用户名: 密码: 验证码:
南海沉积物的水合物声学特性模拟实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然气水合物是一种极具潜力的能量资源,在世界各地海洋和永冻土中都有广泛分布,我国也在南海海底和祁连山冻土带中发现了水合物。目前,地球物理勘探仍是水合物勘探和资源评价的重要手段,各种高分辨率地震调查技术被应用于获取储层的纵横波速度等参数,同时,学者们建立了多种水合物饱和度与弹性波速度之间的关系模型,以期根据获取的地震波速度能准确地预测沉积层中是否含有水合物,或估算沉积物中水合物的饱和度,从而对储层的资源量进行评估。然而,在应用过程中发现不同的理论模型在同一地区得出的结果具有很大的差别,由于缺乏实测的水合物饱和度与声波速度之间的关系数据,难以检验这些理论模型的适用性。
     利用模拟实验技术研究水合物饱和度与声波速度(Vp和Vs)的关系,在实验的基础上检验前人模型、或提出新的更为合适的模型,是一种经济而又实用的办法。因此,本文在模拟海底真实的温度、压力条件下,模拟了固结沉积物和松散沉积物中水合物的生成和分解过程,并在此过程中同时采用超声探测技术和时域反射技术(TDR)实时探测了沉积物的纵横波速度和水合物饱和度的变化情况,建立了固结沉积物和松散沉积物中声波速度和水合物饱和度(Sh)之间的关系,检验了BGTL理论(Biot-Gassmann Theory by Lee)等七种理论模型在固结沉积物和松散沉积物中的适用情况。随后,在掌握实验技术和经验的基础上,对南海沉积物的水合物声学特性进行了研究,获取了南海沉积物中水合物饱和度与声速之间的关系,并检验了BGTL理论等七种模型在南海沉积物中的适用性。
     通过上述实验研究,不仅在技术方面有所创新,而且在水合物对沉积物声学特性影响、模型及其参数的选取方面取得了一些新的认识。
     在技术方面,将弯曲元技术引进到测量含甲烷水合物松散沉积物的声学特性研究中,不仅制造了新型结构的弯曲元换能器,而且采用小波分析和频谱分析的方法提高了获取声波速度的能力,使弯曲元技术在松散沉积物实验和南海沉积物实验中得到了有效的应用。实验发现了已有的TDR技术不能用于盐度高于0.5%wt沉积物的含水量和水合物饱和度测量,通过对TDR探针进行改进,并对改进后的探针进行适当的标定,使TDR技术具有了测量(高盐分)海洋沉积物中含水量和水合物饱和度的能力。
     建立了固结沉积物中实测的纵横波速度与水合物饱和度之间的关系。对固结沉积物的水合物声学特性研究表明,相同饱和度的水合物在水合物生成过程和分解过程中对沉积物声速的影响具有一定差别。在同一饱和度下,在水合物分解过程中测量的纵波速度(或横波速度)明显高于水合物生成过程中测量的纵波速度(或横波速度)。在同一饱和度下,将生成过程中测量的纵横波速度和分解过程中测量的纵横波速度进行了平均,用平均值作为实测的纵横波速度值与水合物饱和度建立了关系。结果表明,当Sh<10%时,纵横波速度变化不明显;当Sh>10%后,纵横波速度随Sh增加而快速增大,且在10%     在引进弯曲元技术后,获取了松散沉积物中实测的纵横波速度值与水合物饱和度之间的关系。对粒径为0.09~0.125mm天然砂的水合物声学特性研究表明,在同一饱和度下,在水合物生成过程中测得的纵横波速度高于水合物分解过程中所测得的纵横波速度。用两过程中获取的纵横波速度平均值作为实测值与水合物饱和度建立了关系。结果表明,当Sh<25%时,纵横波速度增长较快,25%-60%期间增长较为缓慢,随后声速随着水合物饱和度增加又快速增长。水合物在0.09~0.125mm天然砂中生成时,可能先胶结沉积物颗粒,随后可能与沉积物颗粒呈接触关系或继续胶结沉积物颗粒生成。
     在掌握弯曲元技术和改进的TDR技术基础上,研究了南海沉积物中实测的纵横波速度与水合物饱和度之间的关系。利用弯曲元技术和改进的TDR技术,测量了水合物生成过程中南海沉积物的纵横波速度等参数随水合物饱和度的变化情况。结果表明,水合物的生成对超声信号造成了一定的影响。当Sh<14%时,超声信号随着Sh的增加而逐渐减弱;Sh>14%后,信号随Sh增加而逐渐增强。纵横波速度随Sh的增加而增大,且横波速度在Sh>14%后增长速度加快。这些现象表明,在南海沉积物中水合物可能先在孔隙流体中以微粒子的状态生成,这些微粒子对超声造成了较大的散射衰减,导致超声信号变弱;当Sh高于14%后,微粒子数量的增多使水合物聚集在一块,并与沉积物颗粒接触,从而增快了横波速度的增长。同时,微粒子的减少对超声的散射衰减变小,且水合物接触沉积物颗粒加强了沉积物骨架,使超声信号逐渐增强。
     总结上述实验,主要得到了如下认识:(1)水合物的微观分布模式是水合物对沉积物声学特性影响最为重要的因素之一,水合物胶结沉积物颗粒的分布方式对沉积物声速影响最为明显,而水合物在孔隙流体中存在的方式则对声速影响较小;(2)水合物对不同类型沉积物的声学特性具有不同影响;固结沉积物和松散沉积物的骨架受水合物的影响不同,导致水合物对沉积物声速的影响具有差异:当水合物在孔隙流体中生成时,水合物对固结沉积物中超声波传播的影响不大,但对松散沉积物中超声波的传播却造成较大的衰减;(3)沉积物粒度对含水合物松散沉积物声学特性的影响主要表现在粒度制约水合物的生成方面,在细粒沉积物中,甲烷的渗透力很弱,水合物偏向于在孔隙流体中生成,虽然对声速的影响较小,却对超声信号的影响较大;(4)南海沉积物因具有较细的粒度,增加了甲烷在孔隙流体中渗透的难度,当水合物饱和度低于一定值时,水合物偏向于在孔隙流体中生成,不会对沉积物孔隙通道造成堵塞,有利于流体的运移,因而使水合物具有进一步生成的条件,当气源供给充足时,在地质时间尺度容易形成高饱和度的水合物,这可能是南海沉积物中水合物饱和度较高的原因之一
     此外,本文在实验的基础上对BGTL理论等七种曾用于水合物饱和度预测的理论模型进行了验证,结果表明:(1)在固结沉积物中,当水合物饱和度低于40%时,利用权重方程预测的纵波速度与实测纵波速度一致,结合权重方程与BGTL中的Vp/Vs公式,预测的横波速度与实测值也较一致;当水合物饱和度大于30%时,利用BGTL理论预测的纵波速度和横波速度均与实测值一致。(2)在粒径为0.09~0.125mm的松散沉积物中,当饱和度小于90%时,权重方程预测的纵、横波速度与实测值接近;在饱和度大于20%时,BGTL理论预测的纵横波速度与实测值较为一致;等效介质理论模式B预测的纵横波速度在20%-70%间与实测值接近;伍德方程预测的纵波速度接近于实测值;K-T方程预测的速度值在饱和度~40%-~90%间与实测值一致。(3)在南海沉积物中,权重方程预测的纵波速度值与实测值结果吻合很好;伍德方程预测的纵波速度值与实测值较为接近;BGTL理论预测的纵、横波速度值与实测值比较接近。综上可得,权重方程和BGTL理论在多种沉积物中均具有较好的适用性,而且,在不同沉积物中,两模型各有其适用范围。因此,建议将权重方程与BGTL模型结合起来应用于各种类型沉积物的声波速度预测。对于权重方程中参数W和n的选择,建议通过调节W来定位无水合物时的沉积物速度,然后通过调节n值来适应实际情况;对于BGTL理论中参数G和n,建议以自由取值的方式使预测的结果适应实测值。由于仅对南海沉积物的水合物声学特性进行了单点研究,对两模型中的参数选择尚不能给出更为具体的建议。
Gas hydrates, recognized as a potential of energy resources, are distributed in oceanic seabed or permafrost all over the world. Both oceanic and permafrost gas hydrates are found respectively in South China Sea (SCS) and Qilian Mountain, China. So far, geophysical prospecting method still plays an important role in gas hydrate explorations and quantifications. Various high-resolution seismic techniques are developed to obtain elastic velocities (Vp, Vs) of gas hydrate reservoirs. Meanwhile, many velocity-models are constructed to relate elastic velocities with hydrate saturations of the hydrate-bearing sediments, with which we can predict the presence of gas hydrate in sediments, or even obtain the amount of gas hydrates. Unfortunately, it is found that the results predicted by various models are quite different. Obviously, observations on relationship between gas hydrate saturation and elastic velocities are needed to validate these models.
     Since there is rare gas hydrate saturation data in field exploration, experimental methods to obtain the relation between hydrate saturation and acoustic properties of hydrate-bearing sediments are thought to be economically and effectively. In this paper, acoustic properties of gas hydrate-bearing sediments are investigated experimentally. Gas hydrate was formed and subsequently dissociated in both consolidated sediments and unconsolidated sediments. In the whole process, ultrasonic methods and Time Domain Reflectometry (TDR) are simultaneously used to measure the acoustic properties and hydrate saturations of the host sediments, respectively. With the measured data, we verified seven velocity models (e.g. BGTL, Biot-Gassmann Theory by Lee) in predicting velocities of both consolidated and unconsolidated hydrate bearing sediments. After that, the similar experimental processes are conducted on sediments from SCS, with the results we may understand the acoustic properties of hydrate-bearing sediments in SCS, or give suggestions on the usage of various velocity-models in field gas hydrate explorations.
     Some improvements have been achieved in detecting acoustic velocities of hydrate-bearing sediments. The bender elements technique was introduced into measurement of ultrasonic waveforms of the hydrate-bearing sediments. Also, a new method (we called FFT-WT method hereafter), which combined Fast Fourier Transform (FFT) and wavelet transform (WT), is proposed to obtain both Vp and Vs of the hydrate-bearing unconsolidated sediments. Another technique improvement is made on the TDR probe. In our experiments, we found that the conventional TDR probes are not able to measure water contents of a sample when the salinity of pore fluid is higher than about 0.5%wt. A coated TDR probe was then developed to solve water content measurement problem in high salty sediments. With the coated TDR probe, water content and hydrate saturation are successfully measured in both high salty sediments and marine sediments.
     Some understandings on the acoustic properties of hydrate-bearing sediments are also gotten basing on the experiments.
     The relationship between hydrate saturations and acoustic velocities of the consolidated sediments was established basing on the experiments. For the consolidated sediments, the compressional (or shear) wave velocity measured in the hydrate-dissociation process is much higher than that measured in the hydrate-formation process at the same saturation degree. Because it's difficult to judge whether in situ gas hydrates are in the process of formation or dissociation during gas hydrate exploration, it uses the average Vp (or Vs) of the compressional (or shear) wave velocities obtained in the two processes as the measured velocity to relate with gas hydrate saturations. The result shows that acoustic velocities are insensitive to low hydrate saturations (Sh,0-~10%). However, the velocities increase rapidly with hydrate saturation when saturation is higher than 10%, especially in the range of 10-30%. This suggests that when Sh is less than 30%, the hydrate locates in the pore fluid, or partly adheres to the sediment frame. However, gas hydrate may be treated as a component within a matrix of consolidated sediments when hydrate saturation exceeds 30%. As a result, the pore throat may be blocked by the cemented hydrates and a part of pore fluid cannot convert to hydrate.
     In the unconsolidated sediments, the bender elements are successfully used in measuring both Vp and Vs of the hydrate-bearing sediments, and the relationship between gas hydrate saturation and acoustic velocities was gotten subsequently. The result shows that the compressional (or shear) wave velocity measured in the hydrate-dissociation process is much lower than that measured in the hydrate-formation process at the same saturation degree. With the average Vp (or Vs) of the compressional (or shear) wave velocities obtained in the two processes, we obtained the relationship between gas hydrate saturation and acoustic velocities of hydrate-bearing unconsolidated sediments. The result shows that Vp and Vs increase rapidly vs. hydrate saturations although they increase relatively slow in the range of saturation 25%-60%. It indicates that gas hydrate may first cement grain particles of the unconsolidated sediments, when hydrate saturation is higher, gas hydrate may contact with the sediment frame, or continue cementing sediment particles.
     The bender elements technique and the improved TDR probe were successfully used in measuring acoustic properties of hydrate-bearing sediments from SCS. As gas hydrate forming in sediments from SCS, the acoustic signals decreases at the first stage of hydrate formation (Sh, 0-14%), after that the signals increase slowly with the growth of gas hydrate. Acoustic velocities of hydrate-bearing sediments from SCS increase with hydrate saturations. Observations show that the shear wave velocity increase slowly at the first stage of hydrate formation (Sh,0-14%), after that it increase much fast with the hydrate saturation (Sh>14%). The result may reveal that gas hydrate is firstly located in the pore fluid of the SCS sediments. The small hydrate particles have significant attenuation on acoustic signals. When Sh is higher than 14%, hydrate begins to contact with the sediment frame, the attenuation decreases and the shear wave velocity increase more rapidly.
     The initial experimental results indicate that:(1) the morphology (or called micro-models) of gas hydrate in the sediments has significance on the acoustic properties of the sediments. Generally, a cement model has largest impact on acoustic properties, while the pore model has less. (2) the acoustic responses of gas hydrate to consolidated sediments and unconsolidated sediments are quite different. (3) the grain size of the unconsolidated sediments appears to influence the hydrate formation mechanism, that is, the small particle may prevent gas dissolving in the pore fluid, as a result gas hydrate may not form, or forms in the pore fluid and has a less impact on acoustic properties of the sediments. (4) for the fine-grained SCS sediments, gas hydrate may prefer to form in the pore fluid when saturation is low. This may not block the pore throat of the sediments. In the geological time scale, an amount of high saturation hydrate may be formed provided there are sufficient gas resources. It may be a possible reason that why hydrate saturation in SCS sediments is very high.
     With the experimental data, seven velocity models were validated. The results indicate that:(1) in the consolidated sediments, the Weighted Equation (WE) predicts corresponding compressional velocity with the measured data when Sh<40%. A combination of the WE and the Vp/Vs ratio in the BGTL model predicts consistent shear velocity with the measured data (Sh<40%). When Sh>30%, both Vp and Vs predicted by the BGTL model are consistent with the measured data. (2) in the unconsolidated sediments (particle size,0.09~0.125mm), Vp and Vs predicted by the WE model are consistent with the measured data when hydrate saturation is less than 90%, while Vp and Vs predicted by the BGTL model are consistent with the measured data when hydrate saturation is higher than 20%. The Effective Medium Theory (EMT) also shows good agreements with the measured data when hydrate saturation is in the range of 20%-70%. The compressional velocity predicted by Wood's equation is close to the measured data, while Vp and Vs predicted by the K-T equation is corresponding to the measured data (Sh,~40%-~90%). (3) in the SCS sediments, the elastic properties predicted by the WE model, the BGTL model and the Wood's equation are consistent with the measured data. The validation results of the above velocity models indicate that the WE model and the BGTL model are more flexible in velocity predictions in various types of sediments. Moreover, it shows that the results predicted by the two models are respectively consistent with the measure data for a different range of hydrate saturations. A combination of the two models may be more suitable to predict both Vp and Vs for a wide range of sediments. With regard to the parameters W and n in the WE model, it suggests that the parameter W can be obtained with data of the hydrate-free sediments. After W is fixed, the parameter n can be adjusted to qualify the WE model predict consistent velocities with the measured data. For the parameters G and n in the BGTL model, there are no better choose than treat them as free parameters because there are rare data to formulate an empirical equation to correctly get them. Thus, further works are needed on investigating acoustic properties of SCS sediments containing gas hydrate to give rigorous suggestions for gas hydrate exploration in SCS.
引文
[1]Zhu Y, Zhang Y, Wen H, et al. Gas hydrates in the Qilian Mountain permafrost, Qinghai, Northwest China. ACTA GEOLOGICA SINICA (English Edition),2010,84(1):1-10.
    [2]Lu H, Seo Y, Lee J, et al. Complex gas hydrate from the Cascadia margin. Nautre,2007,445: 306-306.
    [3]胡高伟,王家生,业渝光.天然气水合物储运技术研究.油气储运,2006,25(10):21-25.
    [4]Collett T. Natural gas hydrate of the Prdhoe Bay and Kuparuk River area, North Slope, Alaska:American Association of Petroleum Geologists Bulletin,1993,77(5):793-812.
    [5]Trofimuk A A, Cherskiy N V, Tsarev V P. Gas hydrates-New sources of hydrocarbons. Priroda,1979,1:18-27.
    [6]Kvenvolden K A. Methane hydrate-A major reservoir of carbon in the shallow geosphere?. Chemical Geology,1988,71:41-51.
    [7]Milkov A V, Sassen R. Preliminary assessment of resources and economic potential of individual gas hydrate accumulations in the Gulf of Mexico continental slope. Marine and Petroleum Geology,2003,20:111-128.
    [8]Kvenvolden K A. Gas hydrates—geological perspective and global change. Reviews of Geophysics,1993,31(2):173-187.
    [9]Dickens G R. A methane trigger for rapid warming?. Science,2003,299:1017.
    [10]Dickens G R. Hydrocarbon-driven warming. Nature,2004,429:513-515.
    [11]Dawson A G, Long D, Smith D E. The storegga slides:evidence from eastern Scotland for a possible tsunami.
    [12]Brown H E, Holbrook W S, Hornbach M J, et al. Slide structure and role of gas hydrate at the northern boundary of the Storegga Slide, offshore Norway. Marine Geology,2006, 229:179-186.
    [13]Pecher I, Ayoub R F, and Clennell B. Seismic time-lapse monitoring of potential gas hydrate dissociation around boreholes-could it be feasible? A conceptual 2D study linking geomechanical and seismic FD models. paper presented at Sixth International Conference on Gas Hydrate,2008, British Columbia, Canada.
    [14]Kvenvolden K A. Potentia effects of gas hydrate on human welfare. Proc. Natl. Acad. Sci. USA,1999,96(7):3420-3426.
    [15]龚建明,王红霞,陈建文,等.天然气水合物在沉积地层中的分布模式.海洋地质动 态,2004,20(6):6-8.
    [16]Collett T S, Bird K J, Kvenvolden K A, et al. Geologic interrelations relative to gas hydrates within the North Slope of Alaska, USGS Open-File Reprot 88-389, U. S. Geol. Surv., Menlo Park, CA.,1988,150p.
    [17]Collett T S, Bird K J. Subsurface temperatures and geothermal gradients on the north slope of Alaska. Cold Regions Science and Technology,1993,21(3):275-293.
    [18]Clennell M B, Hovland M, et al. Formation of natural gas hydrates in marine sediments 1. conceptual model of gas hydrate growth conditioned by host sediment properties. Journal of Geophysical Research,1999,104(B10):22985-23003.
    [19]Kraemer L, Owen R M, Dickens G R. Lithology of the upper gas hydrate zone, Blake Outer Ridge:a link between diatoms, porosity, and gas hydrate. Proceedings of the Ocean Drilling Program, Scientific Results Vol.164:229-236.
    [20]Rice D, Claypool G. Generation accumulation and resource potential of biogenic gas. AAPG Bull.,1981,65(1):5-25.
    [21]Whiticar M J, Faber E, Schoell M. Biogenic methane formation in marine and freshwater environments:CO2 reduction vs. acetate fermentation-isotopic evidence. Geochem. Cosmochim. Acta,1986,50:693-709.
    [22]Waseda A, Nishita H. Geochemical characteristics of terrigenous-and marine-sourced oils in Hokkaido, Japan. Organic Geochemistry,1998,28(2):27-41.
    [23]Gorntiz V, Fung I. Potential distribution of methane hydrates in the world oceans. Global Biogeochemical Circles,1994,8(3):335-347.
    [24]Dillon W P, Max M D. U. S. Atlantic continental margin; the best-know gas hydrate locality, chapter 13.1n:Max M D (eds.), Natural Gas Hydrate in Oceanic and Polar Environments: Kluwer Academic Publishers, Dordrecht,2000,157-170.
    [25]Collett T S, Dallimore S R. Hydrocarbon gases associated with permafrost in the Mackenzie Delta, Northwest Territories, Canada. Applied Geochemistry,1999,14(5):607-620.
    [26]Matveeva T, Mazurenko L L, Soloviev V, et al. Gas hydrate accumulation in the subsurface sediments of Lake Baikal (Eastern Siberia). Geo-Marine Letters,2003,23(3-4):289-299.
    [27]Ginsburg G D, Soloviev V A. Methane migration within the submarine gas-hydrate stability zone under deep-water conditions. Marine Geology,1997,137(1-2):49-57.
    [28]Ginsburg G D, Milkov A V, Soloviev V A, et al. Gas hydrate accumulation at the Hakon Mosby mud volcano. Geo-marine Letters,1999,19(1-2):57-67.
    [29]沙志彬,王宏斌,张光学,等.底辟构造与天然气水合物的成矿关系.地学前缘(中国地质大学(北京);北京大学),2005,12(3):283-288.
    [30]赵汗青,吴时国,徐宁,等.东海与泥底辟构造有关的天然气水合物初探.现代地质,2006,20(1):115-122.
    [31]Ludmann T, Wong H K. Characteristics of gas hydrate occurrences associated with mud diapirism and gas escape structures in the northwestern Sea of Okhotsk. Marine Geology, 2003,201:269-286.
    [32]Trehu A M, Long P E, Torres M E, et al. Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge:constraints from ODP Leg 204. Earth and Planetary Science Letters,2004,222:845-862.
    [33]陈忠,杨华平,黄奇瑜,等.海底甲烷冷泉特征与冷泉生态系统的群落结构.热带海洋学报,2007,26(6):73-82.
    [34]陈敏,曹志敏,龚建明,等.海底天然气水合物地球化学勘探新技术[J].矿物岩石,2004,24(4):102-107.
    [35]Holbrook W S, Hoskins H, Wood W T, et al. Methane hydrate and free gas on the Blake Ridge from vertical seismic profiling. Science,1996,273:1840-1843.
    [36]郑晓东.AVO理论和方法的一些新进展.石油地球物理勘探,1992,27(3):305-317.
    [37]吴志强.AVO技术在水合物调查评价的应用中应注意的问题.海洋地质动态,2002,18(6):28-32.
    [38]吴志强,陈建文,龚建明,等.AVO技术在水合物勘探中的应用.海洋地质动态,2004,20(6):31-35.
    [39]蒋少涌,杨涛,薛紫晨,等.南海北部海区海底沉积物中孔隙水的Cl-和SO42-浓度异常特征及其对天然气水合物的指示意义.现代地质,2005,19(1):45-54.
    [40]蒋少涌,凌洪飞,杨竞红,等.海洋浅表层沉积物和孔隙水的天然气水合物地球化学异常识别标志.海洋地质与第四纪地质,2003,23(1):87-94.
    [41]Holbrook W S, Hoskins H, Wood W T, et al. Methane hydrate and free gas on the Blake Ridge from Vertical Seismic Profiling. Science,2006,273:1840-1843.
    [42]Shipley T H, Houston M H, Buffler R T, et al. Seismic evidence for widespread occurrence of possible gas hydrate horizons on continental slopes and rises. AAPG Bull.,1979, 63(12):2204-2213.
    [43]Holbrook W S, Gorman A R, Hornbach M, et al. Seismic detection of marine methane hydrate. The Leading Edge,2002,686-689.
    [44]Carcione J M, and Gei D. Gas-hydrate concentration estimated from P-and S-wave velocities at the Mallik 2L-38 research well, Mackenzie Delta, Canada. Journal of Applied Geophysics,2004,56:73-78.
    [45]Stoll R D. Effects of gas hydrate in sediments. In:Kaplan Ⅰ. Natural Gases in Marine Sediment. First Edition. New York. Springer.1974.235-248.
    [46]Tucholke B E, Bryan G M, and Ewing J I. Gas hydrate horizons detected in seismic-profile data from the western North Atlantic. Am. Assoc. Petrol. Geol. Bull.,1977,61:698-707.
    [47]Ashi J, Tokuyama H, Taira A. Distribution of methane hydrate BSRs and its implication for the prism growth in the Nankai Trough. Marine Geology,2002,187:177-191.
    [48]Coren F, Volpi V, Tinivella U. Gas hydrate physical properties imaging by multi-attribute analysis—Blake Ridge BSR case history. Marine Geology,2001,178:197-210.
    [49]He L, Wang J, Xu X, et al. Disparity between measured and BSR heat flow in the Xisha Trough of the South China Sea and its implications for the methane hydrate. Journal of Asian Earth Sciences,2009,34:771-780.
    [50]Wu S, Wang X, Wong H K, et al. Low-amplitude BSRs and gas hydrate concentration on the northern margin of the South China Sea. Mar. Geophys. Res.,2007,28:127-138.
    [51]王宏斌,梁劲,龚跃华,等.基于天然气水合物地震数据计算南海北部陆坡海底热流.现代地质,2005,19(1):67-73.
    [52]吴能友,杨胜雄,王宏斌,等.南海北部陆坡神狐海域天然气水合物成藏的流体运移体系.地球物理学报,2009,52(6):1641-1650.
    [53]Yuan J, and Edwards. The assessment of marine gas hydrates through electrical remote sounding:Hydrate without a BSR?. Geophysical Research Letters,2000,27(16): 2397-2400.
    [54]张毅,何丽娟,徐行,等.南海北部神狐海域甲烷水合物BHSZ与BSR的比较研究.地球物理学进展,2009,24(1):183-194.
    [55]Chapman N R, Gettrust J, Walia R, et al. High-resolution, deep-towed, multichannel seismic survey of deep-sea gas hydrates off western Canada. Geophysics,2002,67(4):1038-1047.
    [56]Wyllie M R J, Gregory A R, and Gardner G H F. An experimental investigation of factors affecting elastic wave velocities in porous media. Geophysics,1958,23:459-493.
    [57]Pearson C F, Halleck P M, McGulre P L, et al. Natural gas hydrate; A review of in situ properties. J. Phys. Chem.,1983,87:4180-4185.
    [58]Wood A B. A text book of sound. Macmillan publ. Co.,1941.
    [59]Lee M W, Hutchinson D R, Collett I S, et al. Seismic velocities for hydrate-bearing sediments using weighted. equation. Journal of Geophysical Research,1996, 101:20347-20358.
    [60]Helgerud M B, Dvorkin J and Nur A. Elastic-wave velocity in marine sediments with gas hydrates:Effective medium modeling. Geophysical Research Letters,1999, 26(13):2121-2124.
    [61]Zillmer M. A method for determining gas-hydrate or free-gas saturation of porous media from seismic measurements. Geophysics,2006,71:21-32.
    [62]Lee M W. Modified Biot-Gassmann theory for calculating elastic velocities for unconsolidated and consolidated sediments. Marine Geophysical Researches,2002, 23:403-412.
    [63]Hyndman R D, Spence G D. A seismic study of methane hydrate marine bottom simulating relectors. J. Geophs. Res.,1992,97:6683-6698.
    [64]Kuster G T, and Toksoz M N. Velocity and attenuation of seismic waves in two-phase media, 1, Theoretical formulation. Geophysics,1974,39:587-606.
    [65]Zhang H Q, Yang S X, Wu N Y, et al. China's first gas hydrate expedition successful. Fire in the Earth. Methane Hydrate Newsletter, National Technology Laboratory, US department of Energy,2007, Spring/Summer Issue,2007,1:4-8.
    [66]Wu N Y, Zhang H Q, Su X, et al. High concentrations of hydrate in disseminated forms found in very fine-grained sediments of Shenhu area, South China Sea. Terra Nostra,2007, (1-2):236-237.
    [67]陆敬安,杨胜雄,吴能友,等.南海神狐海域天然气水合物地球物理测井评价.现代地质,2008,22(3):447-451.
    [68]Expedition 311 Scientists. Cascadia margin gas hydrates. IODP Preliminary Report,2005, 311. doi:10:2204/iodp.pr.311.2005.
    [69]Goldberg D, Guerin G, Malinverno A, et al. Velocity analysis of LWD and wireline sonic data in hydrate-bearing sediments on the Cascadia Margin. paper presented at Sixth International Conference on Gas Hydrate,2008, British Columbia, Canada.
    [70]Lee M W, Waite W F. Estimating pore-space gas hydrate saturations from well log acoustic data. Geochemistry Geophysics Geosystems,2008,9:Q07008. doi: 10.1029/2008GC002081.
    [71]Sothcott J, McCann C, O'Hara S G. The influence of two different pore fluids on acoustic properties of reservoir sandstones at sonic and ultrasonic frequencies, paper presented at 70th Ann. Mtg., SEG, Calgary, Exp. Abst.,2000,2,1883-1886.
    [72]Sloan E D, Koh C A. Clathrate Hydrates of Natural Gases. Third Edition. New York:CRC Press,2007.
    [73]Waite W, Helgerud M, Nur A, et al. Laboratory measurements of compressional and shear wave speeds through methane hydrate. In:Gas Hydrates:Challenges for the Future, edited by Holder G D and Bishnoi P R. Ann. N. Y. Acad. Sci.,2000,912:1003-1010.
    [74]Stern L A, Kirby S H, Durham W B, et al. Laboratory synthesis of pure methane hydrate suitable for measurement of physical properties and decomposition behavior. In:Natural Gas Hydrate, in Oceanic and Permafrost Environments. M.D. Max, Ed. Kluwer Publ., 2000.323-348.
    [75]Helgerud M B. Wave speeds in gas hydrate and sediments containing gas hydrate:A laboratory and modeling study. Doctoral thesis,251pp., Stanford University, Palo. Alto, Calif.
    [76]Helgerud M B, Waite W F, Kirby S H, et al. Measured temperature and pressure dependence of Vp and Vs in compacted, polycrystalline sⅠ methane and sⅡ methane-ethane hydrate. Can. J. Phys.,2003,81:47-53. doi:10.1139/p03-016.
    [77]Helgerud M B, Waite W F, Kirby S H, et al. Elastic wace speeds and moduli in polycrystalline ice Ih, sⅠ methane hydrate, and sⅡ methane-ethane hydrate. Journal of Geophysical Research,2009,114:B02212. doi:10.1029/2008JB006123.
    [78]Winters W J, Pecher I A, Booth J S, et al. Properties of samples containing natural gas hydrate from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well, determined using Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI). Geological Survey of Canada Bulletin,1999,544:241-250.
    [79]Winters W J, Waite W F, Mason D H, et al. Sediment properties associated with gas hydrate formation.4th International Conference on Gas Hydrate, Yokohama, Japan, May 19-23,2002:722-727.
    [80]Winters W J, Waite W F, Pecher I A, et al. Comparison of methane gas hydrate formation on physical properties of fine-and corse-grained sediments. AAPG HEDBERG CONFERENCE "Gas hydrate:Energy Resource Potential and Associated Geologic Hazards", Vancouver, BC, Canada, September 12-16,2004:1-5.
    [81]Winters W J, Waite W F, Mason D H, et al. Methane gas hydrate effect on sediment acoustic and strength properties. Journal of Petroleum Science and Engineering,2007, 56:127-135.
    [82]Waite W F, Winters W J, Mason D H. Methane hydrate formation in partially water-saturated Ottawa sand. American Mineralogist,2004,89:1202-1207.
    [83]Waite W F, Kneafsey T J, Winters W J, et al. Physical property changes in hydrate-bearing sediment due to depressurization and subsequent repressurization. Journal of Geophysical Research,2008, 113(B7):1-12.
    [84]Priest J, Best A, Clayton C, et al. A laboratory investigation into the seismic velocities of methane gas hydrate-bearing sand. Journal of Geophysical Research,2005,110:B04102.
    [85]Priest J A, Rees E V L, Clayton C R I. Influence of gas hydrate morphology on the seismic velocities of sands. Journal of Geophysical Research,2009,114:B11205. doi: 10.1029/2009JB006284.
    [86]Yang J, Llamedo M, Marinakis D, et al. Successful application of a versatile ultrasonic test system for gas hydrates in unconsolidated sediments. paper presented at Fifth International Conference on Gas Hydrates, June 12-16,2005, Trondheim, Norway.
    [87]Yun T S, Francisca F M, Santamarina J C. Compressional and shear wave velocities in uncemented sediment containing gas hydrate. Geophysical Research Letters,2005,32: L10609. doi:10.1029/2005GL022607.
    [88]Yun T S, Santamarina J C, and Ruppel C. Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate. Journal of Geophysical Research,2007,112:B04106.
    [89]Yun T S, Narsilio G A, Santamarina J C, et al. Instrumented pressure testing chamber for characterizing sediment cores recovered at in situ hydrastatic pressure. Marine Geology, 2006,229:285-293.
    [90]Lee J Y, Yun T S, Santamarina J C, et al. Observations related to tetrahydrofuran and methane hydrates for laboratory studies of hydrate-bearing sediments. Geochemistry Geophysics Geosystem,2007,8:Q06003. doi:10.1029/2006GC001531.
    [91]Onishi K, Matsuoka T, Tsukada K. P-wave velocity change of porous media due to the freezing and thawing process of methane hydrate. paper presented at Sixth International Conference on Gas Hydrate,2008, British Columbia, Canada.
    [92]业渝光.地质测年与天然气水合物实验技术研究及应用.海洋出版社,2003,206-244.
    [93]张剑,业渝光,刁少波等.超声探测技术在天然气水合物模拟实验中的应用.现代地质,2005,19(1):113-118.
    [94]业渝光,张剑,刁少波等.气水合物地球物理探测模拟装置.中国发明专利:CN200410036544.X,2004,pp10.
    [95]业渝光,张剑,胡高伟,等.天然气水合物超声和时域反射联合探测技术.海洋地质 与第四纪地质,2008,28(5):101-107.
    [96]王东,李栋梁,张海澜,等.天然气水合物样品声纵波特性和温压影响测量.中国科学G辑,2008,38(8):1038-1045.
    [97]Ren S R, Liu Y J, Liu Y X, et al. Acoustic velocity and electrical resistance of hydrate bearing sediments. Journal of Petroleum Science and Engineering,2010,70(1-2):52-56.
    [98]张卫东,刘永军,任韶然,等.水合物沉积层声波速度模型.中国石油大学学报(自然科学版),2008,32(4):60-63.
    [99]Chand S, Minshull T A, Gei D, et al. Elastic velocity models for gas-hydrate-bearing sediments—A comparison. Geophys. J. Int.,2004,159:573-590. doi:10.1111/j. 1365-246X.2004.02387.x.
    [100]Carcione J M, Tinivella U. Bottom-simulating reflectors:seismic velocities and AVO effects. Geophysics,2000,65:54-67. doi:10.1190/1.1444725.
    [101]Gei D, Carcione J M. Acoustic properties of sediments saturated with gas hydrate, free gas and water. Geophys. Prospect.,2003,51:141-157. doi: 10.1046/j.1365-2478.2003.00359.x.
    [102]Jakobsen M, Hudson J A, Minshull T A, et al. Elastic properties of hydrate-bearing sediments using effective medium theory. Journal of Geophysical Research,2000,105: 561-577. doi:10.1029/1999JB900190.
    [103]Ojha M, Sain K. Appraisal of gas-hydrate/free-gas from Vp/Vs ratio in the Makran accretionary prism. Marine Petroleum Geology,2008,25:637-644. doi: 10.1016/j.marpetgeo.2007.10.007.
    [104]Hu G W, Ye Y G, Zhang J, et al. Acoustic properties of gas hydrate-bearing consolidated sediments and experimental testing of elastic velocity models. Journal of Geophysical Research,2010,115:B02102. doi:10.1029/2008JB006160.
    [105]Ye Y G, Liu C L, Liu S Q, et al. Experimental studies on several significant problems related marine gas hydrate. paper presented at Fifth International Conference on Gas Hydrate,2005, Trondheim, Norway.
    [106]Ye Y G, Zhang J, Hu G W, et al. Experimental research on the relationship between gas hydrate saturation and acoustic parameters. Chinese Journal of Geophysics,2008,51(4): 819-828.
    [107]Lee J S, Santamarina J C. Bender elements:Performance and signal interpretation. Journal of Geotechnical and Geoenvironmental Engineering,2005,1063-1070.
    [108]陈云敏,周燕国,黄博.利用弯曲元测试砂土剪切模量的国际平行试验.岩土工程学报,2006,28(7):874-880.
    [109]黄博,殷建华,陈云敏,等.压电陶瓷弯曲元法测试土样弹性剪切模量.振动工程学报.2001,14(2):155-160.
    [110]Shirley D J. An improved shear wave transducer. J. Acoust. Soc. Am.,1978,63(5): 1643-1645.
    [111]Shirley D J, Hampton L D. Shear wave measurements in laboratory sediments. J. Acoust. Soc. Am.,1978,63(2):607-613.
    [112]Dyvik R, Madshus C. Lab meaurements of Gmax using bender element. Proc., ASCE Convention on Advances in the Art of Testing Soils under Cyclic Conditions,1985, 186-196.
    [113]Jovicic V, Coop M R, Simic M. Objective criteria for determining Gmax from bender element tests. Geotechnique,1996,46(2):357-362.
    [114]Jovicic V, Coop M R. Interpretation of bender element tests. Geotechnique,1997,47(3): 875.
    [115]Zeng X, Ni B. Application of bender elements in measuring Gmax of sand under Ko condition. Geotechnical Testing Journal,1998,21(3):251-263.
    [116]Arulnathan R, Boulanger R W, Reimer M F. Analysis of bender element tests. Geotechnical Testing Journal,1998,21(2):120-131.
    [117]Clayton C R I, Theron M, Best A I. The measurement of vertical shear-wave velocity using side-mounted bender elements in the triaxial apparatus. Geotechnique,2004,54(7): 495-498.
    [118]姬美秀,陈云敏,黄博.弯曲元试验高精度测试土样剪切波速方法.岩土工程学报,2003,25(6):732-736.
    [119]Thomann T G, Hryciw R D. Laboratory measurement of small strain shear modulus under Ko conditions. Geotechnical Testing Journal,1990,13(2):97-105.
    [120]Souto A, Hartikainen J, Ozudogru K. Measurement of dynamic parameters of road pavement materials by the bender element and resonant column tests. Geotechnique,1994, 44(3):519-526.
    [121]Viggiani G, Atkinson J H. Interpretation of bender element tests. Geotechnique,1997, 45(1):149-154.
    [122]Leong E C, Cahyadi J, Rahardjo H. Measuring shear and compression wave velocities of soil using bender-extender elements. Can. Geotech. J.,2009,46:792-812.
    [123]姬美秀.压电陶瓷弯曲元剪切波速测试及饱和海洋软土动力特性研究.浙江大学博士学位论文.杭州:浙江大学,2005.
    [124]Fourier J. The analytical theory of heat. London:Cambridge University Press,1878.
    [125]Hamstd M A, Gallagher A O, Gary J. A Wavelet Transform Applied to Acoustic Emission Signals. Journal of Acoustic Emission,2002,20:39-82.
    [126]Gaul L, Hurlebaus S. Idenfication of the Impact Location on a Plate Using Wavelets. Mechanical Systems and Signal Processing.1997,12(6):783-795.
    [127]Ding Y, Reuben R L, Steel J A. A New Method for Waveform Analysis for Estimating AE Wave Arrival Times Using Wavelet Decomposition. NDT&E International,2004, 37:279-290.
    [128]Eong J H, Jang Y S. Wavelet Analysis of Plate Wave Propagation in Composite Laminates. Composite Structures.2000,49:443-450.
    [129]Suzuki H, Kinjo T, Hayashi Y, et al. Wavelet transform of acoustic emission signals. Journal of Acoustic Emission,1996,14(2):69-84.
    [130]Takemoto M, Nishino H, Ono K. Wavelet transform-application to AE signal analysis. Acoustic Emission-Beyond the Millennium, Elsevier,2000,35-56.
    [131]Mallat S. A wavelet tour of signal processing. San Diego:Academic Press,1998.
    [132]Coifman R R, Meyer Y, Wickerhauser M V. Wavelet analysis and signal processing. In: Wavelets and their applications. Ruskai M B et al (Eds.),1992,153-178, Jones and Bartlett.
    [133]Vallen-Systeme GmbH, Munich, Germany, http://www.vallen.de/wavelet/index.html, 2001.
    [134]Gardner W, Kirkham D. Determination of soil moisture by neutron scattering. Soil Sci., 1951,73:391-401.
    [135]Reginato R J, van Bavel C H M. Soil water measurement with gamma attenuation. Soil Sci. Soc. Am. Proc.,1964,28:721-724.
    [136]赵爱国,何兴东,段争虎,等.电阻法在沙地水分动态测定中的应用.中国沙漠,2000,20(3):323-325.
    [137]Huisman J A, Hubbard S S, Redman J D, et al. Measuring soil water content with ground penetrating radar:a review. Vadose Zone Journal,2003,2:476-491.
    [138]Topp G C, Davis J L, Annan A P. Electromagnetic determination of soil-water content: Measurement in coaxial transmission line. Water Resour. Res.,1980,16(3):574-582.
    [139]Noborio K. Measurement of soil water content and electrical conductivity by time domain reflectometry:a review. Computers and Electronics in Agriculture,2001,31:213-237.
    [140]Dasberg S, Dalton F N. Time domain reflectometry:field measurement of soil water content and electrical conductivity. Soil Science Society of America Journal,1985,49: 293-297.
    [141]Smith M W, Patterson D E. Determining the unfrozen water content in soils by time-domain reflectometry. Atmosphere-Ocean,1984,22(2):261-263.
    [142]Sass O. Rock moisture measurements:techniques, results, and implications for weathering. Earth Surface Processes and Landforms,2005,30:359-374.
    [143]Wraith J M, Robinson D A, Jones S B, et al. Spatially characterizing apparent electrical conductivity and water content of surface soils with time domain reflectometry. Computers and Electronics in Agriculture,2005,46:239-261.
    [144]Fellner-Feldegg H. The measurement of dielectrics in the time domain. The Journal of Physical Chemistry,1968,616-623.
    [145]Dalton F N, van Genuchten M T. The time domain reflectometry for measuring soil water content and salinity. Geoderma,1986,38:237-250.
    [146]Regalado C M. Time domain reflectometry models as a tool to understand the dielectric response of volcanic soils. Geoderma,2003,117:313-330.
    [147]Carpena R M, Regalado C M, Ritter A, et al. TDR estimation of electrical conductivity and saline solute concentration in a volcanic soil. Geoderma,2005,124:399-413.
    [148]Wright J F, Nixon F M, Dallimore S R, et al. A method for direct measurement of gas hydrate amounts based on the bulk dielectric properties of laboratory test media. Fourth International Conference on Gas Hydrate, Yokohama,2002,745-749.
    [149]胡高伟,业渝光,张剑等.松散沉积物中天然气水合物生成、分解过程与声学特性的实验研究.现代地质,2008,22(3):465-474.
    [150]刁少波,业渝光,张剑等.时域反射技术在地学研究中的应用.岩矿测试,2005,24(3):205-211.
    [151]岳英洁,业渝光,刁少波等.时域反射技术应用与研究新进展.海洋湖沼通报,2007,增刊,170-175.
    [152]胡高伟,张剑,业渝光等.天然气水合物的声学探测模拟实验.海洋地质与第四纪地质,2008,28(1):135-141.
    [153]业渝光,张剑,胡高伟等.天然气水合物饱和度与声学参数响应关系的实验研究.地球物理学报,2008,51(4):1156-1164.
    [154]von Hippel A. Dielectrics. In:Candon and Odishaw (Editors), Handbook of Physics. New York:McGraw-Hill, N. Y.,1953.
    [155]Kittel C. Introduction to solid state physics. Third editions. New York:Wiley, N. Y,1960.
    [156]Dalton F N, Herkelrath W N, Rawlins D S, et al. Time-domain reflectometry: simultaneous measurement of soil water content and electrical conductivity with a single probe. Science,1984,224:989-990.
    [157]Zhang J S, Lee S, Lee J W. Does SDS micellize under methane hydrate-forming conditions below the normal Krafft point?. Journal of Colloid and Interface Science,2007, 315(1):313-318.
    [158]Zhong Y, Rogers R E. Surfactant effects on gas hydrate formation. Chemical Engineering Science,2000,55,4175-4187.
    [159]Hu G W, Ye Y G, Zhang J, et al. Study on acoustic properties during gas hydrate formation and dissociation in sediments. paper presented at Sixth International Conference on Gas Hydrate,2008, British Columbia, Canada.
    [160]Prasad M, Dvorkin J. Velocity and attenuation of compressional waves in brines. SEG Expanded Abstracts,2004,23:1666. doi:10.1190/1.1845150.
    [161]Yoslim J, Englezos P. The effect of surfactant on the morphology of methane/propane clathrate hydrate crystals. paper presented at Sixth International Conference on Gas Hydrate,2008, British Columbia, Canada.
    [162]Beltran J G, Servio P. Morphology studies on gas hydrates interacting with silica gel. paper presented at Sixth International Conference on Gas Hydrate,2008, British Columbia, Canada.
    [163]Kingston E, Clayton C, Priest J. Gas hydrate growth morphologies and their effect on the stiffness and damping of a hydrate bearing sand. paper presented at Sixth International Conference on Gas Hydrate,2008, British Columbia, Canada.
    [164]Guerin G, Goldberg D S, Collett T S. Sonic velocities in an active gas hydrate system, Hydrate Ridge. Proceedings of the Ocean Drilling Program. Scientific Results 204,2006, 1-38.
    [165]Ledbetter H, Kim S, Dunn M, et al. Elastic constants of mullite containing alumina platelets. Journal of the European Ceramic Society,2001,21:2569~2576.
    [166]Zhang F C, Luo H H. Reaction sintering of Al2O3/SiC composite in a IR. Journal of ceramics,2006,27(2):172~175.
    [167]宋海斌,松林修,吴能友,等.海洋天然气水合物的地球物理研究(Ⅰ):岩石物性.地球物理学进展,2001,16(2):118~126.
    [168]Lee M W. Elastic velocities of partially gas-saturated unconsolidated sediments. Marine and Petroleum Geology,2004,21:641~650.
    [169]孙春岩,章明昱,牛滨华,等.天然气水合物微观模式及其速度参数估算方法研究.地学前缘,2003,10(1):191-198.
    [170]Lee M W. Biot-Gassmann theory for velocities of gas hydrate-bearing sediments. Geophysics,2002,67,1711-1719.
    [171]Nobes D C, Villinger H, Davis F F, et al. Estimation of marine sediment bulk physical properties at depth from seafloor geophysical measurements. J. Geophys. Res.,1986,91: 14033-14043.
    [172]Mavko G and Nur A. Wave attenuation in partially saturated rocks. Geophysics,1979, 44:161-178.
    [173]Ahrens T J. Mineral Physics & Crystallography:A Handbook of Physical Constants [M]. Published by American Geophysical union, April,1995:7-54.
    [174]Dvorkin J, Prasad M, Sakai A, et al. Elasticity of marine sediments:Rock physics modeling. Geophysical Research Letters,1999,26(12):1781-1784.
    [175]范百刚.超声原理与应用.南京:江苏科学技术出版社,1984,1-133.
    [176]王开林,杨圣奇,苏承东.不同粒径大理岩样声学特性的研究.水文地质工程地质,2004,32(2):30-32.
    [177]梁劲,王明君,王宏斌,等.南海神狐海域天然气水合物声波测井速度与饱和度关系分析.现代地质,2009,23(2):217-222.
    [178]McDonnell S L, Max M D, Cherkis N Z, et al. Tectono-sedimentary controls on the likelihood of gas hydrate occurence near Taiwan. Marine and Petroleum Geology,2000, 17:929-936.
    [179]Wang P X, Prell W L, Blum P. Ocean Drilling Program Leg 184 Scientific Prospectus South China Sea, site 1144,184. In:Wang P, Prell W L, Blum P. Proceedings of the Ocean Drilling Program, Initiao Reports, Ocean Drilling Program, College Station, TX,2000, 184:1-97.
    [180]王宏语,孙春岩,张洪波,等.西沙海槽潜在天然气水合物成因及形成地质模式.海洋地质与第四纪地质,2005,25(4):85-91.
    [181]傅宁,米立军,张功成.珠江口盆地白云凹陷烃源岩及北部油气成因.石油学报,2007,28(3):32-38.
    [182]王家生,高钰涯,李清,等.沉积物粒度对水合物形成的制约:来自IODP311航次证据.地球科学进展,2007,22(7):659-665.
    [183]吴时国,姚根顺,董冬冬,等.南海北部陆坡大型气田区天然气水合物的成藏地质构造特征.石油学报,2008,29(3):324-328.
    [184]吴时国,董冬冬,杨胜雄,等.南海北部陆坡细粒沉积物天然气水合物系统的形成模式初探.地球物理学报,2009,52(7):1849-1857.
    [185]樊栓狮,刘峰,陈多福.海洋天然气水合物的形成机理探讨.天然气地球科学,2004,15(5):524-530.
    [186]关进安,樊栓狮,梁德青,等.南海琼东南盆地渗漏系统甲烷水合物生长速度.地球物理学报,2009,52(3):765-775.
    [187]Buchanan P, Soper A, Thompson H, et al. Search for memory effects in methane hydrates: structure of water before hydrate formation and after hydrate decomposition. J. Chem. Phys.,2005,123(16):4507.doi:10.1063/1.2074927.
    [188]潘国富,叶银灿,来向华等.海底沉积物实验室剪切波速度及其与沉积物的物理性质之间的关系[J].海洋学报,2006,28(5):64-68.
    [189]Guerin G, Goldberg D. Sonic waveform attenuation in gas hydrate-bearing sediments from the Mallik 2L-38 research well, Meckenzie Delta, Canada. Journal of Geophysical Research,2002,107(B5):2088. doi:10.1029/2001JB000556.
    [190]Chand S, Minshull T A. The effect of hydrate content on seismic attenuation:A case study for Mallik 2L-38 well data, Mackenzie delta, Canada. Geophysical Research Letters,2004, 31:L14609. doi:10.1029/2004GL020292.
    [191]Matsushima J. Attenuation measurements from sonic waveform logs in methane hydrate-bearing sediments at the Nankai Trough exploratory well off Tokai, central Japan. Geop hysical Research Letters,2005,32:L03306. doi:10.1029/2004GL021786.
    [192]Carcione J M, Gangi A. Non-equilibrium compaction and abnormal pore-fluid pressures: effects on seismic attributes. Geophysical Prospecting,2000,48:521-537.
    [193]Carcione J M, Helbig K, Helle H B. Effects of pressure and saturating fluid on wave velocity and attenuation in anisotropic rocks. International Journal of Rock Mechanics & Mining Sciences,2003,40:389-403.
    [194]Matsushima J. Seismic wave attenuation in methane hydrate-bearing sediments:vertical seismic profiling data from the Nankai Trough exploratory well, offshore Tokai, central Japan. Jouranal of Geophysical Research,2006,111:B10101. doi: 10.1029/2005JB004031.
    [195]Stern LA, Kirby S H, Durham W B. Peculiaritics of methane clathrate hydrate formation and solid-state deformation, including possible superheating of water ice. Science,1996, 273:1843-1848.
    [196]Lu W J, Chou I M, Burruss R C, et al. In situ study of mass transfer in aqueous solutions under high pressure via Raman spectroscopy:a new method for the determination of diffusion coefficients of methane in water near hydrate formation conditions. Appl. Spectrosc.,2006,60(2):122-129.
    [197]Lu W J, Chou I M, Burruss R C. Determination of methane concentrations in water in equilibrium with sⅠ methane hydrate in the absence of a vapor phase by in situ Raman spectroscopy. Geochimica et Cosmochimica Acta,2008,72:412-422.
    [198]胡高伟,业渝光,张剑,等.沉积物中水合物微观分布模式及其声学响应特征.天然气工业,2010,30(3):120-124.
    [199]Hill R. The elastic behavior of crystalline aggregate. Proc. Phys. Soc.,1952, A65: 349-354.
    [200]Ecker C. Seismic characterization of methane hydrate structures. US:Stanford University, 2001.
    [201]Dvorkin J, Nur A. Rock physics for characterization of gas hydrates:The Future of Energy Gases. USGS Professional Paper 1570,1993.
    [202]Nur A, Mavko G, Dvorkin J, et al. Critical porosity:A key to relating physical properties to porosity in rocks. The Leading Edge,1998,17:357-362.
    [203]Zimmerman R W, King M S. The effect of the extent of freezing on seismic velocities in unconsolidated permafrost. Geophysics,1986,51:1285-1290.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700