用户名: 密码: 验证码:
镍基和铁基催化剂上甲烷催化裂解反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲烷催化裂解反应可以一步制取不含碳氧化物的纯净氢,并得到具有潜在应用价值的纳米碳材料,在能量和过程上具有明显的优势。本文通过对Ni基和Fe基催化剂的基础研究,设计具有较高活性和稳定性的催化剂,探讨了不同反应模式,并对各种纳米碳材料的制备和生成机理进行了研究和分析。
     使用共沉淀法制备了以水滑石为母体的NiAl和NiCuAl催化剂,并考察了还原温度、反应温度、Ni的负载量提高、进料气速对流化床中甲烷催化裂解反应的影响。并通过对甲烷催化裂解在低温为本征化学反应控制区域动力学的测定,发现Ni/Al2O3和NiCu/Al2O3两种催化剂的活化能很相近,都在73±2 kJ/mol的范围内,这表明Cu的加入并未影响由数个Ni原子组成的甲烷催化裂解反应活性位的催化活性。这点对甲烷吸附过程的DFT模拟所证实,模拟结果发现甲烷在Ni(100)以及NiCu(100)表面的活化能非常接近。但由于Cu的加入并且在表面的富集,会引起表面这种活性位数量迅速下降,而造成相同温度下活性的降低,但这种作用在高温下可以减少碳包裹颗粒的概率,从而提高高温稳定性。
     同时,通过使用带有甲烷化转化器的气相色谱对生成尾气中的CO含量进行了测定。发现在不使用干燥除氧装置时,反应尾气中的CO浓度可达1800-2500 ppm,单独使用干燥装置时反应初期尾气中CO浓度约为1040 ppm,但反应稳定后可以下降到700 ppm以下。在同时使用干燥和除氧装置后,CO浓度较添加装置前明显下降,稳定时达到250 ppm左右。而且当使用纯甲烷进料时,在反应80 min后达到10 ppm以下的水平。结果还表明,CO浓度随着温度的升高而增加,并且在反应初期浓度最高。
     通过比较NiCu/Al2O3在恒温反应(CTR)和低温引导高温反应(PIR)两种反应过程,发现使用PIR可以显著提高催化剂的稳定性。通过使用HRTEM和EDS对生长碳纤维的催化剂金属颗粒进行表征后发现,PIR产生的金属颗粒的组成与低温CTR的金属颗粒组成类似,Ni/Cu比约为3:1,而高温CTR的金属颗粒中Ni/Cu低于1:1。而且从生成的纳米碳纤维和金属颗粒的形状来看,PIR兼具高温和低温CTR反应时生成产品结构的特点。可以认为,在反应的引导过程中,形成了富铜的颗粒和富镍的颗粒,当甲烷催化裂解反应在较低的温度下进行时,富铜的颗粒由于铜的惰性和易在表面分布的性质,催化活性很低;而富镍的颗粒拥有适合碳纤维生长的结构和组成,因此有较高的活性,因此在本实验中观察到的碳纤维的顶部的催化剂颗粒多具有较高的镍含量。当反应温度较高时,催化剂颗粒失活很快,在这种条件下,富镍的颗粒稳定性很差,不适合催化生长碳纤维,而富铜的颗粒由于铜对镍的调变作用可以保持一定的活性,因此可以在实验结果中发现高温下碳纤维顶端的催化剂颗粒的铜含量较高,但是即使如此,富铜颗粒对于甲烷裂解反应的催化活性仍然较低。在分步加热的条件下,甲烷裂解反应的引导过程在较低温度进行,可使催化剂颗粒的结构重组的低温下进行,使富镍颗粒保持活性,并在一定长度的碳纤维壁可以保护富镍颗粒在高温下有较好的稳定性。
     考察了铁基催化剂中掺杂Mo,Cr和W对催化剂活性的影响,结果发现,对甲烷催化裂解反应没有活性的Cr和W占据表面位置,减少活性位,而降低甲烷转化率,而且Cr的掺杂会导致无定型碳的生成,容易造成金属颗粒表面积碳而失活。而在催化剂中掺杂Mo可以显著提高催化剂的活性,可以将单金属的Fe/Al2O3催化剂17%的转化率提高到40%左右,通过XRD和TPR表征发现,在催化剂掺杂Mo后,催化剂的氧化物状态和还原过程发生了明显变化,并有利于提高Fe的分散度。当Mo/(Mo+Fe)(mol比)为10%催化剂具有最高活性。通过在固定床中的反应发现,该催化剂可以在973 K时,甲烷转化率可以保持在44%约180 min;当反应温度升至1023 K时,甲烷初始转化率可达78%,但是高活性只能保持40 min。
     对高温条件下甲烷催化裂解反应制备纳米碳材料进行了研究。使用柠檬酸法制备的FeMo催化剂用于甲烷催化裂解反应。并使用HRTEM和Raman对生成的纳米碳进行了表征。使用活性组分含量为Fe:Mo:Al=9:1:120的催化剂,制备出了纯度很高,直径在1-2.5 nm之间的单壁纳米碳管。使用浸渍法制备的负载量为16%的Fe/MgO、Mo/MgO和FeMo/MgO用于甲烷催化裂解反应,分别得到了大量的直径在10 nm左右的多壁纳米碳管、一些多壁纳米碳管,以及纳米碳洋葱。并且发现,Mo/MgO高温稳定好,甲烷转化率可以一直保持在31%左右,XRD结果证实Mo2C为甲烷裂解反应的活性中心。根据本文HRTEM观察到的结果,提出单壁纳米碳管束的生长是以金属表面形成的突起为生长中心的。而纳米碳洋葱的生成主要与高温石墨层生长过快有关,而颗粒大小不同的金属颗粒,表面张力和进入拟液态的程度也不同,生成纳米碳洋葱或者石墨笼。
Methane catalytic decomposition can produce COx-free hydrogen and carbon nanomaterials simultaneously, which is prior to the conventional hydrogen production processes. In this work, both Ni-based and Fe-based catalysts are investigated for production of COx-free hydrogen and various types of nanocarbon through methane catalytic decomposition. The catalysts with high activity and stability are obtained and the approach to improve the stability of catalyst at high temperature is discussed. Carbon nanomaterials with different morphologies are successfully synthesized and the methanism is discussed.
     NiAl and NiCuAl catalyst derived from Feitknecht compound was used for the methane catalytic decomposition in a fluidized bed. The effect of reaction temperature, reduced temperature, the metal loading, and the gas velocity is investigated and these reaction conditions are optimized. The activation energies of methane catalytic decomposition on Ni/Al2O3 and NiCu/Al2O3 catalysts are measured in the chemical reation kinetic limted temperature regin, and the values are both 73±2 kJ/mol for the two catalysts. Thus it is suggested that the doping of Cu didn’t change the state of activity sites because the each activity site is composed of several Ni atoms. Cu in the catalyst particles tends to be rich in the surface and will reduce the overall activity sites, but it has effect on reducing the opportunities of deactivation caused by encapsulation.
     The measurement of ppm level CO concentration is achieved by the gas chromatogram equipped with methanation reactor. The results show that the CO concentration can be 1800-2500 ppm in the trail gas when no gas purity devices are used. This value is decreased to 700-1040 ppm when a drier is used, while it drop to 250 ppm when both drier and deoxidization systems are used. The experiment results also show that the CO concentration can be smaller than 10 ppm when using pure methane as feed. For all the reaction process, the CO concentration increase with the increasement of temperature, and decrease with the time on stream.
     Two different reaction schemes were tested for methane catalytic reaction on NiCu/Al2O3 catalysts. The constant temperature reaction (CTR) is that reactions are conducted in a constant temperature, while the pre-induced reaction (PIR) is that reaction is first induced in low temperature and then reacted in a higher temperature. The results show that the PIR can improve the stability of catalyst dramatically. The HRTEM and EDS characterization results show that the composition of metal particles obtained in PIR is similar to particles obtained in low temperature CTR, in which the Ni/Cu is about 3:1, while for the particles obtained in high temperature CTR, this value is lower than 1:1. It is also observed that the structure of carbon nanofibers formed in PIR have the both characters of the carbon nanofibers formed in the low temperature CTR and high temperature CTR. It is suggested that in the induced period of reaction, the metal particles undergo a reconstruction process, and the particles rich in Cu or Ni are formed. When the reaction is conducted in low temperature CTR, those particles rich in Cu are with very low activity and the carbon nanofibers are difficult to grow on this types of particles. When the reaction is conducted in high temperature CTR, the particles rich in Ni are deactivated quickly and also not suitable to catalyze the growth of carbon nanofibers. When the PIR scheme is conducted, the induction process occurs in low temperature, and the state of metal particles can be reserved where the metal particles rich in Ni will be also active in high temperature.
     The doping effect of Mo, Cr and W on the Fe-based catalysts is inverstigated. The activity tests and the characterization results show that the doping of inactive Cr and W reduce the activity sites and decrease the methane conversion. The activity of catalysts is promoted by doping Mo, and the methane conversion increase from 14% to 40%. The XRD and TPR characterization showed that the doping of Mo can change the Fe redox cycle and enhance the dispersion of Fe. When the Mo/(Mo+Fe) value equals to 10%, the catalyst has the best performance. For the reaction conducted in fixed bed reactor, the methane conversion can stabilize at 44% for 180 min at 973 K, while the conversion can be 78% for 40 min at 1023 K.
     Catalysts prepared by citric acid sol-gel method and impregnation method are employed to produce nanocarbon with different morphologies by methane catalytic decomposition. Various catalysts are tested and the structure of nanocarbons is characterized by HRTEM and Raman. For the catalysts prepared by citric acid sol-gel method, the catalyst with a composition of Fe:Mo:Al=9:1:120 (mol ratio) can produce single wall carbon nanotubes with high purity. It is also found that Fe-Mo catalysts have better performance than Fe catalyst, which is due to the doping effect of Mo. For the catalysts prepared by impregnation, different types of nanocarbon, including multi-walled carbon nanobubes, nanosized carbon onion-like fullerene and nanosized graphite particle was obtained on different catalysts. It is also found that the Mo/MgO catalyst have good activity and stability in high temperature and is effective for producing highly graphitized multiple-walled carbon nanotubes with narrow diameter distribution. The XRD results showed that the Mo2C can be the activity species during the reaction. Based on the results of HRTEM, the mechanism of single wall carbon nanotubes growth and other form of nanocarbon is discussed.
引文
[1] http://www.eia.doe.gov/iea/overview.html
    [2] Karl T R, Trenberth K E. Modern global climate change. Science 2003, 302: 1719-1723
    [3] Wuebbles D J, Jain A K. Concerns about climate change and the role of fossil fuel use. Fuel Process. Technol. 2001, 71: 99–119
    [4] http://news.xinhuanet.com/newscenter/2008-02/01/content_7545648.htm
    [5] Song C S. Fuel processing for low-temperature and high-temperature fuel cells: Challenges and opportunities for sustainable development in the 21st century. Catal. Today, 2002, 77: 17-49
    [6] Choudhary T V, Goodman D W. CO-free fuel processing for fuel cell applications. Catal. Today, 2002, 77: 65-78
    [7] Dunn S. Hydrogen futures: toward a sustainable energy system. Int. J. Hydrogen Energy 2002, 27: 235-264
    [8] Gaudernack B, Lynum S. Hydrogen from natural gas without release of CO2 to the atmosphere. Int. J. Hydrogen Energy 1998, 23: 1087-1093
    [9] Committee on Alternatives and Strategies for Future Hydrogen Production and Use, National Research Council, National Academy of Engineering. The hydrogen economy: Opportunities, costs, barriers, and R&D needs. National Academies Press, Washington, 2004
    [10] Zecevic S, Patton E M, Parhami P. Carbon–air fuel cell without a reforming process. Carbon 2004, 42: 1983-1993
    [11] Wee J H, Lee K Y. Overview of the development of CO-tolerant anode electrocatalysts for proton-exchange membrane fuel cells. J. Power Sources 2006, 157: 128-135
    [12] Kothari R, Buddhi D, Sawhney R L. Comparison of environmental and economic aspects of various hydrogen production methods. Renew. Sust. Energy. Rev. 2008, 12: 553–563
    [13] Kothari R, Buddhi D, Sawhney R L. Sources and technology for hydrogenproduction: a review. Int. J. Global Energy 2004, 21: 154-178
    [14] Anderson S, Newell R. Prospect for carbon capture and storage technologies. Annu. Rev. Environ. Resour. 2004, 29: 109–142
    [15] Metkemeijer R, Achard P. Comparison of ammonia and methanol applied indirectly in a hydrogen fuel cell. Int. J. Hydrogen Energy 1994, 19: 535-542
    [16] Metkemeijer R, Achard P. Ammonia as a feedstock for a hydrogen fuel cell; reformer and fuel cell behavior. J. Power Sources 1994, 49: 271-282
    [17] Garcia-Garcia F R, Ma Y H, Rodriguez-Ramos I, et al. High purity hydrogen production by low temperature catalytic ammonia decomposition in a multifunctional membrane reactor. Catal. Commun. 2008, 9: 482–486
    [18] Liu H, Wang H, Shen J, et al. Promotion effect of cerium and lanthanum oxides on Ni/SBA-15 catalyst for ammonia decomposition. Catal. Today 2008 131: 444–449
    [19] Liu H, Wang H, Shen J, et al. Preparation, characterization and activities of the nano-sized Ni/SBA-15 catalyst for producing COx-free hydrogen from ammonia. Appl. Catal. A 2008, 337: 138–147
    [20] Francisco A, Uribe F A, Gottesfeld S, et al. Effect of ammonia as potential fuel impurity on proton exchange membrane fuel cell performance. J. Electrochem. Soc. 2002, 149: A293-A296
    [21] Halseid R, Vie P J S, Tunold R. Effect of ammonia on the performance of polymer electrolyte membrane fuel cells. J. Power Sources 2006, 154: 343-350
    [22] Choudhary T V, Goodman D W. Stepwise methane steam reforming: a route to CO-free hydrogen. Catal. Lett. 1999, 59:93–94
    [23] Otsuka K, Takenaka S, Ohtsuki H. Production of pure hydrogen by cyclic decomposition of methane and oxidative elimination of carbon nanofibers on supported-Ni-based catalysts. Appl. Catal. A-Gen., 2004, 273: 113–124
    [24] Choudhary T V, Goodman D W. CO-Free Production of hydrogen via stepwise steam reforming of methane. J. Catal. 2000, 192: 316–321
    [25] Choudhary V R, Banerjee S, Rajput A M. Hydrogen from step-wise steam reforming of methane over Ni/ZrO2: factors affecting catalytic methane decomposition and gasification by steam of carbon formed on the catalyst. Appl. Catal. A-Gen. 2002, 234: 259–270
    [26] Choudhary V R, Banerjee S, Rajput A M. Continuous production of H2 at low temperature from methane decomposition over Ni-containing catalyst followedby gasification by steam of the carbon on the catalyst in two parallel reactors operated in cyclic manner. J. Catal. 2001, 198: 136–141
    [27] Bartholomew C H. Carbon deposition in steam reforming and methanation. Catal. Rev.-Sci. Eng. 1982, 24: 67-112
    [28] Trimm D L. The formation and removal of coke from nickel catalyst. Catal. Rev.-Sci. Eng. 1977, 16: 155-189
    [29] Baker R T K, Barber M A, Harris P S, et al. Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J. Catal. 1972, 26: 51-62
    [30] Rostrup-Nielsen J R. Coking on nickel catalyst for steam reforming of hydrocarbons. J. Catal. 1974, 33: 184-201
    [31] Nishiyama Y, Tamai Y. Deposition of carbon and its hydrogenation catalyzed by nickel. Carbon 1976, 14: 13-17
    [32] Hughes T V, Chambers C R. Manufacture of carbon filaments. US Patent 1889, 405480
    [33] Schutzenberger P, Schutzenberger L. Sur quelques faits relatives a l’histoire du carbone. C. R. Acad. Sci. Paris 1890, 111: 774-778
    [34] Radushkevich L V, Lukyanovich V M. O strukture ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte. Zurn. Fisic. Chim. 1952, 26: 88–95.
    [35] Baker R T K, Harris P S, Thomas R B, et al. Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene. J. Catal. 1973, 30: 86-95
    [36] Rostrup-Nielsen J R. Equilibria of Decomposition Reactions of Carbon Monoxide and Methane over Nickel Catalysts. J. Catal. 1972, 27: 343-356
    [37] Pierson H O, Lieberman M L. The chemical vapor deposition of carbon on carbon fibers. Carbon 1975, 13: 159-166
    [38] Iijima S. Helical microtubes of graphitic carbon. Nature 1991, 354: 56-58
    [39] Tibbetts G G, Doll G L, Gorkiewicz D W, et al. Physical properties of carbon fibers. Carbon 1993, 31: 1039-1047
    [40] Kim M S, Rodriguez N M, Baker R T K. The role of interfacial phenomena in the structure of carbon deposits. J. Catal. 1992, 134: 253-268
    [41] Heremans J. Electrical conductivity of vapor grown carbon fibers. Carbon 1985, 23: 431-436
    [42] Fenelonov V B, Derevyankin A Y, Okkel L G, et al. Structure and texture of filamentous carbons produced by methane decomposition on Ni and Ni-Cu Catalysts. Carbon 1997, 35: 1129-1140
    [43] Piao L Y, Li Y D, Chen J L, et al. Methane decomposition to carbon nanotubes and hydrogen on an alumina supported nickel aerogel catalyst. Catal. Today 2002, 74: 145–155
    [44] Qian W Z, Liu T, Wang Z W, et al. Production of hydrogen and carbon nanotubes from methane decomposition in a two-stage fluidized bed reactor. Appl. Catal. A-Gen. 2004, 260: 223–228
    [45] Colomer J F, Stephan C, Lefrant S, et al. Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method. Chem. Phys. Lett. 2000, 317: 83-89
    [46] Chen J L, Li Y D, Li Z Q, et al. Production of COx-free hydrogen and nanocarbon by direct decomposition of undiluted methane on Ni–Cu–alumina catalysts. Appl. Catal. A-Gen 2004, 269: 179-186
    [47] He C, Zhao N, Du X, et al. Low-temperature synthesis of carbon onions by chemical vapor deposition using a nickel catalyst supported on aluminum. Scripta. Mater. 2006, 54: 689-693
    [48] Baker R T K. Catalytic growth of carbon filaments. Carbon, 1989, 27: 315-323
    [49] Rostrup-Nielsen J, Trimm DL. Mechanisms of carbon formation on nickel-containing catalysts. J. Catal. 1977, 48: 155-165
    [50] Otsuka K, Kobayashi S, Takenaka S. Hydrogen–Deuterium exchange studies on the decomposition of methane over Ni/SiO2. J. Catal. 2001, 200: 4–9
    [51] Chen P, Zhang H B, Lin G D, et al. Growth of carbon nanotubes by catalytic decomposition of CH4 or CO on a Ni-MgO catalyst. Carbon 1997, 35: 1495-1501
    [52] Colomer J F, Stephan C, Lefrant S, et al. Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method. Chem. Phys. Lett. 2000, 317: 83–89
    [53] Piao L Y, Li Y D, Chen J L, et al. Methane decomposition to carbon nanotubes and hydrogen on an alumina supported nickel aerogel catalyst. Catal. Today 2002, 74: 145–155
    [54] Ashok J, Subrahmanyam M, Venugopal A. Hydrotalcite structure derived Ni–Cu–Al catalysts for the production of H2 by CH4 decomposition. Int. J.Hydrogen Energy 2008, 33: 2704– 2713
    [55] Zhu Y, Sui Z, Zhao T, et al. Modeling of fishbone-type carbon nanofibers: A theoretical study. Carbon 2005, 43: 1694–1699
    [56] Li Y, Chen J, Ma Y, et al. Formation of bamboo-like nanocarbon and evidence for the quasi-liquid state of nanosized metal particles at moderate temperatures. Chem. Commun. 1999, 1141–1142
    [57] He C, Zhao N, Du X, et al. Low-temperature synthesis of carbon onions by chemical vapor deposition using a nickel catalyst supported on aluminum. Scripta. Mater. 2006, 54: 689-693
    [58] He C, Zhao N, Shi C, et al. Carbon nanotubes and onions from methane decomposition using Ni/Al catalysts. Mater. Chem. Phys. 2006, 97; 109-115.
    [59] Helveg S, Lopez-Cartes C, Sehested J, et al. Atomic-scale imaging of carbon nanofibre growth. Nature 2004; 427: 426-429
    [60] Monthioux M, Noe L, Dussault L, et al. Texturising and structurising mechanisms of carbon nanofilaments during growth. J. Mater. Chem. 2007, 17 : 4611–4618
    [61] Chai S P, Zein S H S, Mohamed A R. The effect of catalyst calcination temperature on the diameter of carbon nanotubes synthesized by the decomposition of methane. Carbon 2007, 45: 1535–1541
    [62] Kuo C S, Bai A, Huang C M, et al. Diameter control of multiwalled carbon nanotubes using experimental strategies. Carbon 2005, 43: 2760–2768
    [63] Snoeck J W, Froment G F, Fowles M. Filamentous carbon formation and gasification: thermodynamics, driving force, nucleation, and steady-state growth. J. Catal. 1997, 169: 240–249
    [64] Chen J L, Li X M, Li Y D, et al. Production of hydrogen and nanocarbon from Direct decomposition of Undiluted Methane on High-nickeled Ni-Cu-Alumina catalysts. Chem. Lett. 2003, 32: 424-425
    [65] Li Y D, Chen J L, Ma Y M, et al. Formation of bamboo-like nanocarbon and evidence for the quasi-liquid state of nanosized metal particles at moderate temperatures. Chem. Commun. 1999: 1141–1142
    [66] Takenaka S, Ishida M, Serizawa M, et al. Carbon nanotubes through methane decomposition over supported cobalt catalysts. J. Phys. Chem. B 2004, 108: 11464-11472
    [67] Li Y D, Chen J L, Chang L. Catalytic growth of carbo n fibers from methane on anickel-alumina composite catalyst prepared from Feitknecht compound precursor. Appl. Catal. A-Gen. 1997,163: 45-57
    [68] Li Z, Chen J, Zhang X, et al. Catalytic synthesized carbon nanostructures from methane using nanocrystalline Ni. Carbon 2002, 40: 409–415
    [69] Chen J L, Li Y D, Ma Y M, et al. Formation of bamboo-shaped carbon filaments and dependence of their morphology on catalyst composition and reaction conditions. Carbon 2001, 39: 1467–75
    [70] Avdeeva L B, Goncharova O V, Kochubey D I, et al. Coprecipitated Ni-alumina and Ni-Cu-alumina catalysts of methane decomposition and carbon decomposition. II. Evolution of the catalysts in reaction. Appl. Catal. A-Gen 1996, 141(1-2): 117-129
    [71] Holstein W L. The Roles of ordinary and soret diffusion in the metal-catalyzed formation of filamentous carbon. J. Catal. 1995, 152: 42-51
    [72] Deck C P, Vecchio K. Prediction of carbon nanotube growth success by the analysis of carbon–catalyst binary phase diagrams. Carbon 2006, 44: 267–275
    [73] Baird T, Fryer J R, Grant B. Carbon formation on iron and nickel foils by hydrocarbons pyrolysis reactions at 700 oC. Carbon 1974, 12: 591-602
    [74] Hofmann S, Csanyi G, Ferrari A C, et al. Surface diffusion: The low activation energy path for nanotube growth. Phys. Rev. Lett. 2005, 95: 036101
    [75] Bokx P K D, Kock A J H M, Boellaard E, et al. The formation of filamentous carbon on iron and nickel catalysts I. Thermodynamics. J. Catal. 1985, 96: 454-467
    [76] Kock A J H M, Bokx P K D, Boellaard E, et al. The formation of filamentous carbon on iron and nickel catalysts II. Mechanism. J. Catal. 1985, 96: 468-480
    [77] Boellaard E, Bokx P K D, Kock A J H M, et al. The formation of filamentous carbon on iron and nickel catalysts III, morphology. J. Catal. 1985, 96: 481-490
    [78] Taveres M T, Bernardo C A, Alstrup I, et al. Reactivity of carbon deposited on nickel-copper alloy catalysts from the decomposition of methane. J. Catal. 1986, 100:545-548
    [79] Alstrup I, Taveres M T. Kinetics of carbon formation from CH4+H2 on silica-supported nickel and Ni-Cu Catalysts, J. Catal. 1993, 139: 513-524
    [80] Audier, M, Oberlin, A, Oberlin, M, et al. Morphology and crystalline order in catalytic carbons. Carbon 1981, 19: 217–224.
    [81] Audier M, Coulon M. Kinetic and microscopic aspects of catalytic carbon growth.Carbon 1985, 23: 317-223
    [82] Holstein W L, Boudart M. The temperature difference between a supported catalyst particle and its support during exothermic and endothermic catalytic reactions. Revista Latinoamericana de Ingenieria Quimica y Quimica Aplicada, 1983, 13: 107-119
    [83] Cale T S. Nickel crystallite thermometry during ethane hydrogenolysis. J. Catal. 1984, 90: 40-48
    [84] Cale T S, Kawson J M. Application of catalytic crystallite thermometry to interphase transport studies. Chem. Eng. Commun. 1985, 39: 241-245
    [85] Sacco Jr A, Thacker P, Chang T N, et al. The initiation and growth of filamentous carbon from -iron in H2, CH4, H2O, CO2, and CO gas mixtures. J. Catal. 1984, 85: 224-236
    [86] Helveg S, Lopez-Cartes C, Sehested J, et al. Atomic-scale imaging of carbon nanofibre growth. Nature 2004, 427: 426-429
    [87] Helveg S, Hansen P L. Atomic-scale studies of metallic nanocluster catalysts by in situ high-resolution transmission electron microscopy. Catal. Today 2006, 111: 68–73
    [88] Hansen P L, Helveg S, Datye A K. Atomic-scale Imaging of supported metal nanocluster catalysts in the working state. Adv. Catal. 2006, 50: 77–95
    [89] Chen D, Christensen K O, Ochoa-Fernández E. Synthesis of carbon nanofibers: effects of Ni crystal size during methane decomposition. J. Catal. 2005, 229: 82–96
    [90] Ermakova M A, Ermakov D Y, Kushinov G G. Effective catalysts for direct cracking of methane to production hydrogen and filamentous carbon Part I. Nickel catalysts. Appl. Catal. A-Gen. 2000, 201: 61-70
    [91] Ermakova M A, Ermakov D Y, Plyasova L M, et al. XRD studies of evolution of catalytic nickel nanoparticles during synthesis of filamentous carbon from methane. Catal. Lett. 1999, 62: 93–97
    [92] Takenaka S, Kobayashi S, Ogihara H, et al. Ni/SiO2 catalyst effective for methane decomposition into hydrogen and carbon nanofiber. J. Catal. 2003, 217: 79–87
    [93] Parmon V N. Fluidization of the active component of catalysts in catalytic formation of carbon assisted by iron and nickel carbides. Catal. Lett. 1996, 42: 195-199
    [94] Forzatti P, Lietti L. Catalyst deactivation. Catal. Today 1999, 52: 165-181
    [95] Bartholomew C H. Carbon Deposition in Steam Reforming and Methanation. Catal. Rev.–Sci Eng. 1982, 24: 67-112
    [96] Richardson J T. Experimental Determination of Catalyst Fouling Parameters. Ind. Eng. Chem. Proc. Des. Dev. 1972, 11: 12-14
    [97] Zhang T, Amiridis M D. Hydrogen production via the direct cracking of methane over silica-supported nickel catalysts. Appl. Catal. A-Gen. 1998, 167: 161-72
    [98] Ruckenstein E, Hu Y H. Catalytic preparation of narrow pore size distribution mesoporous carbon. Carbon 1998, 36: 269-75
    [99] Takenaka S, Kato E, Tomikubo Y, Otsuka K. Structural change of Ni species during the methane decomposition and the subsequent gasification of deposited carbon with CO2 over supported Ni catalysts. J. Catal. 2003, 219: 176–85
    [100] Zavarukhin S G, Kuvshinov G G. The kinetic model of formation of nanofibrous carbon from CH4–H2 mixture over a high-loaded nickel catalyst with consideration for the catalyst deactivation. Appl. Catal. A-Gen 2004;272(1-2):219–27
    [101] Demicheli M V, Ponzi E N, Ferretti O A, et al. Kinetics of carbon formation from CH4-H2 mixtures on nickel-alumina catalyst, Chem. Eng. J., 1991, 46: 129-36
    [102] Snoeck J W, Froment G F, Fowlesy M. Kinetic study of the carbon filament formation by methane cracking on a nickel catalyst. J. Catal. 1997, 169: 250–262
    [103] Alstrup I, Tavares MT. The kinetics of carbon formation from CH4+H2 on silica-supported nickel catalysts. J. Catal. 1992, 135: 147-155
    [104] Zein S H S, Mohamed A R, Sai P S T. Kinetic studies on catalytic decomposition of methane to hydrogen and carbon over Ni/TiO2 catalyst. Ind. Eng. Chem. Res. 2004, 43: 4864-4870
    [105] Alstrup I, Tavares MT, Bernardo CA, et al. Carbon formation on nickel and nickel-copper alloy catalysts. Mater. Corros. 1998, 49: 367-372
    [106] Gilliland E R, Harriott P. Reactivity of deposited carbon. Ind. Eng. Chem. 1954, 46: 2195-2202
    [107] Kuvshinov G G, Mogilnykh Y I, Kuvshinov D G. Kinetics of carbon formation from CH4-H2 mixtures over a nickel containing catalyst. Catal. Today 1998, 42: 357-360
    [108] Chen J L, Zhou X Z, Cao L, et al. COx-free hydrogen and carbon nanofibersproduction by decomposition of methane on Fe, Co and Ni metal catalysts. Stud. Surf. Sci. Catal. 2004, 147: 73-78
    [109] Zhang Y, Smith KJ. Carbon formation thresholds and catalyst deactivation during CH4 decomposition on supported Co and Ni catalysts. Catal. Lett. 2004, 95: 7-12
    [110] Ross J R H, Steel M C F, Zeini-Isfahani A. Evidence for the Participation of Surface Nickel Aluminate Sites in the Steam Reforming of Methane over Nickel/Alumina Catalysts. J. Catal. 1978, 52: 280-290
    [111] van Veen G, Kruissink E C, Doesburg E B M, et al. The effect of preparation conditions on the activity and stability of coprecipitated Ni/Al2O3 catalysts for the methanation of carbon monoxide. React. Kinet. Catal. Lett. 1978, 9: 143-148
    [112] Kruissink E C, Pelt H L, Ross J R H et al. The effect of sodium on the methanation activity of nickel/alumina coprecipitated catalysts. Appl. Catal. l981, 1: 23-29
    [113] Kruissink E C, Van Reijen L L, Ross J R H. Coprecipitated Nickel-Alumina Catalysts for Methanation at High Temperature. Part 1. Chemical Composition and Structure of the Precipitates. J. Chem. Soc., Faraday Trans. I 1981, 77: 649-663
    [114] Alzamora L E, Ross J R H, Kruissink E C, et al. Coprecipitated Nickel-Alumina Catalysts for Methanation at High Temperature. Part 2. Variation of Total and Metallic Areas as a Function of Sample Composition and Method of Pretreatment. J. Chem. Soc., Faraday Trans. I 1981, 77: 665-681
    [115] Rotgerink H G L, Bosch H, van Ommen J G et al. The effect of Ni-Al ratio on the properties of coprecipitated nickel-alumina catalysts with high nickel contents. Appl. Catal. 1986, 27: 41-53.
    [116] Ross J R H. Metal Catalysed Methanation and Steam Reforming. Catalysis 1985, 7: 1-45
    [117] Cavani F, Trifiro F, Vaccari A. Hydrotalcite-type anionic clays: preparation, properties and applications. Catal. Today 1991, 11(2): 173-301
    [118] Clause O, Rebours B, Merlen E, et al. Preparation and characterization of nickel-aluminum mixed oxides obtained by thermal decomposition of hydrotalcite-type precursors. J. Catal. 1992, 133(1): 231-246
    [119] Puxley D C, Kitchener I J, Komodromos C, et al. The effect of preparation method upon the structures, stability and metal/support interactions innickel/alumina catalysts. Stud. Surf. Sci. Catal. 1983, 16: 237-271
    [120] Doesburg E B M, Korte P H M, Schaper H, et al. The sintering of coprecipitated nickel alumina catalysts. Appl. Catal. 1984, 11: 155-160
    [121] Li Y, Chen J, Chang L, et al. The Doping Effect of Copper on the Catalytic Growth of Carbon Fibers from Methane over a Ni/Al2O3 Catalyst Prepared from Feitknecht Compound Precursor. J. Catal. 1998, 178: 76-83
    [122] Avdeeva L B, Reshetenko T V, Ismagilov Z R, et al. Iron-containing catalysts of methane decomposition: accumulation of filamentous carbon. Appl. Catal. A-Gen. 2002, 228: 53–63
    [123] Takenaka S, Serizawa M, Otsuka K. Formation of filamentous carbons over supported Fe catalyst through methane decomposition. J. Catal. 2004, 222: 520-531
    [124] Avdeeva L B, Kochubey D I, Shaikhutdinov S K. Cobalt catalysts of methane decomposition: accumulation of the filamentous carbon. Appl. Catal. A-Gen 1999, 177: 43-51
    [125] Li Y D, Chen J L, Qin Y N, et al. Simultaneous production of hydrogen and nanocarbon from decomposition of methane on a nickel-based catalyst. Energy Fuel 2000, 14: 1188-1194
    [126] Naghash A R, Xu Z, Etsell T H. Coprecipitation of Nickel-Copper-Aluminum takovite as catalyst precursors for simultaneous production of carbon nanofibers and hydrogen. Chem. Mater. 2005, 17: 815-821
    [127] Takenaka S, Shigeta Y, Tanabe E, et al. Methane decomposition into hydrogen and carbon nanofibers over supported Pd–Ni catalysts. J. Catal. 2003, 220: 468–477
    [128] Shah N, Panjala D, Huffman G P. Hydrogen production by catalytic decomposition of methane. Energy Fuel 2001, 15: 1528-1534
    [129] Toebes M L, Bitter J H, Dillen A J, et al. Impact of the structure and reactivity of nickel particles on the catalytic growth of carbon nanofibers. Catal. Today 2002;76: 33–42
    [130] Takenaka S, Ogihara H, Yamanaka I, et al. Decomposition of methane over supported-Ni catalysts: effects of the supports on the catalytic lifetime. Appl. Catal. A-Gen 2001, 217: 101–110
    [131] Choudhary T V, Sivadinarayana C, Klingerhoffer A, et al. Catalytic decomposition of methane: Towards production of CO-free hydrogen for fuelcell. Stud. Surf. Sci. Catal. 2001, 136: 197-202
    [132] Choudhary T V, Sivadinarayana C, Chusuei C C, et al. Hydrogen production via catalytic decomposition of methane. J. Catal. 2001, 199, 9–18
    [133] Muradov N. Hydrogen via methane decomposition: an application for decarbonization of fossil fuels. Int. J. Hydrogen Energy 2001, 26: 1165-1175
    [134] Ishibara T, Miyashita Y, Iseda H, et al. Decomposition of methane over Ni/SiO2 catalysts with membrane reactor for the production of hydrogen. Chem. Lett. 1995, 2: 93-94
    [135] Ishihara T, Nishida K, Nishiguchi H, et al. A new reforming process based on CH4 decomposition using a hydrogen-permeating membrane reactor. Res. Chem. Intermed. 2006, 32: 253–62
    [136] Ishihara T, Kawahara A, Fukunaga A, et al. CH4 Decomposition with a Pd-Ag Hydrogen-Permeating Membrane Reactor for Hydrogen Production at Decreased Temperature. Ind. Eng. Chem. Res. 2002, 41; 3365-3369
    [137] Qian W, Liu T, Wei F, et al. Enhanced production of carbon nanotubes: combination of catalyst reduction and methane decomposition. Appl. Catal. A-Gen. 2004, 258: 121–124
    [138] Qian W, Liu T, Wang Z, et al. Production of hydrogen and carbon nanotubes from methane decomposition in a two-stage fluidized bed reactor. Appl. Catal. A-Gen 2004, 260: 223–228
    [139] Otsuka K, Mito A, Takenaka S, et al. Production of hydrogen from methane without CO2-emission mediated by indium oxide and iron oxide. Int. J. Hydrogen Energy 2001, 26: 191-194
    [140] Poirier M G, Sapundzhiev C. Catalytic decomposition of natural gas to hydrogen for fuel cell application. Int. J. Hydrogen Energy, 1997, 22: 429-433
    [141] Otsuka K, Takenaka S, Ohtsuki H. Production of pure hydrogen by cyclic decomposition of methane and oxidative elimination of carbon nanofibers on supported-Ni-based catalysts. Appl. Catal. A-Gen. 2004, 273: 113–124
    [142] Choudhary T V, Goodman D W. CO-Free Production of hydrogen via stepwise steam reforming of methane. J. Catal. 2000, 192: 316–321
    [143] Takenaka S, Tomikubo Y, Kato E, et al. Sequential production of H2 and CO over supported Ni catalysts. Fuel 2004, 83: 47–57
    [144] Naghash A R, Etsell T H, Xu S. XRD and XPS Study of Cu-Ni Interactions on Reduced Copper-Nickel-Aluminum Oxide Solid Solution Catalysts. Chem.cell. Stud. Surf. Sci. Catal. 2001, 136: 197-202
    [132] Choudhary T V, Sivadinarayana C, Chusuei C C, et al. Hydrogen production via catalytic decomposition of methane. J. Catal. 2001, 199, 9–18
    [133] Muradov N. Hydrogen via methane decomposition: an application for decarbonization of fossil fuels. Int. J. Hydrogen Energy 2001, 26: 1165-1175
    [134] Ishibara T, Miyashita Y, Iseda H, et al. Decomposition of methane over Ni/SiO2 catalysts with membrane reactor for the production of hydrogen. Chem. Lett. 1995, 2: 93-94
    [135] Ishihara T, Nishida K, Nishiguchi H, et al. A new reforming process based on CH4 decomposition using a hydrogen-permeating membrane reactor. Res. Chem. Intermed. 2006, 32: 253–62
    [136] Ishihara T, Kawahara A, Fukunaga A, et al. CH4 Decomposition with a Pd-Ag Hydrogen-Permeating Membrane Reactor for Hydrogen Production at Decreased Temperature. Ind. Eng. Chem. Res. 2002, 41; 3365-3369
    [137] Qian W, Liu T, Wei F, et al. Enhanced production of carbon nanotubes: combination of catalyst reduction and methane decomposition. Appl. Catal. A-Gen. 2004, 258: 121–124
    [138] Qian W, Liu T, Wang Z, et al. Production of hydrogen and carbon nanotubes from methane decomposition in a two-stage fluidized bed reactor. Appl. Catal. A-Gen 2004, 260: 223–228
    [139] Otsuka K, Mito A, Takenaka S, et al. Production of hydrogen from methane without CO2-emission mediated by indium oxide and iron oxide. Int. J. Hydrogen Energy 2001, 26: 191-194
    [140] Poirier M G, Sapundzhiev C. Catalytic decomposition of natural gas to hydrogen for fuel cell application. Int. J. Hydrogen Energy, 1997, 22: 429-433
    [141] Otsuka K, Takenaka S, Ohtsuki H. Production of pure hydrogen by cyclic decomposition of methane and oxidative elimination of carbon nanofibers on supported-Ni-based catalysts. Appl. Catal. A-Gen. 2004, 273: 113–124
    [142] Choudhary T V, Goodman D W. CO-Free Production of hydrogen via stepwise steam reforming of methane. J. Catal. 2000, 192: 316–321
    [143] Takenaka S, Tomikubo Y, Kato E, et al. Sequential production of H2 and CO over supported Ni catalysts. Fuel 2004, 83: 47–57
    [144] Naghash A R, Etsell T H, Xu S. XRD and XPS Study of Cu-Ni Interactions on Reduced Copper-Nickel-Aluminum Oxide Solid Solution Catalysts. Chem.decomposition using Ni/Al catalysts. Mater. Chem. Phys. 2006, 97; 109-115.
    [159] Kang J, Li J, Du X, et al. Synthesis of carbon nanotubes and carbon onions by CVD using a Ni/Y catalyst supported on copper. Mater. Sci. Eng.: A 2008, 475: 136-140
    [160] Yu Li Y, Zhang X, Tao X, et al. Growth mechanism of multi-walled carbon nanotubes with or without bundles by catalytic deposition of methane on Mo/MgO. Chem. Phys. Lett. 2004, 386: 105–110
    [161] (a) Payne M C, Allan D C, Arias T A, et al. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 1992, 64: 1045-1097; (b) Milman V, Winkler B, White J A, et al. Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study. Int. J. Quantum Chem. 2000, 77: 895-910
    [162] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77: 3865-3868
    [163] Louie S G, Froyen S, Cohen M L. Nonlinear ionic pseudopotentials in spin-density-functional calculations. Phys. Rev. B 1982, 26: 1738-1742
    [164] Halgren T A, Lipscomb W N. The synchronous-transit method for determining reaction pathways and locating molecular transition states. Chem. Phys. Lett. 1977, 49: 225-232
    [165] Lee M B, Yang Q Y, Ceyer S T. Dynamics of the activated dissociative chemisorptions of CH4 and implication for the pressure gap in catalysis: a molecular beam-high resolution electron energy loss study. J. Chem. Phys. 1987, 87: 2724

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700