用户名: 密码: 验证码:
二氧化碳与环氧化物合成环状碳酸酯的高效催化剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CO2是地球上储量最丰富、廉价、无毒和可再生的C1资源,如何在相对温和的条件下实现CO2的化学固定已成为国际上竞相研发的热点课题。迄今为止,以CO2为原料的工业化生产途径不多。利用CO2与环氧化物环加成合成环状碳酸酯是资源化CO2的有效途径之一。但是,所报导的催化剂体系大多存在活性不高和/或产物与催化剂的分离困难等不足。本论文的研究工作主要针对CO2与环氧化物环加成合成环状碳酸酯开发了多种高效均相和多相催化剂体系。
     第一类催化剂为含桥式N配位原子双酚盐配体的铋配合物,LnBiX(X:Cl、Br、I;n=1~5)和LnBi(OCH3)(n=1~5)。当以NaI作为助催化剂时,这些铋配合物均对CO2与环氧丙烷的环加成反应显示了较高的催化活性和选择性(>99.5%)。其中LnBiI(n=1~3)的催化活性最高,当反应温度120℃、CO2初始压力2.5 MPa和反应时间1 h时,碳酸丙烯酯产率可达95%以上。但由于这种催化剂易于水解,使得其应用受到限制。
     第二类催化剂为由ZnBr2与有机鳞盐组成的双组分环加成催化剂体系,其中ZnBr2-Ph4PI对二氧化碳与环氧化物之间的加成反应表现出较高的催化活性,而且ZnBr2-Ph4PI还具有很好的稳定性和重复使用性能,是一类具有应用前景的均相环加成催化剂。此外,详细考察了不同Zn2+盐、ZnBr2/Ph4PI摩尔比、反应条件及水对催化剂活性的影响,发现水对ZnBr2-Ph4PI催化剂体系具有重要的影响,即少量的水存在也会严重降低催化剂的活性。
     通过焙烧相应水滑石合成了第三类催化剂:Zn-Al-O复合氧化物及一系列碱土金属掺杂改性的Zn-M-Al-O(M=Mg、Ca、Sr、Ba)复合氧化物催化剂。这些催化剂对C02与环氧丙烷环的加成反应均具有较好的催化活性和选择性,其中Zn-Mg-Al-O(Zn/Mg=4.0、pH=10.未经水热处理)催化性能最好:在140℃、CO2初始压力2.5 MPa的条件下,反应12 h后碳酸丙烯酯产率和选择性分别可达88.8%和99.2%;而且Zn-Mg-Al-O催化剂还具有良好的稳定性和循环使用性能。Zn-Mg-Al-O催化剂兼具酸性和碱性。通过关联催化剂的性能和表面酸碱性之间的关系,还揭示了催化剂表面适中碱强度(6.1≤H0<8.9)的碱位更有利于环加成反应的进行。
     通过化学嫁接法和一步杂化法制备了第四类催化剂:SBA-15固载的羟基离子液体(3-(2-羟乙基)-1-丙基咪唑溴化物,HEPIMBr)催化剂,其中嫁接方法制备的催化剂(SBA-15-HEPIMBr)对二氧化碳和环氧化物之间的加成反应表现出很高的催化活性。例如,在140℃、CO2初始压力2.0 MPa和反应时间1 h的条件下,碳酸丙烯酯产率可达98.9%。还发现适量水的存在可显著改善SBA-15-HEPIMBr的催化活性,这与ZnBr2-Ph4PI催化剂显著不同。羟基基团的存在可能是这类羟基离子液体催化剂具有高活性的原因。另外,由于载体与HEPIMBr之间的协同作用,固载型的羟基离子液体具有比未固载的羟基离子液体(3-(2-羟乙基)-1-甲基咪唑溴化物)更高的催化活性。虽然由于活性组分的部分流失使得SBA-15-HEPIMBr在循环使用的初始阶段活性有所下降,但循环使用4次后催化剂活性可稳定在较高水平。为了进一步提高催化剂的稳定性和循环使用性能,以羟基离子液体功能化的三乙氧基硅烷和TEOS一起作为硅源,制备了杂化的SBA-15固载的羟基离子液体催化剂(H-SBA-15-HEPIMBr).虽然H-SBA-15-HEPIMBr的催化活性略低于SBA-15-HEPIMBr,但前者的稳定性和循环使用性能有了显著改善。
     第五类催化剂为聚二乙烯基苯固载的羟基离子液体催化剂。首先采用3-(2-羟基乙基)-1-乙烯基咪唑溴化物与二乙烯基苯共聚制得催化剂P-DVB-HEVIMBr。该催化剂对环加成反应具有较高的催化活性和稳定性。在循环使用6次后,其催化活性仅略有下降。为了进一步改善这类催化剂的活性和循环使用性能,还直接利用1-(3-氨丙基)咪唑功能化的聚二乙烯基苯与2-溴乙醇反应制得羟基离子液体嫁接的聚二乙烯基苯催化剂(PDVB-HEIMBr)。PDVB-HEIMBr比P-DVB-HEVIMBr以及文献上报道的多相环加成催化剂具有更高的催化活性,而且经过8次循环使用后,其活性没有下降。因此,这类催化剂具有良好的应用前景。此外,通过对比离子液体上不同官能团对催化剂活性的影响,探讨了羟基基团在反应中的作用,并提出了可能的反应机理。
CO2 is an abundant, inexpensive, notoxic and renewable C1 resource. In the view of the concepts of "atom economy", "sustainable development", and "green chemistry", the chemical fixation of CO2 into valuable compounds under mild conditions is attracting much attention. However, there have been a few commercial processes that use CO2 as a feedstock so far. The synthesis of cyclic carbonates via the cycloaddition of CO2 to epoxides is one of the few processes that have been commercialized. Many catalysts have been reported to show catalytic activity towards this reaction, while most of them suffered from some shortcomings, such as low catalytic activity, and/or difficult separation of catalysts from products. In this study, several high-efficiency homogeneous and heterogeneous catalysts were designed and fabricated for the synthesis of cyclic carbonates from CO2 and epoxides.
     A series of novel bismuth compounds bearing a nitrogen-bridged bis(phenolato) ligand, LnBiX (X=Cl, Br, I; n=1~5) and LnBi(OCH3) (n=1~5) were firstly synthesized and examined for the cycloaddition reaction. In the presence of NaI as co-catalyst, the bismuth biphenolate complexes show high catalytic activity and selectivity (>99.5%) for the cycloaddition reaction of CO2 to propylene oxide (PO). LnBiI (n=1~3) is much superior to other bismuth complexes in catalytic efficiency, showing above 95% propylene carbonate (PC) yield at 120℃and 2.5 MPa CO2 initial pressure within 1 h. However, the stability of the bismuth compounds is not satisfactory, which will limit their applications.
     Subsquently, the two-component catalyst systems composed of zinc salts and different phosphonium salts were examined for the cycloaddition reaction. It was found that the ZnBr2-Ph4PI shows the best catalytic activity (e.g., giving TOF 6272 h-1 at 120℃and 2.5 MPa CO2 initial pressure when propylene oxide is used as substrate). Furthermore, the catalytic activity of ZnBr2-Ph4PI didn't change after 10 recycles, showing good stability and reusability. A systematic investigation was also conducted on the effects of different zinc salts, ZnBr2/Ph4PI molar ratio, reaction parameters, and addition of water on the catalytic activity of ZnBr2-Ph4PI. It is noted that the presence of water even in trace amount has a negative effect on PO conversion.
     Heterogeneous catalysts of Zn-Al-O and alkaline-earth metal modified Zn-Al-O composite oxides (denoted as Zn-M-Al-O, M=Mg, Ca, Sr, Ba) were fabricated via calcination of the corresponding hydrotalcites. Among the synthesized composite oxides, Zn-Mg-Al-O (Zn/Mg=4.0, pH=10, without hydrothermal treatment) is the best in performance, showing PC yield of 88.8% and selectivity of 99.2% at 140℃and 2.5 MPa CO2 initial pressure within 12 h. Furthermore, the Zn-Mg-Al-O catalyst has good stability and reusability. The results of NH3- and CO2-TPD investigation indicate that the Zn-Mg-Al-O surface has both acid and basic sites. The basicity of the catalysts was measured by Hammett indicator method, and the results indicate that the sites of moderate basicity (6.1≤H0<8.9) are crucial to the reaction.
     In order to obtain high-efficiency heterognenous catalysts, SBA-15 immobilized hydroxyl ionic liquid (3-(2-hydroxyl-ethyl)-1-propyl-imidazolium bromide, HEPIMBr) catalysts were fabricated by grafting method. The catalyst (SBA-15-HEPIMBr) prepared by grafting method was found to show high catalytic efficiency. It gave 98.9% of PC yield at 140℃and initial CO2 pressure 2.0 MPa when propylene oxide was used as a substrate. Compared with that over ZnBr2-Ph4PI, the presence of a trace amount of water has positive effect on the cycloaddition reaction over SBA-15-HEPIMBr. The excellent performance of SBA-15-HEPIMBr is possibly related to the existence of OH groups. Furthermore, the SBA-15-HEPIMBr shows better catalytic performance than the pure hydroxyl ionic liquid (3-(2-hydroxyl-ethyl)-1-methyl-imidazolium bromide), possibly as a result of the synergistic effect between support and HEPIMBr. Although there was a distinct decrease of PC yield within the first three runs, the activity of SBA-15-HEPIMBr almost didn't change after 4 runs. In order to improve the stability and reusability of the SBA-15 immobilized HEPIMBr catalyst, hybrid SBA-15 immobilized HEPIMBr catalyst (H-SBA-15-HEPIMBr) was also fabricated by one-pot synthesis method. Although the catalytic activity of H-SBA-15-HEPIMBr is lower than that of SBA-15-HEPIMBr, the former shows better stability and reusability.
     In addition,3-(2-hydroxyl-ethyl)-1-vinylimidazolium bromide was copolymerized with the cross-linked divinylbenzene (DVB) to prepare a polymer immobilized hydroxyl ionic liquid (P-DVB-HEVIMBr). The P-DVB-HEVIMBr shows good catalytic activity and stability for the cycloaddition reaction of CO2 to epoxides. After 6 runs, there was only a little decrease in the catalytic activity of P-DVB-HEVIMBr. Moreover, the hydroxyl ionic liquid-grafting polydivinylbenzene catalyst (PDVB-HEIMBr) was fabricated through the reaction of 1-(3-amino-propyl) imidazole-functionlized polydivinyl-benzene with 2-bromoethanol. It was found that the PDVB-HEIMBr exhibits better catalytic performance than P-DVB-HEVIMBr. Furthermore, there was no loss of catalytic activity of PDVB-HEIMBr even after 8 recycles. Therefore, it can be deduced that the PDVB-HEIMBr will find potential industrial applications in cyclic carbonates synthesis. Moreover, a possible reaction mechanism was proposed on the basis of the role of hydroxyl groups of the PDVB-HEIMBr catalyst.
引文
[1]王协琴.温室效应和温室气体减排分析.天然气技术,2008 2(6):53-58
    [2]于天杰,郭友才,刘仲一.二氧化碳化工利用与减排.中国石油和化工经济分析,2008(4):44-47
    [3]Omae I. Aspects of carbon dioxide utilization. Catalysis Today,2006,115:33-52
    [4]吴昊.应对二氧化碳浓度上升问题的研究:CO2的捕获、储存与利用.中国安全科学学报,2008,18(8):5-11
    [5]方华书.二氧化碳与温室效应.福州师专学报(自然科学版),2000,20(6):56-59
    [6]王忻宇.温室效应问题浅析.网络财富,2009,(3):191-192
    [7]周家贤.开发二氧化碳资源推进碳的循环利用.上海化工,2004,(7):7-9
    [8]陈长虹,鲍仙华.全球能源消费与CO2排放量.上海环境科学1999,18(2):62-64
    [9]Song C S. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catalysis Today,2006,115:2-32
    [10]李文杰,李申.二氧化碳的资源与利用.山西化工,2000,20(4):20-22
    [11]颜家保,张浩,于庆满.二氧化碳回收技术及应用前景.应用化工,2005,34(2):76-78
    [12]宋师忠,焦艳霞.二氧化碳用途综述与生产现状.化工科技市场,2003,(12):12-15
    [13]Sakakura T, Choi J C, Yasuda H. Transformation of carbon dioxide. Chemical Reviews,2007,107:2365-2387
    [14]陶恩中,杨杰.温室气体CO2综合利用的现状.电力情报,1999,(4):9-12
    [15]王淑英,马淮凌.二氧化碳资源化研究进展.安徽教育学院学报,2005,23(6):73-75
    [16]张晓阳.二氧化碳气体综合利用研究进展.化肥设计,2009,47(3):26-28
    [17]Clements J H. Reactive applications of cyclic alkylene carbonates. Industrial and Engineering Chemistry Research,2003,42:663-674
    [18]Sivaram S. Organic carbonates. Chemical Reviews,1996,96:951-976
    [19]Sun J M, Fujita S I, Arai M. Development in the green synthesis of cyclic carbonate from carbon dioxide using ionic liquids. Journal of Organometallic Chemistry,2005,690:3490-3497
    [20]Sakakura T, Kohno K. The synthesis of organic carbonates from carbon dioxide. Chemical Communications,2009,45:1312-1330
    [21]周学良,詹方瑜.碳酸丙烯酯脱除CO2技术.杭州:浙江科学技术出版社,1985,1-226
    [22]唐占忠.新型催化剂下碳酸丙烯酯合成条件的优化.化学研究与应用,1997,9(4):366-369
    [23]赵艳敏,刘绍英,王公应.碳酸丙烯酯/碳酸乙烯酯的制备技术研究进展.现代化工,2005,25:19-22
    [24]Tomishige K, Yasuda H, Yoshida Y, et al. Catalytic performance and properties of ceria based catalysts for cyclic carbonate synthesis from glycol and carbon dioxide. Green Chemistry,2004,6:206-214
    [25]Tomishige K, Yasuda H, Yoshida Y, et al. Novel route to propylene carbonate: selective synthesis from propylene glycol and carbon dioxide. Catalysis Letters, 2004,95:45-49
    [26]Huang S Y, Liu S G, Li J P, et al. Effective synthesis of propylene carbonate from propylene glycol and carbon dioxide by alkali carbonates. Catalysis Letters, 2006,112:187-191
    [27]陈鸿,赵新强,王延吉.负载型碳酸钾催化剂上二氧化碳与1,2-丙二醇合成环状碳酸丙烯酯反应研究.高校化学工程学报,2006,20(5):734-739
    [28]Huang S Y, Liu S G, Li J P, et al. Modified zinc oxide for the direct synthesis of propylene carbonate from propylene glycol and carbon dioxide. Catalysis Letters, 2007,118:290-294
    [29]Du Y, He L N, Kong D L. Magnesium-catalyzed synthesis of organic carbonate from 1,2-diol/alcohol and carbon dioxide. Catalysis Communications,2008,9: 1754-1758
    [30]Du Y, Kong D L, Wang H Y, et al. Sn-catalyzed synthesis of propylene carbonate from propylene glycol and CO2 under supercritical conditions. Journal of Molecular Catalysis A:Chemical,2005,241:233-237
    [31]Huang S Y, Ma J, Li J P, et al. Efficient propylene carbonate synthesis from propylene glycol and carbon dioxide via organic bases. Catalysis Communications,2008,9:276-280
    [32]Zhao X Q, Sun N, Wang S F, et al. Synthesis of propylene carbonate from carbon dioxide and 1,2-propylene glycol over zinc acetate catalyst. Industrial and Engineering Chemistry Research,2008,47:1365-1369
    [33]Srivastava R, Srinivas D, Ratnasamy P. Synthesis of polycarbonate precursors over titanosilicate molecular sieves. Catalysis Letters,2003,91:133-139
    [34]Sun J M, Fujita S I, Bhanage B M, et al. Direct oxidative carboxylation of styrene to styrene carbonate in the presence of ionic liquids. Catalysis Communications,2004,5:83-87
    [35]Sun J M, Fujita S I, Bhanage B M, et al. One-pot synthesis of styrene carbonate from styrene in tetrabutylammonium bromide. Catalysis Today,2004,93-95: 383-388
    [36]Sun J M, Fujita S I, Zhao F Y, et al. A direct synthesis of styrene carbonate from styrene with the Au/SiO2-ZnBr2/Bu4NBr catalyst system. Journal of Catalysis, 2005,230:398-405
    [37]Aresta M, Dibenedetto A. Carbon dioxide as building block for the synthesis of organic carbonates:Behavior of homogeneous and heterogeneous catalysts in the oxidative carboxylation of olefins. Journal of Molecular Catalysis A:Chemical, 2002,182-183:399-409
    [38]Aresta M, Dibenedetto A, Dileo C, et al. The first synthesis of a cyclic carbonate from a ketal in SC-CO2. Journal of Supercritical Fluids,2003,25:177-182
    [39]Du Y, Cai F, Kong D L, et al. Organic solvent-free process for the synthesis of propylene carbonate from supercritical carbon dioxide and propylene oxide catalyzed by insoluble ion exchange resins. Green Chemistry,2005,7:518-523
    [40]殷芳喜.加压法合成碳酸丙烯酯工艺过程控制.安徽化工,2003,(4):25-26
    [41]Kihara N, Hara N, Endo T. Catalytic activity of various salts in the reaction of 2,3-epoxypropyl phenyl ether and carbon dioxide under atmospheric pressure. The Journal of Organic Chemistry,1993,58:6198-6202
    [42]Kasuga K, Kabata N. The fixation of carbon dioxide with 1,2-epoxypropane catalyzed by alkali-metal halide in the presence of a crown ether. Inorganic Chimica Acta,1997,257:277-278
    [43]Zhu H, Chen L B, Jiang Y Y. Synthesis of propylene carbonate and some dialkyl carbonates in the presence of bifunctional catalyst compositions. Polymers Advanced Technologies,1996,7:701-703.
    [44]Jagtap S R, Bhanushali M J, Panda A G, et al. Synthesis of cyclic carbonates from carbon dioxide and epoxides using alkali metal halide supported liquid phase catalyst. Catalysis Letters,2006,112(1-2):51-55
    [45]Sako T, Fukai T, Sahashi R. Cycloaddition of oxirane group with carbon dioxide in the supercritical homogeneous state. Industrial and Engineering Chemistry Research.2002,41:5353-5358
    [46]Huang J W, Shi M. Chemical fixation of carbon dioxide by NaI/PPh3/PhOH. The Journal of Organic Chemistry,2003,68:6705-6709
    [47]Kim H S, Bae J Y, Lee J S, et al. Phosphine-bound zinc halide complexes for the coupling reaction of ethylene oxide and carbon dioxide. Journal of Catalysis, 2005,232:80-84
    [48]Sun J, Wang L, Zhang S J, et al. ZnCl2/phosphonium halide:An efficient Lewis acid/base catalyst for the synthesis of cyclic carbonate. Journal of Molecular Catalysis A:Chemical,2006,256:295-300
    [49]Koseva K, Koseva N, Troev K. Calcium chloride as co-catalyst of onium halides in the cycloaddition of carbon dioxide to oxiranes. Journal of Molecular Catalysis A:Chemical,2003,194:29-37
    [50]Shen Y M, Duan W L, Shi M. Phenol and organic bases Co-catalyzed chemical fixation of carbon dioxide with terminal epoxides to form cyclic carbonates. Advanced Synthesis and Catalysis,2003,345(3):337-340
    [51]Shen Y M, Duan W L, Shi M. Chemical fixation of carbon dioxide Co-Catalyzed by a combination of schiff bases or phenols and organic bases. European Journal of Organic Chemistry,2004,3080-3089
    [52]Jing H W, Nguyen S T. SnCl4-organic base:Highly efficient catalyst system for coupling reaction of CO2 and epoxides. Journal of Molecular Catalysis A: Chemical,2007,261:12-15.
    [53]Shiels R A, Jones C W. Homogeneous and heterogeneous 4-(N,N-dialkylamino)pyridines as effective single component catalysts in the synthesis of propylene carbonate. Journal of Molecular Catalysis A:Chemical,2007,261: 160-166
    [54]Kawanami H, Ikushima Y. Chemical fixation of carbon dioxide to styrene carbonate under supercritical conditions with DMF in the absence of any additional catalysts. Chemical Communications,2000,36:2089-2090
    [55]Jiang J L, Hua R M. Efficient DMF-catalyzed coupling of epoxides with CO2 under solvent-Free conditions to afford cyclic carbonates. Synthetic Communications,2006,36:3141-3148
    [56]Xie H B, Li S H, Zhang S B. Highly active, hexabutylguanidinium salt/zinc bromide binary catalyst for the coupling reaction of carbon dioxide and epoxides. Journal of Molecular Catalysis A:Chemical,2006,250:30-34
    [57]王长凤,孙文利,杨光明,等.含氮有机碱活化CO2分子及合成碳酸乙烯酯 的催化活性研究.南开大学学报(自然科学),1997,30(2):93-97
    [58]Barbarini A, Maggi R, Mazzacani A, et al. Cycloaddition of CO2 to epoxides over both homogeneous and silica-supported guanidine catalysts. Tetrahedron Letters,2003,44:2931-2934
    [59]Jiang H F, Yuan B Z, Qi C R. Coupling of carbon dioxide with epoxides catalyzed by amino acid hydrochloride salts. Chinese Journal of Chemistry,2008, 26:1305-1308
    [60]Nomura R, Ninagawa A, Matsuda H. Synthesis of cyclic carbonates from carbon dioxide and epoxides in the presence of organoantimony compounds as novel catalysts. The Journal of Organic Chemistry,1980,45(19):3735-3738
    [61]Nomura R, Kimura M, Teshima S, et al. Direct synthesis of cyclic carbonates in the presence of organometallic compounds. Catalyses by system from IVA, VA, and VIA group compounds and Lewis base. Bulletin of the Chemical Society of Japan,1982,55:3200-3203
    [62]Shen Y M, Duan W L, Shi M. Chemical fixation of carbon dioxide catalyzed by binaphthyldiamino Zn, Cu, and Co salen-type complexes. The Journal of Organic Chemistry,2003,68:1559-1562
    [63]Wang J G, Wu J C, Tang N. Synthesis, characterization of a new bicobalt complex [Co2L2(C2H5OH)2Cl2] and application in cyclic carbonate synthesis. Inorganic Chemistry Communications,2007,10:1493-1495
    [64]Sibaouih A, Ryan P, Axenov K V, et al. Efficient coupling of CO2 and epoxides with bis(phenoxyiminato) cobalt(Ⅲ)/Lewis base catalysts. Journal of Molecular Catalysis A:Chemical,2009,312:87-91
    [65]Lu X B, Liang B, Zhang Y J, et al. Asymmetric catalysis with CO2:Direct synthesis of optically active propylene carbonate from racemic epoxides. Journal of the American Chemical Society,2004,126:3732-3733
    [66]Chen S W, Kawthekar R B, Kim G J. Efficient catalytic synthesis of optically active cyclic carbonates via coupling reaction of epoxides and carbon dioxide. Tetrahedron Letters,2007,48:297-300
    [67]Jin L L, Huang Y Z, Jing H W, et al. Chiral catalysts for the asymmetric cycloaddition of carbon dioxide with epoxides. Tetrahedron:Asymmetry,2008, 19:1947-1953
    [68]Tanaka H, Kitaichi Y, Sato M, et al. Enantioselective CO2 fixation catalyzed by optically active cobalt complexes. Chemistry Letters,2006,33(6):676-677
    [69]Yamada W, Kitaichi Y, Tanaka H, et al. Enantioselective incorporation of carbon dioxide into epoxides catalyzed by optically active cobalt(II) complexes. Bulletin of the Chemical Society Japan,2007,80(7):1391-1401
    [70]Chang T, Jin L L, Jing H W. Bifunctional chiral catalyst for the synthesis of chiral cyclic carbonates from carbon dioxide and epoxides. ChemCatChem,2009, 1(3):379-383
    [71]Lu X B, Zhang Y J, Jin K, et al. Highly active electrophile-nucleophile catalyst system for the cycloaddition of CO2 to epoxides at ambient temperature.Journal of Catalysis,2004,227:537-541
    [72]Lu X B, Zhang Y J, Liang B, et al. Chemical fixation of carbon dioxide to cyclic carbonates under extremely mild conditions with highly active bifunctional catalysts. Journal of Molecular Catalysis A:Chemical,2004,210:31-34
    [73]Melendez J, North M, Pasquale R. Synthesis of Cyclic Carbonates from Atmospheric Pressure Carbon Dioxide Using Exceptionally Active Aluminium (salen) Complexes as Catalysts. European Journal of Inorganic Chemistry,2007, 3323-3326
    [74]Paddock R L, Nguyen S T. Chemical CO2 fixation:Cr(Ⅲ) salen complexes as highly efficient catalysts for the coupling of CO2 and epoxides. Journal of the American Chemical Society,2001,123:11498-11499
    [75]Darensbourg D J, Fang C C, Rodgers J L. Catalytic coupling of carbon dioxide and 2,3-epoxy-1,2,3,4-tetrahydronaphthalene in the presence of a (Salen)CrⅢCl derivative. Organometallics,2004,23:924-927
    [76]Srivastava R, Bennur T H, Srinivas D. Factors affecting activation and utilization of carbon dioxide in cyclic carbonates synthesis over Cu and Mn peraza macrocyclic complexes. Journal of Molecular Catalysis A:Chemical,2005,226: 199-205
    [77]Jutz F, Grunwaldt J D, Baiker A. Mn(Ⅲ) (salen)-catalyzed synthesis of cyclic organic carbonates from propylene and styrene oxide in "supercritical" CO2. Journal of Molecular Catalysis A:Chemical,2008,279:94-103
    [78]Jing H W, Chang T, Jin L L, et al. Ruthenium Salen/phenyltrimethylammonium tribromide catalyzed coupling reaction of carbon dioxide and epoxides. Catalysis Communications,2007,8:1630-1634
    [79]马红,韩士田.卟啉在催化剂方面的应用研究进展.河北工业科技,2009,26(3):205-209
    [80]唐青华,周贤太,纪红兵.双核金属卟啉仿酶催化剂的合成及催化氧化进展.化工进展,2009,28(2):234-242
    [81]Kruper W J, Dellar D V. Catalytic formation of cyclic carbonates from epoxides and CO2 with chromium metalloporphyrinates. The Journal of Organic Chemistry,1995,60:725-727
    [82]Paddock R L, Hiyama Y, Mckay J M, et al. Co(Ⅲ) porphyrin/DMAP:an efficient catalyst system for the synthesis of cyclic carbonates from CO2 and epoxides. Tetrahedron Letters,2004,45:2023-2026
    [83]Jin L L, Chang T, Jing H W. Coupling of epoxides with carbon dioxide catalyzed by ruthenium porphyrin complex. Chinese Journal of Catalysis,2007,28(4): 287-289
    [84]Jin L L, Jing H W, Chang T, et al. Metal porphyrin/phenyltrimethyl-ammonium tribromide:High efficient catalysts for coupling reaction of CO2 and epoxides. Journal of Molecular Catalysis A:Chemical,2007,261:262-266
    [85]Kasuga K, Kabata N, Kato T, Sugimori T, Handa M. Fixation of carbon dioxide with 1,2-epoxypropane catalysed by tetra-t-butyl- phthalocyaninatoaluminium (Ⅲ) acetate, tetra-t-butylphthalo- cyaninatoaluminium (Ⅲ) trimethylsilanolate and tetra-t-butylphthalo- cyaninatoaluminium (Ⅲ) triphenylsilanolate. Inorganica Chimica Acta,1998,278:223-225
    [86]季东锋,吕小兵,何仁,等.碱性配体对氯铝酞菁催化CO2与环氧烷烃合成烷撑碳酸酯的促进作用.催化学报,1999,20(6):675-678
    [87]张英菊,梁斌,潘玉珍,等.四叔丁基金属酞菁催化活化CO2与环氧化物的环加成反应.催化学报,2003,24(10):765-768
    [88]Ramin M, Grunwaldt J D, Baiker A. Behavior of homogeneous and immobilized zinc-based catalysts in cycloaddition of CO2 to propylene oxide. Journal of Catalysis,2005,234:256-267
    [89]Bu Z W, Qin G, Cao S K. A ruthenium complex exhibiting high catalytic efficiency for the formation of propylene carbonate from carbon dioxide. Journal of Molecular Catalysis A:Chemical,2007,277:35-39
    [90]Li F W, Xia C G, Xu L W, et al. A novel and effective Ni complex catalyst system for the coupling reactions of carbon dioxide and epoxides. Chemical Communications,2003,39:2042-2043
    [91]Jiang J L, Gao F X, Hua R M, et al. Re(CO)5Br-catalyzed coupling of epoxides with CO2 affording cyclic carbonates under solvent-free conditions. The Journal of Organic Chemistry,2005,70:381-383
    [92]Ulusoy M, Cetinkaya E, Cetinkaya B. Conversion of carbon dioxide to cyclic carbonates using diimine Ru(II) complexes as catalysts. Applied Organometallic Chemistry,2009,23:68-74
    [93]Dharman M M, Yu J I, Ahn J Y, et al. Selective production of cyclic carbonate over polycarbonate using a double metal cyanide-quaternary ammonium salt catalyst system. Green Chemistry,2009,11:1754-1757
    [94]Peng J J, Deng Y Q. Cycloaddition of carbon dioxide to propylene oxide catalyzed by ionic liquids. New Journal of Chemistry,2001,25:639-641
    [95]彭家建,邓友全.室温离子液体催化合成碳酸丙烯酯.催化学报,2001,22(6):598-600
    [96]Calo V, Nacci A, Monopoli A, et al. Cyclic carbonate formation from carbon dioxide and oxiranes in tetrabutylammonium halides as solvents and catalysts. Organic Letters,2002,4(15):2561-2563
    [97]Kawanami H, Sasaki A, Matsui K, et al. A rapid and effective synthesis of propylene carbonate using a supercritical CO2-ionic liquid system. Chemical Communications,2003,39:896-897
    [98]He L N, Yasuda H, Sakakura T. New procedure for recycling homogeneous catalyst:propylene carbonate synthesis under supercritical CO2 conditions. Green Chemistry,2003,5,92-94
    [99]Kim H S, Kim J J, Kim H, et al. Imidazolium zinc tetrahalide-catalyzed coupling reaction of CO2 and ethylene oxide or propylene oxide. Journal of Catalysis,2003,220:44-46
    [100]Sun J M, Fujita S I, Zhao F Y, et al. Synthesis of styrene carbonate from styrene oxide and carbon dioxide in the presence of zinc bromide and ionic liquid under mild conditions. Green Chemistry,2004,6:613-616
    [101]Li F W, Xiao L F, Xia C G, et al. Chemical fixation of CO2 with highly efficient ZnCl2/[BMIm]Br catalyst system. Tetrahedron Letters,2004,45:8307-8310
    [102]Ono F, Qiao K, Tomida D, et al. Rapid synthesis of cyclic carbonates from CO2 and epoxides under microwave irradiation with controlled temperature and pressure. Journal of Molecular Catalysis A:Chemical,2007,263:223-226
    [103]Sun J, Zhang S J, Cheng W G, et al. Hydroxyl-functionalized ionic liquid:a novel efficient catalyst for chemical fixation of CO2 to cyclic carbonate. Tetrahedron Letters,2008,49:3588-3591
    [104]Ion A, Parvulescu V, Jacobs P, et al. Sc and Zn-catalyzed synthesis of cyclic carbonates from CO2 and epoxides. Applied. Catalysis A:General,2009,363: 40-44
    [105]Lee E H, Ahn J Y, Dharman M M, et al. Synthesis of cyclic carbonate from vinyl cyclohexene oxide and CO2 using ionic liquids as catalysts. Catalysis. Today, 2008,131:130-134
    [106]Sun J, Ren J Y, Zhang S J, et al. Water as an efficient medium for the synthesis of cyclic carbonate. Tetrahedron Letters,2009,50:423-426
    [107]Yasuda H, He L N, Sakakura T, et al. Efficient synthesis of cyclic carbonate from carbon dioxide catalyzed by polyoxometalate:the remarkable effects of metal substitution. Journal of Catalysis,2005,233:119-122
    [108]Gomes C R, Ferreira D M, Constantino C J L,et al. Selectivity of the cyclic carbonate formation by fixation of carbon dioxide into epoxides catalyzed by Lewis bases. Tetrahedron Letters,2008,49:6879-6881
    [109]Bhanage B M, Fujita S I, Ikushima Y, et al. Synthesis of dimethyl carbonate and glycols from carbon dioxide, epoxides, and methanol using heterogeneous basic metal oxide catalysts with high activity and selectivity. Applied Catalysis A: General,2001,219:259-266
    [110]Yano T, Matsui H, Koike T, et al. Magnesium oxide-catalysed reaction of carbon dioxide with an epoxide with retention of stereochemistry. Chemical Communications,1997,33:1129-1130
    [111]Aresta M, Dibenedetto A, Gianfrate L, et al. Nb(V) compounds as epoxides carboxylation catalysts:the role of the solvent. Journal of Molecular Catalysis A: Chemical,2003,204-205:245-252
    [112]Yamaguchi K, Ebitani K, Yoshida T, et al. Mg-Al Mixed oxides as highly active acid-base catalysts for cycloaddition of carbon dioxide to epoxides. Journal of the American Chemical Society,1999,121:4526-4527
    [113]Ramin M, Van Vegten N, Grunwaldt J D, et al. Simple preparation routes towards novel Zn-based catalysts for the solventless synthesis of propylene carbonate using dense carbon dioxide. Journal of Molecular Catalysis A: Chemical,2006,258:165-171
    [114]Yasuda H, He L N, Takahashi T, et al. Non-halogen catalysts for propylene carbonate synthesis from CO2 under supercritical conditions. Applied Catalysis A:General.2006,298:177-180
    [115]Doskocil E J, Bordawekar S V, Kaye B G, et al. UV-Vis spectroscopy of iodine adsorbed on alkali-metal-modified zeolite catalysts for addition of carbon dioxide to ethylene oxide. Journal of Physical Chemistry B,1999,103: 6277-6282
    [116]Davis R J, Doskocil E J, Bordawekar S. Structure/function relationships for basic zeolite catalysts containing occluded alkali species. Catalysis Today,2000,62: 241-247
    [117]Tu M, Davis R J. Cycloaddition of CO2 to epoxides over solid base catalysts. Journal of Catalysis,2001,199:85-91
    [118]Doskocil E J. Ion-exchanged ETS-10 catalysts for the cycloaddition of carbon dioxide to propylene oxide. Microporous and Mesoporous Materials.2004,76: 177-183
    [119]Doskocil E J. Effect of water and alkali modifications on ETS-10 for the cycloaddition of CO2 to propylene oxide. Journal of Physical Chemistry B,2005, 109:2315-2320
    [120]Srivastava R, Srinivas D, Ratnasamy P. Synthesis of polycarbonate precursors over titanosilicate molecular sieves. Catalysis Letters,2003,91:133-139
    [121]张翠仙,涂华民,栾文楼.表面活性剂修饰蒙脱石负载杂多酸催化剂的制备及表征.化学世界,2004,45(7):376-379
    [122]Fujita S, Bhanage B M, Ikushima Y, et al. Chemical fixation of carbon dioxide to propylene carbonate using smectite catalysts with high activity and selectivity. Catalysis Letters,2002,79:95-98
    [123]Srivastava R, Srinivas D, Ratnasamy P. CO2 activation and synthesis of cyclic carbonates and alkyl/aryl carbamates over adenine-modified Ti-SBA-15 solid catalysts. Journal of Catalysis,2005,233:1-15
    [124]Srivastava R, Srinivas D, Ratnasamy P. Sites for CO2 activation over amine-functionalized mesoporous Ti(Al)-SBA-15 catalysts. Microporous and Mesoporous Materials.2006,90:314-326
    [125]Srinivas D, Ratnasamy P. Spectroscopic and catalytic properties of SBA-15 molecular sieves functionalized with acidic and basic moieties. Microporous and Mesoporous Materials.2007,105:170-180
    [126]Zhang X H, Zhao N, Wei W, et al. Chemical fixation of carbon dioxide to propylene carbonate over amine-functionalized silica catalysts. Catalysis Today, 2006,115:102-106
    [127]Jagtap S R, Raje V P, Samant S D, et al. Silica supported polyvinyl pyridine as a highly active heterogeneous base catalyst for the synthesis of cyclic carbonates from carbon dioxide and epoxides. Journal of Molecular Catalysis A:Chemical, 2007,266:69-74
    [128]Baleizao C, Gigante B, Sabater M J, et al. On the activity of chiral chromium salen complexes covalently bound to solid silicates for the enantioselective epoxide ring opening. Applied Catalisis A:Genenal,2002,228:279-288
    [129]Alvaro M, Baleizao C, Das D, Carbonell E, Garcia H. CO2 fixation using recoverable chromium salen catalysts:use of ionic liquids as cosolvent or high-surface-area silicates as supports. Journal of Catalysis,2004,228:254-258
    [130]Ramin M, Jutz F, Grunwaldt J D, et al. Solventless synthesis of propylene carbonate catalysed by chromium-salen complexes:Bridging homogeneous and heterogeneous catalysis. Journal of Molecular Catalysis A:Chemical,2005,242: 32-39
    [131]Lu X B, Wang H, He R. Aluminum phthalocyanine complex covalently bonded to MCM-41 silica as heterogeneous catalyst for the synthesis of cyclic carbonates. Journal of Molecular Catalysis A:Chemical,2002,186:33-42
    [132]Wong W L, Cheung K C, Chan P H, et al. A tricarbonyl rhenium(Ⅰ) complex with a pendant pyrrolidinium moiety as a robust and recyclable catalyst for chemical fixation of carbon dioxide in ionic liquid. Chemical Communications,2007, 2175-2177
    [133]Alvaro M, Baleizao C, Carbonell E, et al. Polymer-bound aluminium salen complex as reusable catalysts for CO2 insertion into epoxides. Tetrahedron,2005, 61:12131-12139
    [134]Lu X B, Xiu J H, He R, et al. Chemical fixation of CO2 to ethylene carbonate under supercritical conditions:continuous and selective. Applied Catalysis A: General,2004,275:73-78
    [135]Xiao L F, Li F W, Peng J J, et al. Immobilized ionic liquid/zinc chloride: Heterogeneous catalyst for synthesis of cyclic carbonates from carbon dioxide and epoxides. Journal of Molecular Catalysis A:Chemical,2006,253:265-269
    [136]Zhang X L, Wang D F, Zhao N, et al. Grafted ionic liquid:Catalysts for solventless cycloaddition of carbon dioxide and propylene oxide. Catalysis Communications,2009,11:43-46
    [137]Udayakumar S, Raman V, Shim H L, et al. Cycloaddition of carbon dioxide for commercially-imperative cyclic carbonates using ionic liquid-functionalized porous amorphous silica. Applied Catalysis A:General,2009,368:97-104
    [138]Wang J Q, Kong D L, Chen J Y, et al. Synthesis of cyclic carbonates from epoxides and carbon dioxide over silica-supported quaternary ammonium salts under supercritical conditions. Journal of Molecular Catalysis A:Chemical,2006, 249:143-148
    [139]Wang J Q, Yue X D, Cai F, et al. Solventless synthesis of cyclic carbonates from carbon dioxide and epoxides catalyzed by silica-supported ionic liquids under supercritical conditions. Catalysis Communications,2007,8:167-172
    [140]Zhao Y, Tian J S, Qi X H, et al. Quaternary ammonium salt-functionalized chitosan:An easily recyclable catalyst for efficient synthesis of cyclic carbonates from epoxides and carbon dioxide. Journal of Molecular Catalysis A:Chemical, 2007,271:284-289
    [141]Takahashi T, Watahiki T, Kitazume S, et al. Synergistic hybrid catalyst for cyclic carbonate synthesis:Remarkable acceleration caused by immobilization of homogeneous catalyst on silica. Chemical Communications,2006,42: 1664-1666
    [142]Sakai T, Tsutsumi Y, Ema T. Highly active and robust organic-inorganic hybrid catalyst for the synthesis of cyclic carbonates from carbon dioxide and epoxides. Green Chemistry,2008,10:337-341
    [143]Xie Y, Zhang Z F, Jiang T, et al. CO2 cycloaddition reactions catalyzed by an ionic liquid grafted onto a highly cross-linked polymer matrix. Angewandte Chemie International Edition,2007,46:7255-7258
    [144]Udayakumar S, Son Y S, Lee M K, et al. The synthesis of chloropropylated MCM-41 through co-condensation technique:The path finding process. Applied Catalysis A:General,2008,347:192-199
    [145]Udayakumar S, Park S W, Park D W, et al. Immobilization of ionic liquid on hybrid MCM-41 system for the chemical fixation of carbon dioxide on cyclic carbonate. Catalysis Communications,2008,9:1563-1570
    [146]Udayakumar S, Lee M K, Shim H L, et al. Imidazolium derivatives functionalized MCM-41 for catalytic conversion of carbon dioxide to cyclic carbonate. Catalysis Communications,2009,10:659-664
    [147]Udayakumar S, Lee M K, Shim H L, et al. Functionalization of organic ions on hybrid MCM-41 for cycloaddition reaction:The effective conversion of carbon dioxide. Applied Catalysis A:General,2009,365:88-95
    [148]Kim H S, Kim J J, Kwon H N, et al. Well-defined highly active heterogeneous catalyst system for the coupling reactions of carbon dioxide and epoxides. Journal of Catalysis,2002,205:226-229
    [149]Yasuda H, He L N, Sakakura T. Science and technology in catalysis 2002. Studies in Surface Science and Catalysis,2003,145:259-262
    [150]Shi F, Zhang Q H, Ma Y B, et al. From CO Oxidation to CO2 Activation:An Unexpected Catalytic Activity of Polymer-Supported Nanogold. Journal of the American Chemical Society.2005,127:4182-4183
    [151]Xiao L F, Li F W, Xia C G. An easily recoverable and efficient natural biopolymer-supported zinc chloride catalyst system for the chemical fixation of carbon dioxide to cyclic carbonate. Applied Catalysis A:General,2005,279: 125-129
    [152]He J L, Wu T B, Zhang Z F, et al. Cycloaddition of CO2 to Epoxides Catalyzed by Polyaniline Salts. Chemistry-A European Journal,2007,13:6992-6997
    [153]李福伟,肖林飞,夏春谷.溴化锌-离子液体复合催化体系高校催化合成环状碳酸酯.高等学校化学学报,2005,26(2):343-345
    [154]Sankar M, Tarte N H, Manikandan P. Effective catalytic system of zinc-substituted polyoxometalate for cycloaddition of CO2 to epoxides. Applied Catalysis A:General,2004,276:217-222
    [155]Mori K, Mitani Y, Hara T, et al. A single-site hydroxyapatite-bound zinc catalyst for highly efficient chemical fixation of carbon dioxide with epoxides. Chemical Communications,2005,41:3331-3333
    [156]蒋琪英,沈娟,钟国清.含铋(Ⅲ)配合物的合成及铋的配位性质.化学进展,2006,18(12):1634-1645
    [157]LOwig C, Schweizer E. Uber das Stibdthyl. Liebigs Annual Chemistry,1850,75: 315-327
    [158]Finet J-p. Arylation Reactions with Organobismuth Reagents. Chemical Reviews, 1989,89:1487-1501
    [159]Noman N C, Ed. Chemistry of Arsenic, Antimony and Bisnuth. London:Blackie Academic and Professional,1998,10-135
    [160]Leonard N M, Wieland L C, Mohan R S. Applications of bismuth(Ⅲ) compounds in organic synthesis. Tetrahedron,2002,58:8373-8397
    [161]Edward R T, Tiekink. Antimony and bismuth compounds in oncology. Oncology/ Hematology,2002,42:217-224
    [162]Sun H, Li H, Sadler P J. The Biological and Medicinal Chemistry of Bismuth. Chemische Berichte/Recueil,1997,130:669-681
    [163]Yin S F, Dai W L, Li W S, et al. Synethsis of novel organobismuth complexes bearing a sulfur-bridged biphenolate ligand and their catalytic application to CO2 cycloaddition with propylene epoxide. 分子催化,2007,21(3):264-267
    [164]Yin S F, Shimada S. Synthesis and structure of bismuth compounds bearing a sulfur-bridged bis(phenolato) ligand and their catalytic application to the solvent-free synthesis of propylene carbonate from CO2 and propylene oxide. Chemical Communications,2009,45:1136-1138
    [165]张晓文,尹双凤,伍水生,等.有机铋化学近十年的研究进展.化学进展,2008,20(6):878-886
    [166]Yin S F, Maruyama J, Yamashita T, et al. Efficient Fixation of Carbon Dioxide by Hypervalent Organobismuth Oxide, Hydroxide, and Alkoxide. Angew. Chemie International Edition,2008,47:6590-6593
    [167]Zhang X W, Xia J, Yan H W, et al. Synthesis, structure, and in vitro antitumor activity of cyclic hypervalent organobismuth(Ⅲ) chlorides and triphenylgermylpropionates. Journal of organomet Chemistry,2009,694: 3019-3026
    [168]Qiu R H, Yin S F, Zhang X W, et al. Synthesis and structure of an air-stable cationic organobismuth complex and its use as a highly efficient catalyst for the direct diastereoselective Mannich reaction in water.2009, Chemical Communications,2009,45:4759-4761
    [169]Zhang X W, Yin S F, Qiu R H, et al. Synthesis and structure of an air-stable hypervalent organobismuth (Ⅲ) perfluorooctanesulfonate and its use as high-efficiency catalyst for Mannich-type reactions in water.2009, Journal of Organometallic Chemistry,2009,694(22):3559-3564
    [170]Qiu R H, Qiu Y M, Yin S F, et al. Highly efficient and selective synthesis of (E)-α,β-unsaturated ketones by crossed condensation of ketones and aldehydes catalyzed by an air-stable cationic organobismuth perfluorooctanesulfonate. Advanced Synthesis and Catalysis,2010,352:153-162
    [171]Tshuva E Y, Goldberg I, Kol M. Isospecific living polymerization of 1-hexene by a readily available nonmetallocene C2-symmetrical zirconium catalyst. Journal of America Chemical Society,2000,122:10706-10707
    [172]Tshuva E Y, Goldberg I, Kol M. Zirconium complexes of amine-bis(phenolate) ligands as catalysts for 1-hexene polymerization:peripheral structure parameters strongly affect reactivity. Organometallics,2001,20:3017-3028
    [173]Sun J M, Fujita S I, Zhao F Y, et al. A highly efficient catalyst system of ZnBr2/n-Bu4NI for the synthesis of styrene carbonate from styrene oxide and supercritical carbon dioxide. Applied Catalysis A:General,2005,287:221-226
    [174]Kim Y J, Varma R S. Tetrahaloindate(Ⅲ)-based ionic liquids in the coupling reaction of carbon dioxide and epoxides to generate cyclic carbonates: H-bonding and mechanistic studies. The Journal of Organic Chemistry,2005,70: 7882-7891
    [175]Lu X B, He R, Bai C X. Synthesis of ethylene carbonate from supercritical carbon dioxide/ethylene oxide mixture in the presence of bifunctional catalyst. Journal of Molecular Catalysis A:Chemical,2002,186:1-11
    [176]Kim H S, Kim J J, Lee S D, et al. New mechanistic into the coupling reactions of CO2 and epoxides in the presence of zinc complexes. Chemistry-A European Journal,2003,9(3):768-686
    [177]Kovanda F, Kolousek D, Cilova Z, et al. Crystallization of synthetic hydrotalcite under hydrothermal conditions. Applied Clay Science,2005,28(1-4):101-109
    [178]Kim T W, Sahimi M, Tsotsis T. The preparation and characterization of hydrotalcite thin films. Industrial and Engineering Chemistry Research,2009, 48(12):5794-5801
    [179]谢鲜梅,刘洁翔,安霞,等.NiMgAl三元类水滑石的制备研究.燃料化学学报,2003,31(6):620-623
    [180]张惠,申延明,吴静,等.CuMgAl类水滑石的合成条件研究.沈阳化工学院学报,2005,19(1):21-24
    [181]佘励勤,李宣文.固体催化剂的研究方法第四章化学吸附于表面酸性测定(下).石油化工,2000,29(8):621-635
    [182]T. Yamanaka, K. Tanabe. A new determination of acid-base strength distribution of a common scale on solid surface. The Journal of Physical Chemistry,1975, 79(22):2409-2411
    [183]Yamanaka T, Tanabe K. A representative parameter, H0,max, of acid-base strength on solid metal-oxygen compounds. The Journal of Physical Chemistry,1976, 80(15):1723-1727
    [184]Crespo I, Barriga C, Ulibarri M A, et al. An X-ray diffraction and absorption study of the phases formed upon calcinations of Zn-Al-Fe hydrotalcites. Chemistry of Materials,2001,13(5):1518-1527
    [185]Kanezaki E. Thermal behavior of the hydrotalcite-like layered struchture of Mg and Al-layered double hydroxides with interlayer carbonate by means of in situ powder HTXRD and DTA/TG. Solid State Ionics,1998,106 (3-4):279-284
    [186]Sanchez V J, Figueras F, Gravelle M, et al. Basic properties of the mixed oxides obtained by thermal decomposition of hydrotalcites containing different metallic compositions. Journal of Catalysis,2000,189(2):370-381
    [187]Holgado M J, Rives V, San Roman M S. Characterization of Ni-Mg-Al mixed oxides and their catalytic activity in oxidative dehydrogenation of n-butane and propene. Applied Catalysis A:General,2001,214:219-228
    [188]Bontchev R P, Liu S, Krumhansl J L, et al. Synthesis, characterization, and ion exchange properties of hydrotalcite Mg6Al2(OH)16(A)x(A')2-x4H2O (A, A'=Cl-, Br-, I-, and NO3-,2≥x≥0) derivatives. Chemistry of Materials,2003,15: 3669-3675
    [189]Oh J M, Hwang S H, Choy J H. The effect of synthetic conditions on tailoring the size of hydrotalcite particle. Solid State Ionics,2002,151(1-4):285-291
    [190]赵正康,李娟,吕志果.离子液体的合成与应用研究进展.精细石油化工进展,2009,10(6):36-41
    [191]王元勋,栾吉梅,乔卫红,等.离子液体在精细化工中的应用,2007,15(15):10-13
    [192]Wasserscheid P, Keim W. Ionic liquids-new "Solutions" for transition metal catalysis. Angewandte Chemie International Edition,2000,39(21):3772-3789
    [193]Olivier H. Recent development in the use of non-aqueous ionic liquids for two-phase catalysis. Journal of Molecular Catalysis A:Chemical,1999,146(1-2): 285-289
    [194]肖友军,周阳,周磊.离子液体及其应用进展.辽宁化工,2008,37(11):755-758
    [195]Welton T. Ionic liquids in catalysis. Coordination Chemistry Reviews,2004,248: 2459-2477
    [196]Shi F, Gu Y L, Zhang Q H, et al. Development of ionic liquids as green reaction media and catalysts. Catalysis Survey from Asia,2004,8(3):179-186
    [197]Zhao D Y, Huo Q S, Feng J L, et al. Noionic triblock and star diblock copolymer and oligomeric surfactant synthesis of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society,1998, 120:6024-6036
    [198]Hiyoshi N, Yogo K, Yashima T. Adsorption characteristics of carbon dioxide on organically functionalized SBA-15. Microporous and Mesoporous Materials, 2005,84(1-3)357-365
    [199]Valkenberg M H, deCastro C, Holderich W F. Immobilisation of ionic liquids on solid supports. Green Chemistry,2002,4:88-93
    [200]任俊毅,王少君,成卫国,等.负载型功能化离子液体的催化性能.化工学报,2009,60(6):1471-1476
    [201]Liu Y, Peng J J, Zhai S R, et al. Synthesis of Ionic Liquid Functionalized SBA-15 Mesoporous Materials as Heterogeneous Catalyst toward Knoevenagel Condensation under Solvent-Free Conditions. European Journal of Inorganic Chemistry,2006,2947-2949
    [202]Xu L W, Yang M S, Jiang J X, et al. Ionic liquid-functionalized SBA-15 mesoporous material:efficient heterogeneous catalyst in versatile organic reactions. Central European Journal of Chemistry,2007,5(4):1073-1083
    [203]Hammond W, Prouzet E, Mahanti S D, et al. Structure factor for the periodic walls of mesoporous MCM-41 molecular sieves. Microporous and Mesoporous Materials,1999,27:19-25
    [204]Yue M B, Sun L B, Cao Y, et al. Promoting the CO2 adsorption in the amine-containing SBA-15 by hydroxyl group. Microporous and Mesoporous Materials,2008,114:74-81
    [205]Xu X C, Song C S, Andresen J M, et al. Preparation and characterization of novel CO2 "molecular basket" adsorbents based on polymer-modified mesoporous molecular sieve MCM-41. Microporous and Mesoporous Materials,2003,62: 29-45
    [206]咪唑的红外光谱数据来自SDBSWeb:http://riodb01.ibase.aist.go.ip/sdbs/
    [207]Kim H S, Kim J J, Lee S D, et al. New mechanistic insight into the coupling reactions of CO2 and epoxides in the presence of zinc complexes. Chemistry-A European Journal,2003,9(3):678-686
    [208]Motokura K, Itagaki S, Iwasawa Y, et al. Silica-supported aminopyridinium halides for catalytic transformations of epoxides to cyclic carbonates under atmospheric pressure of carbon dioxide. Green Chemistry,2009,11:1876-1880
    [209]De C Y, Lu B, Lv H, et al. One-pot synthesis of dimethyl carbonate from methanol, propylene oxide and carbon dioxide over supported choline hydroxide/MgO. Catalysis Letters,2009,128:459-464
    [210]North M, Villuendas P, Young C. A gas-phase flow reactor for ethylene carbonate synthesis from waste carbon dioxide. Chemistry-A European Journal,2009, 15(43):11454-11457
    [211]Ratzenhofer M, Kisch H. Metal-catalyzed synthesis of cyclic carbonates from carbon dioxide and oxiranes. Angewandte Chemie International Edition in English,1980,19(4):317-318
    [212]朱宏,陈立班,江英彦.离子交换树脂催化合成碳酸亚丙酯.现代化工,1996,16(4):26-28
    [213]黄唯平,吴世华,王紫霞,等.含氮碱性树脂催化二氧化碳与环氧乙烷反应研究.离子交换与吸附,1998,14(1):78-81
    [214]王长凤,夏勇德,孙文利,等.高聚物固载化含氮和含膦配体络合催化剂的 制备和催化活性.离子交换与吸附.1998,14(2):104-109
    [215]Zhu A L, Jiang T, Han B X, et al. Supported choline chloride/urea as a heterogeneous catalyst for chemical fixation of carbon dioxide to cyclic carbonates. Green Chemistry,2007,9:169-172

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700