用户名: 密码: 验证码:
B_4C(Al_2O_3,TiB_2,ZrB_2)-Al陶瓷复合材料的制备、组织与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳化硼(B_4C)陶瓷由于具有密度低、熔点高、硬度高、耐高温、耐腐蚀、耐磨损性及良好的中子吸收性能等特性,因而在航空航天、军工防护、陶瓷刀具、耐磨耐蚀部件等方面均具有广泛的用途。但是由于B_4C陶瓷断裂韧性低(<2.2 MPa·m~(1/2))和难以烧结的缺陷大大限制了B_4C陶瓷的推广和应用。本文以提高材料的断裂韧性为目标,通过无压预烧和真空渗铝相结合的方法分别制备了B_4C-Al、B_4C-Al_2O_3-Al、B_4C-TiB_2-Al和B_4C-ZrB_2-Al复合材料,对材料的制备工艺、力学性能、物相组成、微观结构和补强增韧机理进行了系统的研究。结果表明:
     (1)不同体系的复合材料,其制备工艺不同。B_4C-Al、B_4C-Al_2O_3-Al、B_4C-TiB_2-Al、B_4C-ZrB_2-Al等复合材料所对应的预烧体的烧结工艺分别为2000℃×30 min(真空)、1900℃×30 min(真空)、1200℃×60 min(真空)+2050℃×30 min(氩气)和1400℃×60 min(真空)+1950℃×30 min(氩气)。复合材料的渗铝工艺均为1100℃×120 min(真空)。
     (2)在渗铝过程中,B_4C和Al之间的反应产物为AlB_2和Al_3BC,直接添加Al_2O_3第二相并不能改变B_4C和Al之间的反应产物。但是利用原位反应引入第二相(TiB_2和ZrB_2)则能够有效地改变B_4C和Al之间的反应产物。原位引入TiB_2后B_4C和Al之间的反应产物只有Al_3BC;原位引入ZrB_2时,随着ZrB_2含量的增加,反应产物由Al_3BC、AlB_(12)C_2和Al_8B_4C_7逐渐转变为AlB_(12)C_2和Al_8B_4C_7,而当ZrB_2含量为35%(质量分数)时,B_4C和Al之间几乎没有发生反应。
     (3)各体系复合材料预烧体中均有较高的气孔率,这些开口的孔隙相互之间形成了相互贯通的三维网状结构,为真空渗铝时金属铝的渗入提供了通道。渗铝后所有复合材料的致密度均较高,当细颗粒B_4C或第二相的含量较高时,晶粒均有不同程度的细化。
     (4)对于颗粒配比的B_4C-Al复合材料,随着细颗粒B_4C含量的增加,复合材料的硬度逐渐降低,抗折强度逐渐增大,断裂韧性基本呈增大的趋势,当细颗粒B_4C含量为40%(质量分数)时,复合材料具有较好的综合性能,材料的气孔率、硬度HRA、抗折强度和断裂韧性分别为1.08%、71.7、506 MPa和6.4 MPa·m~(1/2)。对于B_4C-Al_2O_3-Al复合材料,随着Al_2O_3添加量的增加,复合材料的硬度呈现先增大后降低的变化规律,抗折强度和断裂韧性均呈现先减小后增大的变化规律,当Al_2O_3添加量为25%(质量分数)时,复合材料具有较好的综合性能,材料的气孔率、硬度HRA、抗折强度和断裂韧性分别为2.06%,84.4,440 MPa和6.6 MPa·m~(1/2)。对于B_4C-TiB_2-Al复合材料,随着TiB_2含量增加,复合材料的硬度逐渐降低,抗折强度逐渐增大,断裂韧性基本呈增大的趋势。当TiB_2含量为40%(质量分数)时,复合材料具有较好的综合性能,材料的气孔率、硬度HRA、抗折强度和断裂韧性分别为1.32%、80.3、560 MPa和7.8 MPa·m~(1/2)。对于B_4C-ZrB_2-Al复合材料,随着ZrB_2含量增加,复合材料的硬度先增大后降低,抗折强度和断裂韧性均呈现先降低后增大的趋势,当ZrB_2含量为35%(质量分数)时,复合材料具有较好的综合性能,材料的气孔率、硬度HRA、抗折强度和断裂韧性分别为1.06%、82.2、522 MPa和8.6 MPa·m~(1/2)。
     (5)延性铝的加入是材料断裂韧性提高的主要原因。此外,对于B_4C-Al复合材料,细颗粒B_4C含量的增加也是提高材料断裂韧性的有利因素;对于添加第二相的B_4C-Al复合材料,第二相粒子与B_4C基体的热膨胀的不匹配及晶粒的细化也能有效地提高材料的断裂韧性。
     (6)复合材料的断裂方式主要为穿晶和沿晶混合断裂,由于延性Al的渗入,复合材料的断口中存在金属撕裂棱的特征,且随着Al渗入量的增加,金属撕裂棱和韧窝的比例增加。
Boron carbide(B_4C) ceramics possesses excellent physical and mechanical properties of high melting point and hardness,good impact and wear resistance,excellent resistance to chemical agents as well as high capability for neutron absorption.It has shown the potential for use in various industrial fields,such as aerospace,military,engineering and nuclear energy.However,the widespread application of B_4C ceramics has been restricted because of the low fracture toughness(<2.2 MPa·m~(1/2)) and the poor sinterability due to a low self-diffusion coefficient.In order to improve the fracture toughness,B_4C-Al,B_4C-Al_2O_3-Al, B_4C-TiB_2-Al and B_4C-ZrB_2-Al composites were synthesized using pressureless presintering and aluminium infiltration in vacuum.In this paper,the preparation processing,mechanical properties,phase composition,microstructure and toughening mechanism of the composites were investigated.The experimental results were shown as the following.
     (1) The presintering processes for B_4C,B_4C-Al_2O_3,B_4C-TiB_2 and B_4C-ZrB_2 preforms were 2000℃×30 min(in vacuum),1900℃×30 min(in vacuum),1200℃×60 min(in vacuum)+2050℃×30 min(in argon) and 1400℃×60 min(in vacuum)+1950℃×30 min (in argon),respectively.The infiltration processing was 1100℃×120 min(in vacuum) for B_4C-Al,B_4C-Al_2O_3-Al,B_4C-TiB_2-Al and B_4C-ZrB_2-Al composites.
     (2) The reaction products between B_4C and Al were AlB_2 and Al_3BC during the aluminum infiltration.The Al_2O_3 addition did not change the reaction products.However,the reaction products between B_4C and Al were effectively affected by the different in situ synthesized second phases,such as TiB_2 and ZrB_2.In situ synthesized TiB_2 could change the products from AlB_2 and Al_3BC into single Al_3BC.With increasing the ZrB_2 content,the reaction products of Al_3BC,AlB_(12)C_2 and Al_8B_4C_7 changed into AlB_(12)C_2 and Al_8B_4C_7. Furthermore,there was almost no reaction happened between B_4C and Al when the ZrB_2 content increased to 35 mass%.
     (3) There were plentiful interconnected pores in the preforms of B_4C-Al,B_4C-Al_2O_3-Al, B_4C-TiB_2-Al and B_4C-ZrB_2-Al systems.Consequently,a three-dimensional network of interconnected capillaries was formed as the path for liquid aluminum to obtain the compact composites after aluminum infiltration.After aluminum infiltration,the densifications of the composites obtained were high.With high content of the fine B_4C particle and the second-phase particles(Al_2O_3,TiB_2 and ZrB_2),the grain sizes of the composites were decrased.
     (4) In B_4C-Al system,with increasing the fine B_4C particle content,hardness decreased while bending strength increased,and fracture toughness showed an increasing trend approximately.The composite with 40 mass%fine B_4C particle showed the optimized properties.Porosity,hardness HRA,bending strength and fracture toughness of that were 1.08 %,71.7,506 MPa and 6.4 MPa·m~(1/2),respectively.In B_4C-Al_2O_3-Al system,with increasing the Al_2O_3 addition,hardness increased first and then decreased,bending strength and fracture toughness decreased first and then increased.The composite with 25 mass%Al_2O_3 addition showed the optimized properties.Porosity,hardness HRA,bending strength and fracture toughness of that were 2.06%,84.4,440 MPa and 6.6 MPa·m~(1/2),respectively.In B_4C-TiB_2-Al system,with increasing the TiB_2 content,hardness decreased while bending strength increased gradually,and fracture toughness showed a trend of increase approximately. The composite with 40 mass%TiB_2 showed the optimized properties.Porosity,hardness HRA,bending strength and fracture toughness of that were 1.32%,80.3,560 MPa and 7.8 MPa·m~(1/2),respectively.In B_4C-ZrB_2-Al system,with increasing the ZrB_2 content,hardness first increased and then decreased while the flexural strength and fracture toughness first decreased and then increased.The composite with 35 mass%ZrB_2 showed the optimized properties.Porosity,hardness HRA,bending strength and fracture toughness of that were 1.06 %,82.2,522 MPa and 8.6 MPa·m~(1/2),respectively.
     (5) The ductile aluminum addition was the leading reason for the fracture toughness improvement of the composites.Furthermore,the increase of fine B_4C particles could contribute to the increased fracture toughness of the B_4C-Al composite.For the other three systems,both the fine grain and the difference in thermal expansion coefficients between the B_4C matrix and second-phase particles could effectively enhance the fracture toughness of the composites.
     (6) It was found that the fracture was mainly in mixed mode of intergranular and transgranular forms.The amounts of tear ridge and dimple on the fracture surface increased with increasing the infiltrated aluminum content.
引文
[1]叶国珍,叶宏明.先进陶瓷材料的研究现状与发展趋势[J],今日科技,2002,10:38-40.
    [2]Thevenot F.A review on boron carbide[J],Key Engineering Materials,1991,56-57:59-88.
    [3]Goeuriot P F,Thevenot F.The influence of allaying element on the boriding of steels [J],Mater Sci Eng,1982,55(1):9-19.
    [4]Hollenberg G W,Mastel B,Basmajian J A.Effect of irradiation temperature on the growth of helium bubbles in boron carbide[J],Journal of the American Ceramic Society,1988,63(7-8):376-380.
    [5]茹红强,许海飞,喻亮,吕鹏.共沉淀法原位合成无压烧结TiB_2/B_4C陶瓷复合材料[J],稀有金属材料与工程,2007,36(s1):717-720.
    [6]Weimer A W,Moore W G;Roach R P,Hitt J E,Dixit R S,Pratsinis S E.Kinetics of carbothermal reduction synthesis of boron carbide[J],Journal of the American Ceramic Society,1992,75(9):2509-2514.
    [7]Halverson D C,Pyzik A J,Aksay I A,Snowden W E.Processing of boron carbide-aluminum composites[J],Journal of the American Ceramic Society,1989,72(5):775-780.
    [8]Wang Mingchao,Zhang Zuoguang,Sun Zhijie,Li Min.Effect of fiber type on mechanical properties of short carbon fiber reinforced B4C composites[J],Ceramics International,2009,35(4):1461-1466.
    [9]Li Aiju,Zhen Yuhua,Yin Qiang,Ma Laipeng,Yin Yansheng.Microstructure and properties of(SIC,TiB_2)/B_4C composites by reaction hot pressing[J],Ceramics International,2006,32(8):849-856.
    [10]刘立强,陈蕴博.B_4C的晶体结构与C原子占位研究[J],2008,39(10):1628-1631.
    [11]Gogotsi G A,Groushevski Ya L,Dashevskaya O B,Gogotsi Y G,Lavrenko V A.Complex investigation of hot-pressed boron carbide[J],Journal of the Less Common Metals,1986,117(1-2):225-230.
    [12]李世波,温广武,葛勇,张宝生.碳硼化合物的晶体结构[J],哈尔滨建筑大学学报,1998,31(4):61-66.
    [13]Vast N,Lazzari R,Besson J M,Baroni S,Dal Corso A.Atomic structure and vibrational propertiws of icosahedral aboron and B_4C boron carbide[J],Computational Materials Science,2000,17(2-4):127-132.
    [14]斯温M V.材料科学与技术丛书(11卷)——陶瓷的结构与性能[M],北京:科学出版社,1998,10-60.
    [15]程卫桃.B_4C防弹陶瓷材料应用研究[D],广州:华南理工大学,2005.
    [16]吴芳.碳化硼陶瓷及其摩擦学研究[D],长沙:中南大学粉末冶金研究所,2001.
    [17]王永兰,金志浩,郭生武,高积强,杨建峰,李光新.核反应堆控制材料——B_4C的研究[J],西安交通大学学报,1991,25(4):25-30.
    [18]Bouchacourt M,Thevenot F.The structure and properties of the boron carbide phase[J],Journal of the Less-Common Metals,1981,82:227-234.
    [19]De With G.Note on the temperature dependence of the hardess of boron carbide[J],Journal of the Less-Common Metals,1983,95:133-138.
    [20]吴桢干,顾明元,张国定.碳化硼的氧化特征研究[J],工程材料,1997,5(2):30-34.
    [21]Schwetz K A,Grellner W,Lipp A.Mechanical properties of HIP treated sintered boron carbide[J],Institute of Physics Conference Series,1986,75:413-426,.
    [22]堂山昌男,山本良一.尖端材料[M],北京:电子工业出版社,1987,189-192.
    [23]徐润泽.粉末冶金结构材料[M],长沙:中南工业大学出版社,1999,282-324.
    [24]樊毅,张金生.B_4C在铁铜基摩擦材料中的作用[J],中南工业大学学报,2001,32(2):141-143.
    [25]Hunold K.A thermocouple for high temperatures[J],Advanced Materials & Processes,1986,9:4-9.
    [26]王零森,吴芳,尹邦跃.快中子堆用碳化硼材料的成分和性能设计[J],粉末冶金材料科学与工程,1999,4(2):105-109.
    [27]王零森,Koczak M J.AVCO SiC(SCS-6)纤维力学性能的研究[J],中南矿冶学院学报,1988,19(5):530-538.
    [28]佘继红,江东亮,谭寿洪,郭景坤.碳化硅陶瓷的热等静压烧结[J],硅酸盐学报,1997,25(4):395-400.
    [29]Vlajic M D,Krstic V D.Process for the production of dense boron carbide and transition metal carbides[P],US Patent,5720910,1998.
    [30]Turov Yu V,Khusid B M,Voroshnin L G,Khina B B,Kozlovskii I L.Gas transport processes in sintering of an iron-boron carbide powder composite[J],Powder Metallurgy and Metal Ceramics,1989,28(8):618-622.
    [31]唐国宏,张兴华,陈昌麒.碳化硼超硬材料综述[J],材料导报,1994,(4):469-472.
    [32]白克武,王永兰,杨建锋,高积强,李光新,李平,金志浩,王笑天.热压工艺对碳化硼显微结构和力学性能的影响[J],西安交通大学学报,1994,28(7):73-78.
    [33]丁硕,温广武,雷廷权.碳化硼陶瓷研究进展[J],材料科学与工艺,2003,11(1):101-105.
    [34]王零森,杨义斌,张金生,樊毅,吴芳.碳化硼烧结动力学和烧结机制[J],中南工业大学学报(自然科学版),1999,30(5):505-507.
    [35]尹邦跃,王零森.气流粉碎B_4C粉末的掺碳活化烧结研究[J],无机材料学报,2003,18(3):633-637.
    [36]王零森,边立刚,尹邦跃.B_4C粉末的气流粉碎及烧结[J],中南工业大学学报(自然科学版),2001,32(5):503-506.
    [37]孙志杰,吴燕,张佐光,仲伟虹,沈建明.防弹陶瓷的研究现状与发展趋势[J],宇航材料工艺,2000,30(5):10-14,23.
    [38]樱井良文,小泉光会.新型陶瓷——材料及其应用[M],北京:中国建筑工业出版社,1983,163-171.
    [39]Roy T K,Subramanian C,Suri A K.Pressureless sintering of boron carbide[J],Ceramics International,2006,32(3):227-233.
    [40]Frage N,Levin L,and Dariel M P.The effect of the sintering atmosphere on the densification of B_4C ceramics[J],Journal of Solid State Chemistry,2004,177(2):410-414.
    [41]祝宝军,肖汉宁,谭伟,裴立宅.碳化硼活化烧结技术进展[J],硬质合金,2004,21(2):116-120.
    [42]Lee C H,Kim C H.Pressureless sinter and related reaction phenomena of Al_2O_3-dropped B_4C[J],Journal of Materials Science,1992,27:6335-6340.
    [43]Mashhadi M,Taheri-Nassaj E,Sglavo V M,Sarpoolaky H,Ehsani N.Effect of Al addition on pressureless sintering of B_4C[J],Ceramics International,2009,35(2):831-837.
    [44]Zakhriev Z,Radev D.Properties of polycrystalline boron carbide sintered in the presence of W_2B_5 without pressing[J],Journal of Materials Science Letter,1988,7:695-696.
    [45]Kim D K,Kim C H.Pressureless sintering and microstructural development of B_4C-TiB_2 composites[J],Advanced Ceramic Material,1988,3(1):52-55.
    [46]Goldstein A,Geffen Y,Goldenberg A.Boron Carbide-zirconium boride in situ composites by the reactive pressureless sintering of boron carbide-zirconia mixtures[J].Journal of the American ceramic society,2001,84(3):642-44.
    [47]Dole S L.Microstructual coarsening during sinter of boron carbide[J],Journal of the American ceramic society,1989,72(6):958-966.
    [48]王零森,杨仪斌,张金生,樊毅,吴芳.掺C碳化硼活化烧结及其动力学[J],中国有色金属学报,2000,10(1):37-42.
    [49]Bougoin M,Thevenot F.Pressureless sintering of boron carbide with an addition of polycarbosilence[J].Journal of materials science.1990.22:109-114.
    [50]傅博,李盛荣,王永兰.碳化硼合成及其烧结体温度[J],原子能科学技术,1997,31(5):400-407.
    [51]蒋国新,王声宏.碳化硼的低温热压[J],粉末冶金技术,1995,13(2):108-111.
    [52]Sun Junlong,Liu Changxia,Duan Caiyun.Effect of Al and TiO_2 on sinterability and mechanical properties of boron carbide[J],Materials Science and Engineering:A,2009,509(1-2):89-93.
    [53]唐军,谭寿洪,陈忠明,江东亮.原位生成TiB_2颗粒增韧B_4C陶瓷的研究[J],粉末冶金技术,1996,14(3):168-174.
    [54]Kalandadze G I,Shalamberidze S O,Peikrishvili A B.Sintering of boron and boron carbide[J],Journal of Solid State Chemistry,2000,154(1):194-198.
    [55]Wang Mingchao,Zhang Zuoguang,Sun Zhijie,Li Min.Effect of fiber type on mechanical properties of short carbon fiber reinforced B_4C composites[J],Ceramics International,2009,35(4):1461-1466.
    [56]王零森,尹邦跃,方寅初.成形剂对碳化硼压坯密度和烧结密度的影响[J],中南工业大学学报,2002,33(4):377-379.
    [57]李世波,张宝生,温广武.B_4C-Al_2O_3复合材料的组织结构及力学性能[J],哈尔滨建筑大学学报,1999,32(5):74-78.
    [58]郭全贵,宋进仁,刘朗,张碧江.B_4C-SiC/C复合材料氧化过程的TG/DTA分析[J],碳素技术,1999,100(2):12-16.
    [59]Singh M.Thermodynamic analysis for the combustion synthesis of SiC-B_4C composites [J],Seripta Materialia,1996,34(6):923-927.
    [60]丁硕.原位形成B_4C陶瓷基复合材料的制备与组织性能研究[D],哈尔滨工业大学,2001.
    [61]丁硕,温广武.自生法制备纳米-微米颗粒增强B_4C基复合材料[J],材料工程,2002,(5):14-17.
    [62]王宏志,高濂.Al_2O_3基复合材料中纳米SiC对微观结构的影响[J],无机材料学报,1998,13(4):603-607.
    [63]Balmer M L,Lange F F,Jayaram M V,Levi C G.Development of nano composite microstructure in ZrO_2-Al_2O_3 via the sloution precursor method[J],Journal of the American ceramic society,1995,78(6):1489-1494.
    [64]Tan H.L,Yang W.Toughening mechanisms of nano-composite ceramics[J],Mechanics of Materials,1998,30(2):111-123.
    [65]靳喜海,高濂.纳米复相陶瓷的制备、显微结构和性能[J],无机材料学报,2001,16(2):200-206.
    [66]Yamada S,Hirao K,Yamauchi Y,Kanzaki S.High strength B_4C-TiB_2 composites fabricated by reaction hot-pressing[J],Journal of the European Ceramic Society,2003,23(7):1123-1130.
    [67]Suzuya Y,Hirao K,Yamauchi Y,Kanzaki S.Mechanical and electrical properties of B_4C-CrB_2 ceramics fabricated by liquid phase sintering[J],Ceramic international,2003,29(3):299-304.
    [68]Zhen Yuhua,Li Aiju,Yin Yansheng,Shi Ruixia,Liu Yingcai.Reactive and dense sintering of reinforced-toughened B_4C matrix composites[J],Materials Research Bulletin,2004,39(11):1615-1625.
    [69]Ru Hongqiang,Xu Haifei,Yu Liang,L(u|¨) Peng,Li Xiaodong,Qiu Guanming.Microstructure of TiB_2/B_4C composites with 1%Y_2O_3 prepared by co-precipitating and in situ synthesis[J],Journal of Rare Earths,2007,25(sl):42-45.
    [70]唐军,谭寿洪.B4_C-TiB_2复相陶瓷的强韧化研究[J],无机材料学报,1997:12(2):169-174.
    [71]Skorokhod V V,Krstic V D.Processing,microstructure,and mechanical properties of B_4C-TiB_2 particulate sintered composites.Ⅱ.fracture and mechanical properties[J],Powder Metallurgy and Metal Ceramics,2000,39(9-10):504-513.
    [72]刘荣,茹红强,赵媛,唐获.ZrB_2颗粒增韧B_4C陶瓷的原位合成[J],材料研究学报,2006,20(6):611-616.
    [73]Yamada S,Hirao K,Yamauchi Y,Kanzaki S.B_4C-CrB_2 composites with improved mechanical properties[J],Journal of the European Ceramic Society,2003,23(3):561-565.
    [74]Levin L,Frage N,Dariel M P.A novel approach for the preparation of B_4C-based cermets[J],International Journal of Refractory Metals and Hard materials,2000,18:131-135.
    [75]Levin L,Frage N,Dariel M P.The effect of Ti and TiO_2 addition on the pressureless sintering of B_4C[J],Metallurgical and Materials Transactions A,1999,30(12):3201-3210.
    [76]裴立宅,肖汉宁,祝宝军,谭伟.碳化硼粉末及其复相陶瓷的研究与进展[J],稀有金属与硬质合金,2004,32(4):46-50.
    [77]尹洪峰,任耘,罗发.复合材料及应用[M],西安:科学技术出版社,2003,75.
    [78]Olowolafe J O,Solomon J S,Mitchel W,Lampert W V.Thermal and electrical pr6perties of Au/B_4C,Ni/B_4C and Ta/Si contacts to silicon carbide[J],Thin Solid Films,2005,479(1-2):59-63.
    [79]Froumin N,Frage N,Aizenshtein M,Dariel M P.Ceramic-metal interaction and wetting phenomena in the B_4C/Cu system[J],Journal of the European Ceramic Society,2003,23(15):2821-2828.
    [80]高桂英,陈立富,严勇军.热压烧结制备晶须补强复合材料[J],厦门大学学报(自然科学版),1998,37(6):881-884.
    [81]Zan Qingfeng,Dong Limin,Wang Chang-an,Huang Yong.Improvement of mechancal properties of Al_2O_3/Ti_3SiC_2 multilayer ceramics by adding SiC whiskers into Al_2O_3layers[J],Ceramics International,2007,33(3):385-388.
    [82]Frage N,Froumin N,Aizenshtein M,Dariel M P.Interface reaction in the B_4C/(Cu-Si)system[J],Acta Materialia,2004,52(9):2625-2535.
    [83]郝元恺,赵恂,杨盛良,杨广平.纯镁对碳化硼颗粒的常压浸渗[J],复合材料学报,1995,12(3):12-16.
    [84]王东山,薛向欣,刘然,张淑会.B_4C-Al复合材料的研究进展及展望[J],材料导报,2007,21(F05):388-390,397.
    [85]于良,余新泉,邵磊.无压浸渗制备B_4C/Al复合材料工艺的研究现状[J],材料导报,2007,21(10):106-108.
    [86]刘军,佘正国.粉末冶金与陶瓷成型技术[M],北京:化学工业出版社,2005,2.
    [87]Cornie J A,Flemings M C,Moon H K.Fabrication of particulates reinforced metal composites[J],Processings of an International Conference Montreal,Quebec,Canada,1990,9:67-82.
    [88]朱冠勇.高含量Sip/Al热控材料的无压浸渗工艺及热性能研究[D],西安:西北工业大学,2004.
    [89]Urquhart A W.Molten metals MMCs,CMCs[J],Advanced Materials & Processes,1991,33(7):26-28.
    [90]周曦亚.复合材料[M],北京:化学工业出版社,2005,11.
    [91]Urquhart A W.Noverl reinforced ceramics and metals:A review of Lanxide's composite technologies[J],Materials Science and Engineering A,1991,144(1-2):75-82.
    [92]Aghajanian M K,Rocazella M A,Burke J T,Keck S D.The fabrication of metal matrix composites by a pressureless infiltration technique[J],Journal of Materials Science,1991,26(2):447-454.
    [93]李崇俊,马伯信,王抗利,郝志彪,李桂林.无压渗透制备(Al_2O_3)_p-Al复合材料的结构及渗透机理[J],固体火箭技术,1996,16(4):51-57.
    [94]Li Chongjun,Ma Boxin,Wang Kangli.Preparation of aluminum matrix composite by pressureless infiltration process[J],Rare Metals,1998,17(1):5-9.
    [95]Aghajanian M K,Macmillan N H,Kennedy C R.Properties and microstructure of lanxide Al_2O_3-Al ceramic composites[J],Journal of Materials Science,1989,24(3):659-676.
    [96]Eliasson J,Sandstrom R.Application of aluminum matrix composites[J],Metal Matrix Composites,1995,12(1):33-36.
    [97]Wood J V,Dabies P,Kellie J L.Properties of reactively cast aluminum TiB_2 alloys[J],Materials Science and Technology,1993,9(6):833-842.
    [98]王群,王文忠,高钦,沈玉辉,陈建峰.Lanxide技术合成AlN材料的反应过程及组织特征[J],无机材料学报,1997,12(1):105-09.
    [99]Lee K B,Sim H S,Cho S Y,Kwon H.Reaction products of Al-Mg/B_4C compoite fabricated by pressureless infiltration technique[J],Materials Science and Engineering A,2001,302(2):227-234.
    [100]Newkirt M S,Urguhart A W,Zwicker H R,Breval E.Formation of lanxide~(TM) ceramic composite materials[J],Journal of Materials Research,1986,1(1):88-89.
    [101]崔岩,张少卿.SiC颗粒粒度对熔铝氧化渗透合成SiC_p-Al_2O_3-Al复合材料微观断裂机制的影响[J],材料工程,2000,6:3-6.
    [102]Gorodon S,Hillery M T.A review of the cutting of composite materials[J],Proceedings of the Institution of Mechanical Engineers,Part L:Journal of Materials:Design &Applications,2003,217(1):35-45.
    [103]Edwards M R.Materials for military helicopters[J],Journal of Aerospace Engineering,2002,216(2):77-89.
    [104]颜悦,李秉哲.α-Al_2O_3/Al复合材料无压渗透制备反应加工机制的探讨[J],复合材料学报,1997,14(1):22-26.
    [105]何宗彦,史莅靖.利用自浸渗原理制备铝基非长纤维增强复合材料的新工艺研究[J],工程材料,1991,(5):24-27.
    [106]郑立允,熊惟皓,赵立新.功能梯度金属陶瓷的制备与性能[J],稀有金属材料与工程,2005,34(9):1389-1393.
    [107]王铁军,熊宁,陈姝,刘国辉.真空—压力熔渗制备B4C基金属陶瓷复合材料的研究[J],粉末冶金技术,2006,24(6):441-444.
    [108]刘璠,何柏林.无压渗透制备金属间化合物陶瓷基复合材料的研究进展[J],热加工工艺,2006,35(18):61-63.
    [109]缪燕平,何柏林.金属问化合物/陶瓷基复合材料的制备及发展[J],华东交通大学学报,2007,24(2):131-134.
    [110]高明霞,潘颐,Lliveria F J,Baptista J L,Vieira J M.自发熔渗法制备TiC/NiAl复合材料和其微观组织特征[J],复合材料学报,2004,21(5):11-15.
    [111]姚萍屏,赵声志,袁国洲,熊翔.熔渗对粉末冶金航空刹车材料性能的影响[J],非金属旷,2002,25(5):55-56.
    [112]王铁军,秦思贵,熊宁,林同伟.TiC/Cu熔渗复合材料耐烧蚀与耐热震性能研究[J],宇航材料工艺,2007,(2):62-65.
    [113]赵彦伟,王玉金,张太全,周玉,贾德昌.W/ZrC复合材料的反应熔渗法制备[J],稀有金属材料与工程,2009,38(1):143-146.
    [114]任淑彬,何新波,曲选辉,叶斌.电子封装用高体积分数SiCp/Al复合材料的制备[J],北京科技大学学报,2006,28(5):444-447.
    [115]刘君武,郑治祥,王建民,汤文明,吕君,徐光青.SiC_p/Al复合材料的自发熔渗机理[J],2007,35(10):1337-1341.
    [116]任淑彬,叶斌,曲选辉,何新波.复杂形状SiCp/Al复合材料零件的制备与性能[J],中国有色金属学报,2005,15(11):1722-1726.
    [117]Zhong Lijun,Wu Jinbo,Qin Jiting.An Investigation on Wetting Behavior and Interfacial Reactions of Aluminium-α-Alumina System[J],The Minerals,Metals& Materials Society,1989,12:58-63.
    [118]张华诚.粉末冶金实用工艺学[M],北京:冶金工业出版社,2004,265.
    [119]Pyzik A J,Fuller S M,Beaman D R.Boron carbide cermets structural materials with high flexure strength at elevated temperatures[P],US Patent,5508120,1996.
    [120]Zhang H,Ramesh K T,Chin E S C.High strain rate response of aluminum 6092/B_4C composites[J],Materials Science and Engineering A,2004,384(1-2):26-34.
    [121]Jung J,Kang S.Advances in manufacture boron carbide-aluminum composites[J],Journal of the American Ceramic Society,2004,87(1):47-54.
    [122]Aizenshtein M,Froumin N,Dariel M P,Frage N.Wetting and interface interactions in the B_4C/Al-Me(Me=Cu,Sn) systems[J],Materials Science and Engineering A,2008,474(1-2):214-217.
    [123]Qiaoli Lin,Ping Shen,Feng Qiu,Dan Zhang,Qichuan Jiang.Wetting of polycrystalline B_4C by molten Al at 1173-1473 K[J],Scripta Materialia,2009,60(11):960-963.
    [124]William C,Harrigan Jr.Commercial processing of metal matrix composites[J],Materials Science and Engineering A,1998,244(1):75-79.
    [125]Pyzik A J,Beaman D R.Al-B-C phase development and effects on mechanical properties of B_4C/Al-derived Composites[J],Journal of the American Ceramic Society,1995,78(2):305-312.
    [126]Halverson D C,Pyzik A J,Aksay I A,Snowden W E.Processing of boron carbide-aluminum composites[J],Journal of the American Ceramic Society,1989,72(5):775-780.
    [127]Panasyuk A D,Oreshkin V D,Maslennikova V R.Kinetics of the reactions of boron carbide with liquid aluminum,silicon,nickel,and iron[J],Powder Metallurgy and Metal Ceramics,1997,18(7):487-491.
    [128]Viala J C,Bouix J,Gonzalez G,Esnouf C.Chemical reactivity of aluminium with boron carbide[J],Journal of Materials Science,1997,32:4559-4573.
    [129]Halverson D C.Boron-carbide-aluminum and boron-carbide-reactive metal cermets[P],US Patent 4605440,1986.
    [130]Meyer F D,Hillebrecht H.Synthesis and crystal structure of Al_3BC,the first boridecarbide of aluminium[J],Journal of Alloys and Compounds,1997,252:78-102.
    [131]Nayeb-Hashemi H,Shan D.Evaluation of heat damage on B_4C particulate reinforced aluminum alloy matrix composite using acoustic emission techniques[J],Materials Science and Engineering A,1999,266(1-2):8-17.
    [132]Kiser M T,Zok F W,Wilkinson D S.Plastic flow and fracture of a particulate metal matrix composite[J],Acta Materialia,1996,44(9):3465-3476.
    [133]Li M,Ghosh S,Richmond O.An experimental-computational approach to the investigation of damage evolution in discontinuously reinforced aluminum matrix composite[J],Acta Materialia,1999,47(12):3515-3532.
    [134]Qin S Y,Chen C R,Zhang G D,Wang W L,Wang Z G.The effect of particle shape on ductility of SiCp reinforced 6061 Al matrix composites[J],Materials Science and Engineering A,1999,272(2):363-370.
    [135]张雄飞,王达健,陈书荣,谢刚.液态铝与陶瓷的润湿性改变机理[J],粉末冶金技术,2003,23(1):42-45.
    [136]Kouzeli M,San Marchi C,Mortensen A.Effect of reaction on the tensile behavior of infiltrated boron carbide-aluminum composites[J],Materials Science and Engineering A,2002,337(1-2):264-273.
    [137]Frage N,Levin L,Frumin N,Gelbstein M,Dariel M P.Manufacturing B_4C-(Al,Si)composite materials by metal alloy infiltration[J],Journal of Materials Processing Technology,2003,143-144:486-490.
    [138]Neshpor V S,Zaitsev G P,Zhuravlev S V,Kitsai A A,Aizenberg M A,Pesin V A.A Composite material in the Al-B-C system[J],Refractories and Industrial Ceramics,2003,44(2):89-91.
    [139]李青,华文君,崔岩,张少卿.无压浸渗法制备B4_C-Al复合材料研究[J],材料工程,2003.4:17-20.
    [140]李守新,王中光.功能梯度材料基础-制备及热机械行为[M],北京:国防工业出版社,2000,4.
    [141]Lee B S,Kang S.Low-temperature processing of B_4C-Al composites via in filtration technique[J],Materials Chemistry and Physics,2001,67:249-255.
    [142]Goldstein A,Yeshurun Y,Goldenberg A.B_4C/metal boride composites derived from B_4C/metal oxide mixtures[J],Journal of the European Ceramic Society,2007,27(1-3):695-700.
    [143]Vast N,Besson J M,Baroni S,Dal Corso A.Atomic structure and vibrational properties of icosahedral α-boron and B_4C boron carbide[J],Computational Materials Science,2000,(17):127-132.
    [144]Speyer R F,Lee H.Advances in pressureless densification of boron carbide[J],Journal of Materials Science,2004,39(19):6017-6021.
    [145]李世波,温广武,张宝生.WC/Co-B_4C复合材料的组织结构及力学性能[J],金属学 报,2001,37(6):663-667.
    [146]Thevenot F,Saint-etienne,ecoldes mines,Boron carbide-A comprehensive review[J],Journal of the European Ceramic Society,1990,6(4):205-225.
    [147]Ogorkiewiz R M.The development of armor materials[J],International Defense Review,1991,(4):349-352.
    [148]Savage C.Ceramic armor[J],Metals and Materials,1990,(8):181-192.
    [149]梁志勇,张佐光,宋焕成.军机战场生存力与复合材料装甲工程[J],材料工程,1994,(1):45-47.
    [150]Woodward R L.A simple one-dimensional approach to modeling ceramic composite armor defeat[J],International Journal of Impact Engneering,1990,9(4):455-474.
    [151]黄良钊.抗弹陶瓷的特殊耗能机制研究[J],兵器材料科学与工程,2001,24(5):3-6.
    [152]张佐光,梁志勇,钟伟红,宋焕成.武装直升机轻型复合防弹装甲技术[J],航空制造工程,1995,(11):33-34,36.
    [153]王东山,薛向欣,刘然,张淑会.B_4C/Al复合材料的研究进展及展望[J],材料向导,2007,5(21):388-390.
    [154]丁华东,钱耀川,傅苏黎,孙明友,郑晓辉.改善Al对B_4C润湿性的研究[J],装甲兵工程学院学报,2006,20(2):88-91.
    [155]Lee K B,Sim H S,Cho S Y,Kwon H.Reaction products of Al-Mg/B_4C composite fabricated by pressureless infiltration technique[J],Materials Science and Engineering A,2001,302(2):227-234.
    [156]Arslan G,Kara F,Turan S.Quantitative X-ray diffraction analysis of reactive infiltrated boron carbide-aluminium composites[J],J Eur Ceram Soc,2003,23(8):1243-1255.
    [157]李青.无压浸渗法制备B_4C-Al复合材料工艺研究[D],北京:北京航空材料研究院,2001.
    [158]Jung J,Kang S.Advances in manufacturing boron carbide-aluminum composites[J],Journal of the American Ceramic Society,2004,87(1):47-54.
    [159]王连星,党桂斌.系列孔径多空陶瓷的研制[J],功能材料,1997,28(2):186-191.
    [160]李荣久,茹红强,孙旭东.陶瓷—金属复合材料[M],冶金工业出版社,2004,281-296.
    [161]Cochran C N,Belitskus D L,Kinosz D L.Oxidation of aluminum-magnesium melts in air,oxygen,flue gas,and carbon dioxide[J],Metall Mater Trans B,1977,8(1):323-332.
    [162]彭可武.B_4C-CeB_6-Al复合材料的相组成、微观组织以及力学性能的研究[D],东北大学,2007.
    [163]Pyzik A J,Aksay I A.Multipurpose boron carbide-aluminium composite and its manufacture via the comtrol of the microstructure[P],US Patent 4702770,1987.
    [164]Halverson K C,Landingham R L.Infiltration processing of boron carbide,boron,and boride-reactive metal cermets[P],US Patent 4718941,1988.
    [165]Pyzik A J,Deshmukh U V,Dummead S D,Allen T L,Rossow H E.Light weight boron carbide-aluminium cermets[P],US Patent 5521016,1996.
    [166]Pyzik A J,Beaman D R.Al-B-C phase development and effects on mechanical properties of B_4C-Al derived composites[J],J Am Ceram Soc,1995,78:305-312.
    [167]Matchall C W,Rudnick A.Fracture mechanics of ceramics[M],Plenum Press:NY,1974,1025-1027.
    [168]周玉,雷廷权.陶瓷材料学[M],北京:科学出版社东,2004,265-279.
    [169]林广涌,雷廷权,周玉.陶瓷材料断裂韧性的评测方法[J],宇航材料工艺,1995,4(1):12-19.
    [170]周玉,雷廷权.陶瓷材料学[M],北京:科学出版社东,2004,162-163.
    [171]金志浩,高积强,乔冠军.工程陶瓷材料[M],西安:西安交通大学出版社,2000,193-194.
    [172]Green D J,龚江宏.陶瓷材料力学性能导论[M],北京:清华大学出版社,2003,80-86.
    [173]Yeomans J A.Ductile particle ceramic matrix composites—Scientific curiosities or engineering materials[J],J Eur Ceram Soc,2008,28(7):1543-1550.
    [174]Bartolome J F,Diaz M,Moya J S.Influence of the metal particle size on the crack growth resistance in mullite-molybdenum composites[J],J Am Ceram Soc,2002,85(11):2778-2784.
    [175]廖陆林,谭寿洪,江东亮.以Al-B_4C-C为烧结助剂的SiC陶瓷液相烧结研究[J],无机材料学报,2002,17(2):266-270.
    [176]穆柏春,唐立丹,张辉.烧结助剂对碳化硼陶瓷性能的影响[J],中国陶瓷,2007,43(9):12-16.
    [177]王零森.特种陶瓷[M],武汉:中南工业大学出版社,1993,132-139.
    [178]Marshall D B,Morris W L.Toughening mechanisms in cemented carbides[J],Journal of the American Ceramic Society,1990,73(10):2938-2942.
    [179]Krstic V V,Nicholson P S,Hoagland R G.Toughening of glasses by metallic particles[J],Journal of the American Ceramic Society,1981,64(9):499-504.
    [180]梁明宪,夏非.TiB_2-B_4C陶瓷复合材料的微观组织和机械性能[J],金属学报,1989,25(3):173-178.
    [181]梁英教,车荫昌.无机热力学数据手册[M],沈阳:东北大学出版社,1994,449-479.
    [182]Srivatsan T S,Guruprasad G,Black D,Radhakrishnan R,Sudarshan T S.Influence of TiB_2 content on microstructure and hardness of TiB_2-B_4C composite[J],Powder Technology,2005,159(3):161-167.
    [183]#12
    [184]Balmer M L,Lange F F,Jayaram V,Levi C G.Development of nano composite microstructures in ZrO_2-Al_2O_3 via the solution precursor method[J],Journal of the American Ceramic Society,1995,78(6):1489-1494.
    [185]Van Houtte P,Delannay L,Schoenfeld S E.The work of crack formation as measure of toughness of hard metals[J],International Journal of Plasticity,1983,7:107-110.
    [186]Huang X,Sun Y L,Liu Q C,Yan J,Jin Y Z.The growth twin in WC powder[J],China Tungsten Industry,2005,20:27-30.
    [187]王世中,臧鑫土.现代材料研究方法[M].北京:北京航空航天大学出版社,1992,382-390.
    [188]Jenq Liu,P Darrell Ownby.Boron carbide reinforced alumna composites[J],Journal of the American Ceramic Society,1991,74(3):674-677.
    [189]Davidge R W.Mechanical behavior of ceramics[M],Cambridge:Cambridge University Press,1979:86.
    [190]张国军,金宗哲.颗粒增韧陶瓷的增韧机理[J],硅酸盐学报,1994,22(3):259-268.
    [191]Skorokhod V,JR,Krstic V D.High strength-high toughness B_4C-TiB_2 composites[J],Journal of Materials Science Letter,2000,19(3):237-239.
    [192]Faber K T,Evans A G.Crack deflection process:Ⅰ.theory[J],Acta Metall 1983a,31(4):565-573.
    [193]Faber K T,Evans A G.Crack deflection process:Ⅱ.experiments[J],Acta Metall 1983b,31:577-584.
    [194]张国军,金宗哲.颗粒增韧陶瓷裂纹扩展微观过程[J],硅酸盐学报,1995,23(4):365-370.
    [195]Liu J,Ownby P D.Boron carbide reinforced alumna composites[J],Journal of the American Ceramic Society,1991,74(3):674-677.
    [196]Evans A G.Perspective on the development of high-toughness ceramics[J],Journal of the American Ceramic Society,1990,73(2):187-206.
    [197]Ashby M F,Blunt F J,Bannister M.Flow characteristics of highly constrained metal wires[J],Acta Metall,1989,37(7):1847-1857.
    [198]Flinn B D,R(u|¨)hle M,Evans A G.Toughening in composites of Al_2O_3 reinforced with Al [J],Acta Metall,1989,37(11):3001-3006.
    [199]Sigl L S,Mataga P A,Dalgleish B J,McMeeking R M,Evans A G.On the toughness of brittle materials reinforced with a ductile phase[J],Acta Metall,1988,36(4):945-953.
    [200]刘荣,茹红强,郭凯,唐荻.基于非均匀成核法制备ZrB_2/B_4C陶瓷复合材料[J],稀有金属材料与工程,2007,36(sl):635-638.
    [201]江东亮.精细陶瓷材料[M],北京:中国物资出版社,2002,161.
    [202]李世普.特种陶瓷工艺学[M],武汉:武汉工业大学出版社,1990,121.
    [203]唐军,谭寿洪.B_4C陶瓷的协同增韧[J],无机材料学报,1997,12(3):297-301

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700