mech Min Sci.1997,34(3):533-542.
    [140]Homand-Etienne F, Hoxha D, Shao Jf. A continuum damage constitutive Iawfor brittle rocks [J]. Comput Geosci,1998,22(2):135-151.
    [141]Carmelier J. Optimal estimation of gradient damage parameters from localization phenomena in quasi-brittle materials [J]. Mech Cohes-Frict Mater.1999,4(1):1-16.
    [142]Dragon A, Halm D, Desoyer Th. Anisotropic damage in quasibrittle solids:modelling computational issues and applications [J]. Comput Methods Appl Mech Eng,2000,183(3): 331-352.
    [143]Jessell M, Bons P, Evans L, Barr T, St.Uwe K. Elle: the numerical simulation of metamorphic and deformation microstructures [J]. Comput Geosci,2001,27(1):17-30.
    [144]谢和平.分形几何及其在岩土力学中的应用[J].岩土工程学报,1992,14(1):14-24.
    [145]凌建明,孙钧.脆性岩石的细观裂纹损伤及其时效特征[J].岩石力学与工程学报,1993,11(4):378-383.
    [146]谢和平,鞠杨,黎立云.基于能量耗散与释放原理的岩石强度与整体破坏准则[J].岩石力学与工程学报,2005,24(17):3003-3010.
    [147]谢和平,彭瑞东,鞠杨.岩石变形破坏过程中的能量耗散分析[J].岩石力学与工程学报,2004,23(21):3565-3570
    [148]Zhang wohua, Valliappan S. Analysis of random anisotropic damage mechanics Problems of rock mass, Part Ⅰ--Probabilistic simulation[J].Int. J. Rock Mech. and Rock Engg.,1990,23:91-112.
    [149]周维垣,杨延毅.节理岩体损伤断裂模型及验证[J].岩石力学与工程学报,1991,10(1):43-54.
    [150]李广平,陶振宇.真三轴条件下的岩石细观损伤力学模型[J].岩土工程学报,1995,17(1):24-31.
    [151]朱珍德.裂隙岩体非稳定渗流场与损伤场的研究.同济大学.1997.
    [152]江涛.基于细观力学的脆性岩石损伤一渗流祸合本构模型研究:[D].南京:河海大学,2006.
    [153]曹文贵,李翔.岩石损伤软化统计本构模型及参数确定方法的新探讨[J].岩土力学,2008,29(11):2952-2956.
    [154]李树春,许江,杨春和,蒲毅彬,马巍.循环荷载下岩石损伤的CT细观试验研究[J].岩石力学与工程学报,2009,28(8):1604-1609.
    [155]葛修润,任建喜,蒲毅彬,马巍,孙红.岩土损伤力学宏细观试验研究.科学出版社.2004.
    [156]M. Aubertin, D. E. Gill, and B. Ladanyi. Constitutive Equations With Internal State Variables for the Inelastic Behavior of Soft Rocks. Appl. Mech. Rev.1994,47(6), Part 2:9-106
    [157]K. S. Chan.,S. R. Bodner, A. F. Fossum. A Damage Mechanics Treatment of Creep Failure in Rock Salt. International Journal of Damage Mechanics,1997,6(2):121-152.
    [158]陈智纯,缪协兴.岩石流变损伤方程与损伤参量测定[J].煤炭科学技术,1994,22(8):34-36.
    [159]缪协兴,陈至达.岩石材料的一种蠕变损伤方程[J].固体力学学报,1995,16(4):343-346.
    [160]凌建明.岩体蠕变裂纹起裂与扩展的损伤力学分析方法[J].同济大学学报,1995,23(2):141-146.
    [161]孙钧,凌建明.三峡船闸高边坡岩体的细观损伤及长期稳定性研究[J].岩石力学与工程学报,1997,16(1):1-7.
    [162]肖洪天,强天弛,周维垣.三峡船闸高边坡损伤流变研究及实测分析[J].岩石力学与工程学报.1999,18(5):497-502.
    [163]肖洪天,周维垣,杨若琼.岩石裂纹流变扩展的细观机理分析[J].岩石力学与工程学,1999,18(6):623-626.
    [164]秦跃平,王林,孙文标,王磊.岩石损伤流变理论模型研究[J].岩石力学与工程学报.2002,21(增2):2291-2295.
    [165]陈卫忠,王者超,伍国军,杨建平,张保平.盐岩非线性蠕变损伤本构模型及其工程应用[J].岩石力学与工程学报,2007,26(3):467-472.
    [166]A.A.Becker, T.H. Hyde, W.Sun,P. Andersson.Benchmarks for finite element analysis of creep continuum damage mechanics. Computational Materials Science,2002,25:34-41.
    [167]A.H. Zhao, C.L.Chow. An efficient explicit algorithm for damage-coupled viscoplastic fatigue model. Finite Elements in Analysis and Design,2007,43:681-690.
    [168]朱昌星,阮怀宁,朱珍德,罗润林.岩石非线性蠕变损伤模型的研究[J].岩土工程学报.2008,30(10):1510-1513.
    [169]王来贵,赵娜,何峰,李鑫.岩石蠕变损伤模型及其稳定性分析.煤炭学报.2009.34(1):64-68.
    [170]Murakami, Nobutato Ohno. A continuum theory of creep and creep damage. In:Ponter A R S,Hayhurst D R, ed. Proc.3rd IUTAM Symposium on creep in structure Springer-Verlag,1980, 422-443.
    [171]Murakami S. Nortion of continuum damage mechanics and its application anisotropic creep theory. J.Eng. Mater.Tech.,1983,105:99-105.
    [172]S.Murakami Mechanical modeling of material damage. Journal of AppliedMechanics, Transactions of the ASME 55, (1988) 280-286.
    [173]王芝银.隧道围岩粘弹塑性损伤有限元分析的统一模式[J].西安公路交通大学学报,1997,17(2):32-35.
    [174]李九红,杨菊生.岩体损伤-弹塑性非线性有限元分析[J].岩石力学与工程学报,2000,19(6):707-711.
    [175]J.F.Shao, J.W.Rudnicki. A microcrack-based continuous damage model for brittle geomaterials. Mechanics of Materials,2000,32:607-619.
    [176]J.F.Shao, N.Ata, O.Ozanam. Study of desaturation and resaturation in brittle rock with anisotropic damage. Engineering Geology,2005,81:341-352.
    [177]J.F.Shao, Y.Jia, D.Kondo, A.S.Chiarelli.A coupled elastoplastic damage model for semi-brittle materials and extension to unsaturated conditions.Mechanics of Materials,2006,38:218-232.
    [178]J.J.Zhou, J.F.Shao, W.Y.Xu. Coupled modeling of damage growth and permeability variation in brittle rocks. Mechanics Research Communications,2006,33:450-459.
    [179]卢应发,刘德富,吴延春,邵建富.岩石与水相互作用的正交各向异性损伤数值模拟[J].岩石力学与工程学报,2007,26(2):323-330.
    [180]P.A.威瑟斯宠.世界放射性废物地质处理.北京:原子能出版社,1999.
    [181]I. Wemaere, J. Marivoet, S. Labat. Hydraulic conductivity variability of the Boom Clay in north-east Belgiumbased on four core drilled boreholes. Physics and Chemistry of the Earth, Parts A/B/C, Volume 33, Issue null, Pages S24-S36.
    [182]Alain Sneyers, Geert Volckaert, Bernard Neerdael. The Belgian research, development and demonstration program:On the geological disposal of long-lived and high-level radioactive waste and spent fuel in a clay formation:status and Trends. WM'01 Conference, February 25-March 1, 2001, Tucson, AZ.
    [183]B.Neerdael, J.P. Boyazis. The Belgium underground research facility: Status on the demonstration issues for radioactive waste disposal in clay. Nuclear Engineering and Design,176 (1997):89-96.
    [184]F. Bernier, M. Demarche. The Belgian Demonstration Programme For The Disposal Of High-Level And Long-Lived Radioactive Waste. TOPSEAL2006 Tractions international topical meeting. Olkiltoto information center, Finland,17-20 Semptember 2006.
    [185]Wileveau, Y., Bernier, F.. Similarities in the hydro-mechanical response of callovo-oxfordian clay and Boom Clay during gallery excavation, Physics and Chemistry of the Earth (2008), doi: 10.1016/j.pce.2008.10.033.
    [186]Decleer, J., Viane, A. and Vandenberghe, N. (1983). Mineralogical characteristics of the Rupelian Boom Clay. Clay Minerals 18,1-10.
    [187]Bernier, F., G. Volckaert, E. Alonso, and M. Villar. Suction-controlled experiments on Boom Clay: Engineering Geology,1997, v.47, p.325-338.
    [188]Al Mukhtar, M., Belanteur, N., Tessier D. and Vanapalli, S. K. The fabric of a clay soil under controlled mechanical and hydraulical stress states. Applied Clay Science,1996,11:99-115.
    [189]P. DELAGE*, T.-T. LE*, A.-M. TANG*, Y.-J. CUI* and X.-L. LI*. Suction effects in deep Boom Clay block samples. Ge'otechnique,2007,57(1):239-244.
    [190]ONDRAF/NIRAS. Apercu technique du rapport SAFIR 2. Safety assessment and feasibility interim report 2. Publication NIROND 20001-05 F.2001, p.280.
    [191]Belanteur, N., Tacherifet, S. and Pakzad., M. Etude des comportements mecanique, thermo-mecanique et hydro-mecanique des argiles gonflantes et non gonflantes fortement compactees. Revue Francaise de Geotechnique.1997,78:31-50.
    [192]Dehandschutter, B., Vandycke, S., Sintubin, M., Vandenberghe, N. and Wouters, L. Britlle fractures and ductile shear bands in argillaceous sediments:inferences from Oligocen Boom Clay (Belgium). Journal of Structural Geology,2005,27:1095-1112.
    [193]C. Coll, F. Collin, J.P. Radu, P. Illing, Ch. Schroeder & R. Charlier. Long term behaviour of Boom Clay (Influence of clay viscosity on the far field pore pressure distribution).
    [194]Bernier, F., Li, X.L., Bastiaens, W., Ortiz, L., Van Geet, M., Wouters, L., Frieg, B.2007. Final report of cooperation project with Ulg.
    [195]Bernier F., "Fracturation and Self-Healing Process in Clays - The SELFRAC project" -Proceedings of the European Cimmission conference, EURADWASTE'04, Luxembourg,29 March - 1 April, EUR 21027,2004
    [196]Van Marcke, P., Bastiaens, W., Excavation induced fractures in a plastic clay formation: Observations at the HADES URF, Struct. Geol. (2010), doi:10.1016/j.jsg.2010.01.010
    [197]Van Geet, M., Bastiaens, W., Ortiz, L., Self-Sealing Capacity of Argillaceous Rocks:Review of Laboratory Results Obtained from the SELFRAC Project, Physics and Chemistry of the Earth (2008), doi:10.1016/j.pce.2008.10.063
    [198]M. Van Geet, G. Volckaert, W. Bastiaens, N. Maes, E. Weetjens,X. Sillen, B. Vallejan, A. Gens. Efficiency of a borehole seal by means of pre-compacted bentonite blocks. Physics and Chemistry of the Earth 32 (2007) 123-134.
    [199]Marijke Huysmans, Arne Berckmans, Alain Dassargues. Effect of excavation induced fractures on radionuclide migration through the Boom Clay (Belgium). Applied Clay Science 33 (2006) 207-218.
    [200]Wim Bastiaens, Frederic Bernier, Xiang Ling Li. SELFRAC:Experiments and conclusions on fracturing, self-healing and self-sealing processes in clays. Physics and Chemistry of the Earth 32 (2007)600-615.
    [201]Blumling P., Desrues, J., Viaggiani, G., Coll, C., Chanchole, S., De Greef, V., Hamza, R., Malinsky, L., Vervoort, A., Vanbrabant, Y., Debecker, B., Verstraelen, J., Govaerts, A., Wevers, M.,Labiouse, V., Escoffier, S., Mathier, J.F., Gastaldo, L.,BUhler, Ch.,2006. Fractures and Self-Healing within the Excavation Disturbed Zone in Clays. EC report on the SELFRAC project.
    [202]A.Vervoort, W. Bastiaens, F. Bernier, S. Chanchole, C. Coll, B. Debecker, V. De Greef, J. Desrues, S. Escoffier, L. Gastaldo, A. Govaerts, R. Hamza, V. Labiouse, X. Ling Li, L. Malinsky, J.-F. Mathier, L. Ortiz, Y. Vanbrabant, M. Van Geet, J. Verstraelen, G. Viaggiani, M. Wevers. Fractures And Self-Healing Within The Excavation Disturbed Zone In Clays. Laboratory tests (results and interpretation).2005. Deliverable 2. EC report on the SELFRAC project.
    [203]袁聚云,徐超,赵春风.土工试验与原位测试.同济大学出版社.2004.
    [204]Ruena Cordero Mendoza. Determination of Lateral Stresses in Boom Clay using a Lateral Stress oedomerter. International institute for Geo-Information Science and earth observation Enschede, The Netherlands.
    [205]Sultan, N., Delage, P. and Cui, Y. J., Temperature effects on the volume change behaviour of Boom Clay[J]. Engineering Geology,2002,64(2-3):135-145.
    [206]De Bruyn, D. and Labat, S., The second phase of ATLAS:the continuation of a running THM test in the HADES underground research facility at Mol[J]. Engineering Geology,2002,64(2-3): 309-316.
    [207]Collin, F., Li, X. L., Radu, J. P. and Charlier, R., Thermo-hydro-mechanical coupling in clay barriers[J]. Engineering Geology,2002,64(2-3):179-193.
    [208]Thomas, H. R. and Cleall, P. J., Inclusion of expansive clay behaviour in coupled thermo hydraulic mechanical models[J]. Engineering Geology,1999,54(1-2):93-108.
    [209]Thermal Impact on the Damaged Zone Around a Radioactive Waste Disposal in Clay Host Rocks. Deliverable 2. State Of The Art On THMC.
    [210]Skempton A W. The pore pressure coefficient A and B[J]. Geotechnique, London, England. 1954,4(4):143-147.
    [211]于洪丹,陈卫忠,郭小红,贾善坡,曹俊杰,梁巍.厦门海底隧道强风化花岗岩力学特性研究[J].岩石力学与工程学报,2010,29(2):381-387.
    [212]MESRI Q Adachi K, Ullrich C.R. Pore-pressure response in rock to undrained change in all-round stress[J]. Geotechnique,1976,26:317-330.
    [213]Dropek et al. The influence of pore pressure on the mechanical properties of Kayenta sandstone[J]. J.Geophys,1978,83(6):2817-2824.
    [214]曾国熙.正常固结黏性土不排水剪切的归一化性状[J].软土地基学术讨论会论文集.北京:水利出版社.1980:13-26.
    [215]卢应发,郑俊杰,柴华友.典型岩石和土的Skempton系数特征[J].岩石力学与工程学报,2005,24(11):1847-1851.
    [216]B. Dehandschutter, S. Vandycke, M. Sintubin, N. Vandenberghe, P. Gaviglio,J.-P. Sizun, L. Wouters. Microfabric of fractured Boom Clay at depth: a case study of brittle-ductile transitional clay behaviour. Applied Clay Science 26 (2004) 389-401.
    [217]Matej Gedeon, Isabelle Wemaere, Jan Marivoet. Regional groundwater model of north-east Belgium. Journal of Hydrology (2007) 335,133-139.
    [218]贾善坡.Boom Clay渗流应力损伤耦合流变模型、参数反演与工程应用.中国科学院研究生院(武汉岩土力学研究所)博士学位论文.2009.
    [219]B. Dehandschutter, S. Vandycke, M. Sintubin, N. Vandenberghe, L. Wouters. Brittle fractures and ductile shear bands in argillaceous sediments:inferences from Oligocene Boom Clay (Belgium). Journal of Structural Geology.2005,27:1095-1112.
    [220]Shao, H., Schuster, K., Sonnke, J., Brauer, V., EDZ Development in indurated clay formations-in-situ borehole measurements and coupled HM-Modelling, Physics and Chemistry of the Earth (2008), doi:10.1016/j.pce.2008.10.031
    [221]Isabelle Wemaere, Jan Marivoet, Serge Labat, Rudi Beaufays, and Tom Maes. Mol-1 borehole (April-May 1997). Core manipulations and determination of hydraulic conductivities in the laboratory. Geological disposal of high-level and long lived radioactive waste. Waste & Disposal Department SCK·CEN, Mol, Belgium
    [222]W. Bastiaens, M. Demarche.The Extension Of The URF Hades:Realization And Observations. WM'03 Conference, February 23-27,2003, Tucson, AZ
    [223]Hegtermans, B.M.H.. The Measurement Of Anisotropic Horizontal Stresses In The Pot Clay. Faculty Of Applied Earth Science, TU Delft, Delft.2003.
    [224]李广信.高等土力学.清华大学出版社.2004.
    [225]史述昭,杨光华.岩体常用屈服函数的改进[J].岩土工程学报,1987,9(4):60-69.
    [226]A.J.Abbo, S.W.Sloan. A smooth hyperbolic approximation to the Mohr-Coulomb yield criterion[J]. Computers & Slrucrure,1995,54(3):427-441.
    [227]Lemaitre J. Damage Measurement[J]. Engineering Fracture Mechanics.1987.28(6):643-661.
    [228]Chow, CL, and TJ Lu. On Evolution Laws of Anisotropic Damage[J]. Engineering Fracture Mechanics,1989,34:679-701.
    [229]赵锡宏,孙红,罗冠威.损伤土力学.同济大学出报社.2000.
    [230]Keeratikan Piriyakul. Anisotropic Stress-Strain Behavior of Belgian Boom Clay in the Small Strain Region. Doctoral dissertation.2006.
    [231]Pickering, D.,1970. Anisotropic elastic parameters for soil[J]. Geotechnique,20(3):271-276.
    [232]Raymond, G.,1970. Discussion: Stress and displacements in a cross-anisotropic soil[J]. by L. Barden. Geotechnique,20(4):456-458.
    [233]陈卫忠,于洪丹,郭小红等.厦门海底隧道海域风化槽段围岩稳定性研究[J].岩石力学与工程学报,2008,27(5):873-884.
    [234]梁巍,朱光仪,郭小红.厦门东通道海底隧道土建工程设计[J].中南公路工程,2006,31(1):99-103.
    [235]黄文熙.土的工程性质[M].北京:水利电力出版社,1983.
    [236]周秋娟,陈晓平.软土次固结特性试验研究[J].岩土力学,2006,27(3):404-408.
    [237]Tayor D W, Merchant W. A theory of day consolidation accounting for secondary compressions[J]. Journal of Mathematics and Physics,1940,19(23):167-185.
    [238]陈宗基.固结及次固结时间效应的单维问题[J].土木工程学报,1958,5(1):1-3.
    [239]张军辉,缪林昌,黄晓明.连云港软黏土次固结变形研究[J].水利学报.2005,36(1):116-119.
    [240]陈晓平,朱鸿鹄,张芳枝,张波.软土变形时效特性的试验研究[J].岩石力学与工程学报,2005,24(12):2142-2148.
    [241]卢廷浩.土力学.河海大学出版社.2002.
    [242]陈沉江.岩石流变的本构模型及其智能辨识研究.中南大学.博士学位论文.2003.
    [243]]De Bruyn, D., Neerdael, B., Gonze, P., Rossion, J. P. and Rousset, G., Time dependent behaviour of the Boom Clay at great depth--An application to the construction of a waste disposal facility, Computers and Geotechnics,1987,3(1):3-20.
    [244]Giraud, A. and Rousset, G., Time-dependent behaviour of deep clays[J]. Engineering Geology, 1996,41(1-4):181-195.
    [245]许宏发.软岩强度和弹模的时间效应研究[J].岩石力学与工程学报.1997,16(3):246-251.
    [246]杨彩红,李剑光.非均匀软岩蠕变机理分析[J].采矿与安全工程学报,2006,23(4):476-479.
    [247]汤士杰,陈沅江,潘长良,王文星.岩石蠕变破坏过程的自组织特征分析[J].勘察科学技术.24(1):15-20.
    [248]尤明庆,邹友峰.关于岩石非均质性与强度尺寸效应的讨论[J].岩石力学与工程学报,2000,19(3):391-395.
    [249]尤明庆,苏承东,申江.岩石材料的非均质性与动态参数[J].辽宁工程技术大学学报(自然科学版),2001,20(4):492-494.
    [250]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997:237-242.
    [251]Barnichon, J.D., Volckaert, G.,2003. Observations and predictions of hydromechanical coupling effects in the Boom Clay, Mol Underground Research Laboratory, Belgium, Hydrogeology Journal, Volume 11, Issue 1, Feb 2003, Pages 193-202.
    [252]Ortiz, L., Van Geet, M., to be published. Self-healing capacity of argillaceous rocks:review of laboratory results obtained from the SELFRAC project. Proceedings of the 2nd international meeting on Clays in Natural & Engineered Barriers for Radioactive Waste Confinement, Tours, France, March 14-18 2005.
    [253]Debecker B., Vervoort A. and Wevers,2003, Self-healing in clay formations, studied by acoustic emission. In proceedings of European Commission CLUSTER, Luxembourg,3-5 Nov.2003, pp 261-265.
    [254]施斌,王宝军,宁文务.各向异性粘性土蠕变的微观力学模型[J].岩土工程学报,1997,2003.19(3):7-13.
    [255]Christian Bergins. Kinetics and mechanism during mechanical/thermal dewatering of lignite. Fuel, 2003,82(4):355-364.
    [256]Christian Bergins. Mechanical/thermal dewatering of lignite. Part 2:A rheological model for consolidation and creep process. Fuel,2004,83 (3):267-276.
    [257]Terzaghi K. Erdbaumechanik auf bodenphysikalischer Grundlage.Wien:Deutike,1925.
    [258]Shirato M, Murase T, Iwata M. Deliquoring by expression-theory and practice. In:Wakeman RJ, editor. Progress in filtration and separation,1986,4:181-287.
    [259]殷建华,Jack I, Clark.土体与时间相关的一维应力-应变性状、弹粘塑性模型和固结分析[J].岩土力学,1994,15(3):65-78.
    [260]吴晓辉,Magnan.一维固结模型及应用[J].中国铁道科学,1995,16(3):97-106.
    [261]Wahls H. Analysis of primary and secondary consolidation. J Soil Mech Found Div, ASCE 1962, 88(SM6):207-31.
    [262]陈沅江,潘长良,曹平,王文星.软岩流变的一种新力学模型[J].岩土力学,2003,24(2):209-214.
    [263]王芝银,李云鹏.岩体流变理论及其数值模拟.科学出版社.2008.
    [264]刘新荣,钟祖良.用于核废料处理的岩盐溶腔力学特性[J].重庆大学学报(自然科学版),2007,30(10):77-81.
    [265]核废料地质贮存介质粘土岩的三维各向异性热-水-力耦合数值模拟[J].岩石力学与工程学报,2007,26(3):493-500.
    [266]李香绫,Bernier Frederic1, Bel Johan.比利时高放废物处置库设计及与基岩和工程屏障体系的热-水-力性状的相关研究[J].岩石力学与工程学报,2006,25(4):681-692.
    [267]F.bernier, Xiangling Li. Fracture and self-healing within the excavation disturbed zones in clays. Euridice,2002.
    [268]W.Bastiaens, F.bernier. The extension of the HADES underground research facility at Mol, Belgium. Euridice,2003.
    [269]C.Coll, F.Collin, J.P.Radu. The report of long term behaviour of Boom Clay. Euridice,2006.
    [270]F.bernier, Xiangling Li. The report of clay instrumentation. Euridice,2006.
    [271]BEL J. and DEBOCK C., GIOVANNINI A., "Alternative Deep Repository designs for Disposal of Very High Level Waste in Belgium", WM'04 Conference, Tucson, AZ, February 29-March 4, 2004.
    [272]Bastiaens, W., Bernier, F.,2006.25 years of underground engineering in a plastic clay formation: The HADES underground research laboratory. In: Bakker, K.J. et al. (Eds.), Geotechnical aspects of undergroundconstruction in soft ground. Taylor and Francis Group, London, pp.795-801.
    [273]Bastiaens, W., Bernier, F., Buyens, M., Demarche, M., Li, X.L., Linotte,J.M., Verstricht, J.,2003. The connecting gallery - The extension of the HADES underground research facility at Mol, Belgium. EURI-DICE Report 03-294. EIG EURIDICE, Mol.
    [274]Alain Sneyers, Geert Volckaert, Bernard Neerdael. The Belgian Research, Development And Demonstration Program On The Geological Disposal Of Long-Lived And High-Level Radioactive Waste And Spent Fuel In A Clay Formation:Status And Trends. WM'01 Conference, February 25-March 1,2001, Tucson, AZ
    [275]白矛,刘天泉.孔隙裂隙弹性理论及应用导论.北京:石油工业出版社,1999.
    [276]杨天鸿,唐春安,徐涛等.岩石破裂过程的渗流特性-理论、模型与应用.北京:科学出版社,2004.
    [277]张巍,肖明,范国邦.大型地下洞室群围岩应力-损伤-渗流耦合分析[J].岩土力学,2008,29(7):1813-1818.
    [278]郭少华.混凝土蠕变损伤分析模型[J].西安建筑科技大学.1995,27(3):299-303.
    [279]周升平,朱剑桥.混凝土非线性粘弹性损伤本构方程.长沙交通学院学报.1992,8(1):63-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700