用户名: 密码: 验证码:
锚杆对断续节理岩体的加固作用机理及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构面是岩体工程区别于土木工程其他领域一个显著特征,它将岩石材料切割成不连续介质,使问题变得复杂。尤其是节理和裂隙等微小结构面,遍布于天然岩体中,在工程中最为常见。而这其中,又尤以断续节理最为普遍,岩体的失效破坏往往是由于赋存于其中的原生节理在荷载作用下产生新生裂纹,并且逐渐扩展、连通,使岩桥贯通造成的。因此,研究断续节理岩体的相关问题具有实际意义。锚杆作为广泛应用于岩体工程中的一种加固构件,其锚固效果是显著的,但其加固机理尚不十分明确,尤其锚杆对断续节理岩体的加固机理更是少有研究。本文以断续节理岩体和锚杆为研究对象,通过室内试验和理论分析手段,研究了锚杆对断续节理岩体的加固机理。
     首先,基于大尺寸的加锚断续节理岩体试件,开展了室内单轴压缩试验。选定节理长度、间距、连通率及倾角等四个断续节理几何参数作为变量,研究了锚杆对于不同裂隙分布形式的岩体的加固效果。对比分析了试件在加锚前后的裂纹扩展规律以及试件破坏模式的差异,研究了锚杆加固断续节理岩体的规律。基于层次分析方法,分别以裂隙岩体的峰值强度增量和弹性模量增量为目标函数,研究了断续节理几何参数对锚固效应的敏感性,得出了影响锚固效果的敏感因素顺序。
     分析了断续节理岩体在压缩荷载作用下,岩桥的受力状态,研究了其在不同应力水平下的贯通模式。根据不同的破坏模式,分别分析了在岩桥贯通前,断续节理岩体的剪切抗力。岩桥贯通后,原生节理与新生裂纹构成剪切滑动面,该滑动面可看做粗糙节理面,在考虑了节理的剪胀作用后,得出了此时岩体的残余剪切抗力表达式。
     当节理发生剪切错动变形时,穿过节理面的锚杆也会随之发生变形,进而锚杆杆体内产生内力,该内力反作用于节理,即对节理产生锚固作用。首先在考虑了锚杆在节理面附近发生的拉伸变形、剪切变形以及局部转动变形的基础上,研究了随节理变形而变化的锚杆锚固作用规律。当锚杆在节理面附近处于弹性状态时,根据试验结果,认为锚杆变形后的的形状为双曲余弦函数,推导得出了弯矩和轴力共同作用下,在锚杆某点达到弹性极限时,杆体内的剪切力和轴向力。当锚杆在节理面附近处于塑性状态时,锚杆在继续增大的轴向力作用下发生大变形。假设锚杆材料服从Tresca屈服准则,得出了锚杆失效时的杆体内的剪切力和轴向力。求剪力和轴力的合力,并将合力向节理的切向与法向分解,得出了考虑锚杆变形的加锚节理模型。
     将断续节理岩体的力学特性与锚杆对节理的加固机理相结合,并考虑到锚杆对岩桥的加固作用,得出了加锚断续节理岩体锚固模型。岩桥贯通前,岩石材料变形较小,此时假设锚杆与岩石变形协调,得到了加锚岩石的等效弹性模量,并假设此时穿过节理的锚杆处于弹性小变形阶段,建立了在此条件下加锚断续节理岩体的剪切抗力模型。岩桥贯通后,认为此时锚杆处于塑性大变形阶段,结合断续节理的几何特点,并考虑到锚杆对粗糙节理的加固作用,推导得出了此时锚杆对断续节理岩体的加固模型。
     将所建立的理论模型应用于Sarma法中,用于计算边坡的安全系数。在计算条块的抗滑力时,首先根据应力条件判断岩桥破坏形式,再根据岩桥贯通破坏形式计算岩桥出现拉剪复合破坏或剪切破坏时滑动面上的抗滑力,对于加锚工况还可以考虑锚杆的锚固效应。工程应用结果表明,考虑了断续节理岩体细观破坏及锚固效应的安全系数计算方法更贴近客观实际。
Structure plane is a characteristic of rock engineering. The rock was cut to discontinuous medium by the structure planes and the situation was changed to be complicated. Joints and fissures prevalently exist in nature. When the joint cut the rock material in a non-persistent way, the rock becomes intermittent jointed rock mass, which is the commonest formation in rock engineering. The failure of intermittent jointed rock mass was usually caused by propagation of secondary crack and perforation of rock bridge. So, the study of this kind of rock mass is practically meaningful. Rock bolt is widely used and achieves great efficiency in practice. However, the anchoring mechanism was not very clear so far, especially to the intermittent jointed rock mass. Hence, in this thesis, the laboratory tests and theoretical analysis were adopted to study the reinforcement mechanism of rock bolt to intermittent jointed rock mass.
     Firstly, the uniaxial tests were performed based on bolted intermittent jointed rock mass sample in large scale. In Chapter 2, the joint length, spacing, persistence and dip angle were selected as variables to study the reinforcement effect of rock bolt to jointed rock mass. The differences of crack propagation and failure mode of rock mass between bolted case and unbolted case were comparatively analyzed. Based on the experimental phenomena and data, some primary reinforcement rules were drawn. Then, AHP method was chosen to study the sensitivity of joints geometry parameters to reinforcement effect. The sequences of sensitivity were obtained, regarding peak strength increment and deformation modulus increment as target function respectively.
     In Chapter 3, firstly, the stress state of rock bridge was studied when the rock mass were under two-dimension compression stress. The perforation mode of rock bridge was analyzed and summarized to two categories under different stress level. Then, the shear resistance of rock mass was obtained for each perforation mode. After rock bridge failure, the original joint and secondary crack form a clear shear plane, which could be regarded as a rough joint. Considering the dilation, the shear resistance of rock mass in this situation was derived.
     When shear deformation happened in joints, the rock bolts that run through the joints also deformed. The force mobilized in the bolts reacts to the joints and performs reinforcement effect. So, the deformation of rock bolts was an important respect to the reinforcement mechanism. In Chapter 4, the anchoring effect to joint was studied considering the bolt tensile deformation, shear deformation and rotation near joint face. In elastic domain, the evolution of the mobilized forces in the bolt as a function of the displacements is obtained with the help of a variation formula. The deformed shape of the bolt is described by a hyperbolic cosine function. The forces at the elastic limit are calculated by a plastic hinge formation criterion, established by taking into consideration the interaction of the bending moment and axial force. In plastic domain, it is assumed that the axial force mobilized in the bolt continues to increase. The displacements are calculated using an axial rigidity secant which progressively decreases as a function of the plastic lengthening of the bolt. At failure, the mobilized forces in the bolt flush with the joint and the shear force based on the Tresca criterion. The displacements are calculated by a large deformation formula assuming that the length delimited by the plastic hinges attains the material's failure strain. With the orientation and the intensity of the mobilized resultant force in the bolt, one can determine the reinforced joint's shear strength by dissociating the bolt cohesion and the confinement effect.
     In Chapter 5, the results obtained in Chapter 3 and Chapter 4 were combined. Considering the anchoring effect of bolt to rock bridge, the shear resistance of bolted intermittent jointed rock mass were derived. Before the perforation of rock bridge, the equivalent deformation modulus of bolted rock material was obtained assuming the deformation compatibility between bolt and rock. Moreover, the shear resistance of bolted rock mass was calculated in this case, combining the result of Chapter 4. After the perforation of rock bridge, the anchoring effect of bolt to joints was applied to the jointed rock mass based on the geometry characteristic of intermittent joints. Taking the reinforcement of bolt to rough joint into consideration, the anchoring effect of bolt to the rock mass was derived in this situation.
     The theoretical model was applied in the Sarma method and used to calculate the safty factor for the slope. Firstly, the failure mode of rock bridge was judged according to the stress state. The shear resistance of slice was calculated based on shear-tensile failure or shear failure mode of rock bridge. The reinforcement effect could be considered in anchoring case. The total resistance divided by the total driving force equaled to the safty factor. The engineering application showed that the method adopted in this thesis achieved good results.
引文
[1]蔡美峰,何满朝,刘东燕.岩石力学与工程[M],北京:科学出版社,2002.
    [2]孙广忠.岩体结构力学[M].北京:科学出版社,1988.
    [3]孙玉科.边坡岩体稳定性分析[M].北京:科学出版社,1988.
    [4]高磊.矿山岩石力学[M].北京:机械工业出版社,1987.
    [5]朱维申,李术才,陈卫忠.节理岩体破坏机理和锚固效应及工程应用[M].北京:科学出版社,2002.
    [6]Windsor CR.Rock reinforcement systems.International Journal of Rock Mechanics and Mining Sciences,1997;Vol.34(6):919-951.
    [7]Hoek E,Brown ET.Underground Excavations in Rock.The Institution of Mining and Metallurgy,London,1980.
    [8]Hoek E.Practical Rock Engineering.www.rockscience.com,2007.
    [9]程良奎,范景伦,韩军,等.岩土锚固[M].北京:中国建筑工业出版社,2002.
    [10]Kilic A,Yasar E,Atis CD.Effect of bar shape on the pull-out capacity of fully-grouted rockbolts.Tunnelling and Underground Space Technology,2003;Vol.18(1):1-6.
    [11]Franklin JA,Dusseault MB.Rock Engineering.Mc Graw-Hill Publishing Company,New York,1989.
    [12]Huang Z.Stabilizing of rock cavern roofs by rock bolts.Doctoral thesis,Trondheim:Norwegian University of Science and Technology,2001.
    [13]Fairhurst C,Singh B.Roof Bolting in Horizontally Laminated Rock.Engineering Mining Journal.1974;February,80-90.
    [14]Snyder V.W.1984.Analysis of beam building using fully grouted roof bolt.Proc.of the Int.Symposium on Rock Bolting(edited by O.Stephansson).A.A.Balkema.Brookfield.pp.187-194.
    [15]Roko,RO,Daemen JJK.A laboratory study of bolt reinforcement influence on beam building,beam failure and arching in bedded mine roof.Proceedings of International Symposium on Rock Bolting,Abisko Sweden,1983,205-217.
    [16]陈玉祥,王霞,刘少伟.锚杆支护理论现状及发展趋势探讨[J].西部探矿工程,2004,(10):155-157.
    [17]曾华明,李祺,岳向红.张拉荷载下砂浆锚固岩石锚杆的力学分析[J].岩石力学与工程学报,2006,Vol.25(Supp.2):3982-3986.
    [18]陈妙峰,唐德高,周早生,等.锚杆锚固机理试验研究[J].建筑技术开发,2003,Vol.30(4):21-23.
    [19]陈荣,杨树斌,吴新生,等.砂固结预应力锚杆的室内试验及锚固机理分析[J].岩土工程学报,2000,Vol.22(2):235-237.
    [20]刘伟平,扶名福,罗小艳.岩体灌浆锚杆的非局部摩擦分析[J].力学季刊,2005,Vol.26(2):280-285.
    [21]荣冠,朱焕春,周创兵.螺纹钢与圆钢锚杆工作机理对比试验研究[J].岩石力学与工程学报,2004,Vol.23(3):469-475.
    [22]王成.岩锚界面及其端部附近应力场奇异行为的弹性力学分析[J].岩石力学与工程学报,2004,Vol.23(6):946-951.
    [23]杨强,任继承,张浩.岩石中锚杆拔出试验的数值模拟[J].水利学报,2002,12:68-73.
    [24]杨松林,荣冠,朱焕春.混凝土中锚杆和在传递机理的理论分析和现场实验[J].岩土力学,2001,Vol.22(1):71-73.
    [25]张季如,唐保付.锚杆荷载传递机理分析的双曲函数模型[J].岩土工程学报,2002,Vol.24(2):188-192.
    [26]许明,张永兴,阴可.砂浆锚杆的锚固及失效机理研究[J].重庆建筑大学学报,2001,Vol.23(6):10-15.
    [27]朱焕春,荣冠,肖明,等.张拉荷载下全长粘结锚杆工作机理试验研究[J].岩石力学与工程学报,2002,Vol.21(3):379-384.
    [28]张友葩,高永涛,吴顺川.预应力锚杆锚固段长度的研究[J].岩石力学与工程学报,2005,Vol.24(6):980-986.
    [29]Hyett AJ,Bawden WF,Reichert RD.The effect of rock mass confinement on the bond strength of fully grouted cable bolts.International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1992;Vol.29(5):503-524.
    [30]Hyett AJ,Bawden WF,Macsporran GR,et al.A constitutive law for bond failure of fully-grouted cable bolts using a modified hoek cell.International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1995;Vol.32(1):11-36.
    [31]Hyett AJ,Moosavi M.,Bawden WF.Load distribution along fully grouted bolts,with emphasis on cable bolt reinforcement,International Journal for Numerical and Analytical Methods in Geomechanics,1996;Vol.20:517-544.
    [32]Farmer IW.Stress distribution along a resin grouted rock anchor.International Journal of Rock Mechanics and Mining Sciences &Geomechanics Abstracts,1975;Vol.12(11):347-351.
    [33]Karanam UMR,Dasyapu SK.Experimental and numerical investigations of stresses in a fully grouted rock bolts.Geotechnical and Geological Engineering,2005;Vol.23(3):297-308.
    [34]Cai Y,Esaki T,Jiang Y.A rock bolt and rock mass interaction model.International Journal of Rock Mechanics and Mining Sciences,2004;Vol.41(7):1055-1067.
    [35]曹文贵,方祖烈.模拟锚杆支护的大变形锚杆单元模型之研究[J].中国矿业,1999,Vol.8(3):43-46.
    [36]刘波,陶龙光,李先炜,等.锚杆拉剪大变形应变分析[J].岩石力学与工程学报,2000,Vol.19(3):334-338.
    [37]宋宏伟.非连续岩体中锚杆横向作用的新研究[J].中国矿业大学学报,2003,Vol.32(2):161-164.
    [38]伍佑伦,王元汉,许梦国.拉剪条件下节理岩体中锚杆的力学作用分析[J].岩石力学与工程学报,2003,Vol.22(5):769-772.
    [39]杨松林,徐卫亚,黄启平.节理剪切过程中锚杆的变形分析[J].岩石力学与工程学报,2004,Vol.23(19):3268-3273.
    [40]章青,卓家寿.加锚岩体的界面应力元模型[J].岩土工程学报,1998,Vol.20(5):50-53.
    [41]赵赤云,薛玺成.模拟岩体结构面锚固试验[J].水利水电技术,1999,(12):39-41.
    [42]Ferrero AM.The shear strength of reinforced rock joints.International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1995;Vol.32(6):595-605.
    [43]Indraratna B,Nutalaya P.Reinforcement of planar discontinuities in elastic rock.Geotechnical and Geological Engineering,1992;Vol.10(2):135-140.
    [44]Stimpson B.An analytical method for determining shear stiffness of an inclined grouted bolt installed across an open discontinuity.International Journal of Mining and Geological Engineering,1987;Vol.5(3):299-305.
    [45]Grasselli G.3D Behaviour of bolted rock joints:experimental and numerical study.International Journal of Rock Mechanics and Mining Sciences,2005;Vol.42(1):13-24.
    [46]Spang K,Egger P.Action of fully-grouted bolts in jointed rock and factors of influence.Rock Mechanics and Rock Engineering,1990;Vol.23(3):201-229.
    [47]邹志晖,汪志林.锚杆在不同岩体中的工作机理[J].岩土工程学报,1993,Vol.15(6):71-79.
    [48]郭映龙,叶金汉.节理岩体锚固效应研究[J].水利水电技术,1992,(1):41-44.
    [49]叶金汉.裂隙岩体的锚固特性及其机理[J].水利学报,1995,(9):68-74.
    [50]朱维申,张玉军,任伟中.系统锚杆对三峡船闸高边坡岩体加固作用的块体相似模型试验研究[J].岩土力学,1996,Vol.17(2):1-6.
    [51]朱维申,任伟中,张玉军,等.开挖条件下节理围岩锚固效应的模型试验研究[J].岩土力学,1997,Vol.18(1):1-7.
    [52]任伟中,朱维申,张玉军,等.开挖条件下节理围岩特性及其锚固效应模型试验研究[J].实验力学,1997,Vol.12(4):513-519.
    [53]侯朝炯,勾攀峰.巷道锚杆支护围岩强度强化机理研究[J].岩石力学与工程学报,2000,Vol.19(3):342-345.
    [54]康天合,郑铜镖,李焕群.循环荷载作用下层状节理岩体锚固效果的物理模拟研究[J].岩石力学与工程学报,2004,Vol.23(10):1724-1729.
    [55]邓华锋,李建林,王兴霞,等.系统锚杆对边坡岩体加固效果的等效变形参数研究[J].三峡大学学报(自然科学版),2005,Vol.27(1):34-36.
    [56]吴德海,曾祥勇,邓安福,等.单锚锚杆加固碎裂结构岩体模型试验研究[J].地下空间,2003,Vol.23(2):158-225.
    [57]杨松林.锚杆抗拔机理及其在节理岩体中的加固作用[D].武汉:武汉大学博士学位论文,2001.
    [58]杨松林,朱焕春,刘祖德.加锚层状岩体的本构模型[J].岩土工程学报,2001,Vol.23(4):427-430.
    [59]Littlejohn GS,Bruce DA.Rock Anchors:State-of-the-art Part Ⅰ,Design,Ground Engineering,Essex:Foundation Publications Ltd.,England,1975.
    [60]Dunham RK.Anchorage tests on strain gauged resin bonded bolts.Tunnels & Tunnelling,1976;Vol.8(6):73-76.
    [61]Ballivy G,Benmokrane B,Aitcin PC.Role du scellement pour les ancrages actifs scelles au rocher.Revue Canadienne de Geotechnique,1986;Vol.23(4):481-489.
    [62]Kilic A,Yasar E,Celik AG.Effect of grout properties on the pull-out load capacity of fully grouted rock bolt.Tunnelling and Underground Space Technology,2002;Vol.17(4):355-362.
    [63]Freeman TJ.The Behaviour of fully bonded rock bolts in the Kielder experimental tunnel.Tunnels and Tunnelling,1978;10:37-40.
    [64]Sun X.Grouted rock bolts used in underground engineering in soft surrounding rock or highly stressed regions.International Symposium on Rock Bolting,A.A.Balkema,1984;93-100.
    [65]Li C,Stillborg B.Analytical models for rock bolts.International Journal of Rock Mechanics and Mining Sciences,1999;Vol.36(8):1013-1029.
    [66]Hofbeck JA,Ibrahim IO,Mattock AH.Shear transfer in reinforced concrete,American Concrete Institute Journal,1969;129-128.
    [67]Dulacska H.Dowel action of reinforcement crossing cracks in concrete.American Concrete Institute Journal,1972;Vol.69(12):754-757.
    [68]Di Prisco M.Sul comportamento a taglio delle barre d'armatura nel calcestruzzo.L'azione di spinotto:Risultati sperimentali e modellazione matematica.Doctoral thesis,Politecnico di Milano,Italia,1989.
    [69] Bjurstrom S. Shear strength of hard rock joints reinforced by grouted untensioned bolts. Proceedings 3rd International Congress on Rock Mechanics, Denver, 1974, Vol.11B, 1194-1199.
    [70] Haas CJ. Shear resistance of rock bolts. Transactions AIME, 1976; Vol.260, 32-41.
    [71] Haas CJ. Analysis of rock bolting to prevent shear movement in fractured ground. Mining Engineering, 1981; Vol.33(6): 698-704.
    [72] Hibino S, Motijama M. Effects of rock bolting in jointy rock. Proceedings of International Symposium on Weak Rock, Tokyo, Japan, 1981; 1057-1062.
    [73] Dight PM. A case study of the behaviour of a rock slope reinforced with fully grouted rock bolts. Proceedings of International Symposium on Rock Bolting, Abisko, Sweden, 1983; 523-538.
    [74] Ludvig B. Shear tests on rock bolts. Proceedings of International Symposium on Rock Bolting, Abisko, Sweden, 1983; 1 13-123.
    [75] Egger P, Fernandes H. Nouvelle presse triaxiale-Etude de modeles discontinus boulonnes. Proceedings of 5~(th) ISRM Congress, Melbourne, Australia, 1983.
    [76] Yoshinaka R, Sakaguchi S, Shimizu T, et al. Experimental study on the rock bolts reinforcement in discontinuous rocks. Proceedings of 6~(th) ISRM Congress, Montreal, Canada, 1987; Vol.1, 1329-1332.
    [77] Egger P, Zabuski L. Behaviour of rough bolted joints in direct shear tests. Proceedings of 7~(th) ISRM Congress, Aachen, Germany, 1991; 1285-1288.
    [78] 葛修润,刘建武. 加锚节理面抗剪性能研究[J]. 岩土工程学报, 1988; Vol.10(1): 8-19.
    [79] Fuller PG, Cox RHT. Rock reinforcement design based on control of joint displacement. Proceedings of 3rd Australian Tunnelling Conference, Sydney, Australia, 1978; 28-35.
    [80] Azuar, JJ, Panet M. Le comportement au cisaillement des aciers passifs dans les massifs rocheux. Industrie Minerale, Mine 4-78, Document S.I.M., B5, Boulonnage Tome 2, 1980; 93-98.
    [81] Dight PM. Improvements to the stability of rock walls in open pit mines. Doctoral thesis, Monash University, Australia, 1983.
    [82] Dight PM. The theoretical behaviour of full contact bolts subject to shear and tension. Proceedings of International Symposium on the Role of Rocks Mechanics, zacatecas, 1985; 215-222.
    [83] Aydan O. The stabilization of rock engineering structures by rockbolts. Doctoral thesis, Nagoya University, Japan, 1989.
    [84] Jewell RA, Pedley MJ. Analysis for soil reinforcement with bending stiffness. Jounral of Geotechnical Engineering, ASCE, 1992; Vol.118(10): 1505-1528.
    [85] Amadei B, Goodman RE. A 3-D constitutive relation for fractured rock masses. Proceedings of International Symposium on the Mechanical Behaviour of Structured Media, Ottawa, Canada, 1981; 249-268.
    [86] Gerrard CM. Joint compliances as a basis for rock mass properties and the design of supports. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1982; Vol.19(6): 285-305.
    [87] Gerrard CM, Pande GN. Predicted response of two cases of reinforcement jointed rock. Proceedings of International Symposium on Rock Bolting, Abisko, Sweden, 1983; 47-53.
    [88] Gerrard CM, Pande GN. Numerical modelling of reinforced jointed rock masses-I. theory. Computers and Geotechnics, 1985; Vol.1(1): 293-318.
    [89] Larsson H, Olofsson T. Bolt action in jointed rock. Proceedings of International Symposium on Rock bolting, Abisko, Sweden, 1983; 33-46.
    [90] Larsson H, Olofsson T, Stephansson O. Reinforcement of jointed rock mass- a non linear continuum approach. Proceedings of International Symposium on Fundamentals of Rocks Joints, Bjorkliden, Sweden, 1985; 567-577.
    [91] Chappell BA. Rock bolts and shear stiffness in jointed rock masses. Journal of the soil Mechanics and Foundation Diversion, ASCE, 1989; Vol.1 15(2): 179-197.
    [92]Wullschlager D Natau O.The bolted rockmass as an anisotropic continuum-Material behaviour and design suggestion for rock cavities.Proceedings of 6~(th) ISRM Congress,Montreal,Canada,1987;1321-1324.
    [93]杨延毅,王慎跃.加锚节理岩体的损伤增韧止裂模型研究[J].岩土工程学报,1995,Vol.17(1):9-17.
    [94]李术才.加锚断续节理岩体损伤模型及应用[D].武汉:中国科学院武汉岩土力学研究所博士学位论文,1996.
    [95]朱维申,何满潮.复杂条件下围岩稳定性与岩体动态施工力学[M].北京:科学出版社,1996.
    [96]陈洪凯,唐红梅,王蓉,等.锚固岩体参数的等效方法研究[J].应用数学和力学,2001,Vol.22(8):862-868.
    [97]杨双锁,张百胜.锚杆对岩土体作用的力学本质[J].岩土力学,2003,Vol.24(Supp):279-282.
    [98]杨双锁,康立勋.锚杆作用机理及不同锚固方式的力学特征[J].太原理工大学学报,2003,Vol.34(5):540-543.
    [99]张玉军,刘谊平.锚固正交各项异性岩体的本构关系和破坏准则[J].力学学报,2002,Vol.34(5):812-818.
    [100]Einstein HH,Hirschfeld RC.Model studies on mechanics of jointed rock.Journal of the soil Mechanics and Foundation Diversion,ASCE,1973;Vol.99(SM3):229-248.
    [101]Indraratna B,Kaiser PK.Analytical model for the design of grouted rock bolts,International Journal for Numerical and Analytical Methods in Geomechanics,1990;Vol.14(4):227-251.
    [102]Yamachi H,Hirai M,Nakata M et al.Mechanical behaviour of jointed rock masses supported with rock bolts.Proceedings of International Symposium on Rock at Great depth,Pau,France,1989;497-504.
    [103]Egger P,Pellet F.Behaviour of reinforced jointed models under multiaxial loadings.Proceedings of International Symposium on Rock Joints,Loen,Norway,1990;191-194.
    [104] Egger P, Pellet F. Strength and deformation properties of reinforced jointed media under true triaxial conditions. Proceedings of 7~(th) ISRM Congress, Aachen, Germany, 1991; 215-220.
    
    [105] 朱维申,任伟中. 船闸边坡节理岩体锚固效应的模型试验研究,岩石力学与工程学报,Vol.20(5):720-725, 2001.
    
    [106] Coates DF, Yu YS. Three dimensional stress distributions around a cylindrical hole and anchor. Proceedings of 2nd ISRM Congress, Belgrade, Yugoslavia, 1970; 175-182.
    [107] Ballivy G, Benmokrane B, Lahoud A. Methode integrale de dimensinnement d'ancrages cimentes dans le rocher. Proceedings of 6~(th) ISRM Congress, Montreal, Canada, 1987; 761-768.
    [108] Yoshinaka R, Sakaguchi S, Shimizu T, et al. Reinforcing effect of rockbolt in rock joint model. Proceedings of International Symposium on Engineering in Complex Rock Formations, Beijing, China, 1986; 922-928.
    [109] Heuze FE, Goodman RE. Finite element and physical model studies of tunnel reinforcement in rock. Proceedings of 15~(th) U.S. Symposium on Rock Mechanics, 1973; 37-67.
    [110] St John CM, Van Dillen DE. Rockbolts: A new representation and its application in tunnel design. Proceedings of 24~(th) U.S. Symposium on Rock Mechanics, 1983; 13-25.
    [111] Swoboda G, Marence M. FEM modeling of rockbolts. Proceedings of Computer Methods and Advances in Geomechanics, Cairns, Australia, 1991; 1515-1520.
    [112] Swoboda G, Marence M. Numerical modeling of rock bolts in intersection with fault system. Proceedings of Numerical models in Geomechanics, NUMOG IV, Swansea, U.K., 1992; 729-738.
    [113] Marence M, Swoboda G. Numerical model for rock bolts with consideration of rock joint movements. Rock Mechanics and Rock Engineering, 1995; Vol.28(3): 145-165.
    [114] Egger P, Pellet F. Numerical and experimental investigations of the behaviour of reinforced jointed media. Proceedings of International Conference on Fractured and Jointed Rock Masses,Lake Tahoe,USA,1992;277-282.
    [115]Lorig LJ.A simple numerical representation of fully bonded passive rock reinforcement for hard rocks.Computers and Geomechanics,1985;Vol.1(2):79-97.
    [116]曹文贵,彭波,李红芳.砂浆锚杆的有限元模拟方法探讨[J].中南公路工程,2005,Vol.30(40):31-35.
    [117]Chen S,Qiang S,Chen S,et al.Composite element model of the fully grouted rock bolt.Rock Mechanics and Rock Engineering,2004,Vol.37(3):193-212.
    [118]Chen S,Shahrour I.Composite element method for the bolted discontinuous rock masses and its application.International Journal of Rock Mechanics and Mining Sciences,2008,Vol.45(3):384-396.
    [119]Chen S,Fu C,Shahrour I.Finite element analysis of jointed rock masses reinforced by fully-grouted bolts and shotcrete lining.International Journal of Rock Mechanics and Mining Sciences,2009,Vol.46(1):19-30.
    [120]Pande GN,Gerrard CM.The behaviour of reinforced jointed rock masses under various simple loading states.Proceedings of 5~(th) ISRM Congress,Melbourne,Australia,1983;F217-F223.
    [121]Pande GN,Beer G,Williams JR.Numerical methods in rock mechanics.John Wiley and Sons,England,1990.
    [122]李术才,王书法,朱维申.三峡右岸地下电站窑洞口围岩稳定性三维断裂损伤分析[J].岩石力学与工程学报,2001,Vol.20(5):685-689.
    [123]李术才,陈卫忠,朱维申,等.某地下电站厂房围岩稳定性及锚固效应研究[J].岩土力学,2003,Vol.24(4):510-513.
    [124]Aydan O,Kawamoto T.The stability of slopes and underground openings against flexural toppling and their stabilization.Rock Mechanics and Rock Engineering,1992;Vol.25(3):143-165.
    [125]Sharma KG,Pande GN.Stability of rock masses reinforced by passive,fully-grouted rock bolts.International Journal of Rock Mechanics and Mining Sciences & Geomechnics Abstracts,1988;Vol.25(5):273-285.
    [126]Egger P,Spang K.Stability investigations for ground improvement by rock bolts at a large dam.Proceedings of 6~(th) ISRM Congress,Montreal,Canada,1987;349-354.
    [127]Egger P.Einfluss des Post-Failure-Verhaltens von Fels auf den Tunnelausbau unter besonderer Ber(u|¨)cksichtigung des Ankerausbau.Ver(o|¨)ff.Inst.B(o|¨)den und Felsmech,no 57,Univ.Karlsruhe,Germany,1973.
    [128]Stille H,Holmberg M,Nord G.Support of weak rock with grouted bolts and shotcrete.International Journal of Rock Mechanics and Mining Sciences &Geomechanics Abstracts,1989;Vol.26(1):99-113.
    [129]Ward WH,Tedd P,berry NSM.The kielder experiment tunnel:final results.Geotechnique,1983;Vol.33(3):275-291.
    [130]Fairhurst CE,Hudson JA.单轴压缩试验测定完整岩石应力-应变曲线ISRM建议方法草案.岩石力学与工程学报,2000,Vol.19(6):802-808.
    [131]张平.裂隙介质静动应力条件下的破坏模式与局部化渐进破损模型研究.西安理工大学,博士学位论文,2004.
    [132]Barquins M,Petit JP,Maugis D,et al.Pat hand kinetics of branching from defects under uniaxial and biaxial compressive loading.International Journal of Fracture,1992;54:139-163.
    [133]何晓群,刘文卿.应用回归分析[M],北京:中国人民大学出版社,2001.
    [134]Zhang X.Shear resistance of jointed rock masses and stability calculation of rock slopes.Geotechnical and Geological Enineering,1993;Vol.11(2):107-124.
    [135]Einstein HH,Veneziano D,Baecher GB,et al.The effect of discontinuity persistence on rock slope stability.International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.1983;Vol.20(5):227-236.
    [136]Lajtai EZ.Strength of discontinuous rocks in direct shear.Geotechnique,1969;Vol.19(2):218-233.
    [137]Goodman RE,Methods of Geological Engineering in Discontinuous Rocks,West,New York,1976.
    [138]Patton FD.Multiple modes of shear failure in rock.Proc.1~(st) Congr.Int.Soc.Rock Mech.,Lisbon,1966,Vol.1:509-513.
    [139] Jaeger JC. Friction of rocks and stability of rock slopes. Geotechnique, 1971; Vol.21:97-134.
    [140] Barton N. The shear strength of rock and rock joints. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1976; Vol.13(9):255-279.
    [141] Maksimovic M. The shear strength components of a rough rock joint. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1996; Vol.33(8):769-783.
    [142] Neal BG. The plastic methods of structural analysis. Third Edition, Chapmann and Hall, London, 1977.
    [143] Pellet F. Strength and deformability of jointed rock masses reinforced by rock bolts. Doctoral thesis, Swiss Federal Institute of Technology, Switzerland, 1994.
    
    [144] 铁摩辛柯,盖莱. 弹性稳定理论[M]. 北京:科学出版社,1965
    [145] Hetenyi. Beam on elastic foundation-Theory with applications in the fields of civil and mechanical engineering, Ann Arbor-The University of Michigan Press, 1946.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700