用户名: 密码: 验证码:
松辽盆地裂后期构造反转及其动力学背景分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
松辽盆地多幕反转在中国东部中新生代盆地的演化中具有独特性,其规模巨大、相关的构造—地层发育保存完整,在传统的沉积-构造解析基础上,借助先进的低温热年代学定年方法,对松辽盆地裂后阶段反转构造起始时间、发育幕次和构造-热演化历史进行定量或半定量研究,将有助于建立起盆地发育过程与周缘板块构造运动学重组事件之间的对比框架,从而深化盆地反转机制和过程的认识,进一步完善中国东部伸展盆地演化的动力学模式。姚家组及其之上的中浅层是松辽盆地最重要和最现实的勘探层系,在挤压构造背景下,盆地内部的地层格架、沉积体系、油气圈闭、成藏组合和含烃流体的活动都将发生重大的变化,显示出与热沉降和同裂陷时期显著不同的样式。因此,本论文的研究在油气勘探方面也具有重要的现实意义。
     本文以松辽盆地裂后期构造反转地质特征的系统总结和分析为基础,突出以磷灰石、锆石裂变径迹为代表的低温热年代学测试技术在松辽盆地裂后期构造反转研究中的应用,取得了以下主要研究进展和认识成果:
     1、系统描述和总结了松辽盆地裂后期构造反转作用的主要地震、测井、沉积、古生物和构造等综合地质标志。
     通过地震剖面详细的层序解释,描述和分析了松辽盆地裂后反转期发育的T11,T06,T03,T02等不整合面的地质特征及其构造属性。这些不整合面之下可见显著的削截,T11界面削截了下伏区域性宽缓背斜的轴部,界面之上发育了广泛分布的红壤层沉积,反映该时期盆地曾长期暴露遭受剥蚀。从T11界面开始之后发育的T07、T06等界面均表现为一套由东向西前积体的顶部削截面,与下伏地层中向东西两侧上超的地层结构显著不同;总结了研究区发育的丰富的反转构造样式,在盆地中由东向西确定出4个NE和NNE向延伸的区域反转褶皱-冲断构造带,新识别出正形负花状反转构造样式,该构造样式有特殊的油气地质意义,其发育机制可能与压扭背景有关;运用沉降史回剥的技术,恢复了断坳转换界面T3,最大海泛界面T2,反转构造变革界面T11,反转界面T06的古地貌,并以T11界面为界,将坡折带的发育模式划分为张扭环形型坡折带和压扭环形型坡折带两种类型;厚度图和沉降史回剥分析还揭示出,从姚家组开始-白垩纪末期高峰,盆地的沉降中心至少有四次明显的向西迁移,且西迁的幅度由早到晚逐次变大;区域性沉积体系和物源配置关系分析、3D连片区沿层属性提取显示出姚家组沉积之前和之后,盆地的物源系统发生了明显的变化,由于盆地东部构造隆升,新的东部物源体系的开始发育。
     2、重新厘定了裂后期构造反转的起始时间,并识别出多幕构造反转,定性描述了其反转的强度及其区域变化。
     综合地质标志的分析表明,T11界面是盆地裂后期充填序列中发育的一条重要的构造变革界面,该界面东部抬升剥蚀、古土壤层发育、区域性湖平面的下降、界面之上由东向西的前积地层体和东部物源的出现等等均显示出该界面是盆地裂后热沉降阶段开始发生构造反转的起始界面。该界面的发育时间为88Ma左右,显然比原先认为的四方台组初期(即73Ma)要早15 Ma左右。而且,反转构造阶段多个不整合面和不同时期沉降中心的迁移意味着这种构造反转并不是单一的或瞬时的挤压过程,而是持续时间比较长、多期次的、幕式的演化过程,每个反转幕次都经历了挤压应力强化—挤压应力减弱的过程。本次研究认为,在晚白垩世期间,盆地至少经历了4幕比较强烈的构造反转。第一幕构造反转(青山口组末期,T11界面),大约发生在88.5Ma左右,发育有多组由东向西排列的NNE向宽缓的微幅隆起褶皱带;第二幕构造反转(嫩江组二段末期,T06界面),大约发生在77Ma左右,东部地层挤压抬升,地层向西前积超覆,部分地区黑色泥岩被剥蚀;第三幕构造反转(嫩江组末期,又称嫩江运动,T03界面),大约发生在73Ma左右,东部抬升,嫩五段地层缺失,削截范围向西延伸;第四幕构造反转(白垩纪末期,T02界面),大约发生在65Ma并可能持续到新生代,大量早期正断层构造反转,东部强烈抬升剥蚀,地层缺失严重。
     3、针对松辽盆地裂后期多幕构造反转,开展了比较系统而综合的低温热年代学研究,提取出一系列磷灰石、锆石裂变径迹参数等反映盆地多幕构造反转事件的低温热年代学信息,系统分析了盆地不同构造单元的低温热年代学表征。
     本文通过对松辽盆地主要构造单元二十九口钻井,一个野外露头,三十个磷灰石裂变径迹数据和两个锆石裂变径迹数据,鸡西盆地鸡D6井磷灰石裂变径迹数据的分析,提取了诸多的低温热年代学信息。磷灰石径迹长度方面,东部反转构造带径迹长度频次多峰分布表明受到了多幕的埋藏-反转-埋藏作用,中央坳陷区的普遍比较短,显示该区长期为沉降中心,样品都经过深埋藏,径迹退火消失;西部斜坡区的长度相对对较长,显示构造-热演化过程相对简单,后期构造反转的热响应不强烈。裂变径迹年龄的统计特征上,所有样品磷灰石、锆石的裂变径迹单颗粒中心年龄统计峰值均与裂后期多个不整合面及区域板块运动学重组事件有着良好的对应关系。通过年龄-埋深关系,说明东部地区至少经历了5个幕次的抬升降温事件,中央区有4幕,西部地区有2-3幕;另外,还确定了东部隆起区泉头组地层的退火门限为埋深389.2米,而西部斜坡区青山口组的退火门限为埋深427米。通过5条裂变径迹联井地质大剖面所体现的裂变径迹年龄剖面分析结果表明,在反转构造带和阶地的裂变径迹年龄大,凹陷或向斜部位的年龄比较小,东南和东北隆起区裂变径迹年龄总体比较大,显示最先构造反转,西部比较小,显示构造反转比较晚。磷灰石裂变径迹年龄等值线表现为东南部等值线最密集,相对应的年龄也最大,显示东南反转强度最大且最先构造反转。磷灰石裂变径迹年龄等值线的走向与晚白垩世和新生代期间盆地经受的最大主压应力方向一致。本论文首次获得了大庆长垣地区葡434井和高111井两个锆石裂变径迹数据,这是迄今能准确获取的松辽盆地中央坳陷带抬升的最早的(但不一定是初始抬升)可靠记录。结合磷灰石裂变径迹年龄解释,指示了大庆长垣地区在泉头组、青山口组、姚家组、嫩江组初期快速增温,是整个盆地的沉降中心,晚白垩世T06一幕强烈构造反转抬升使样品所在地层脱离锆石封闭温度(250℃),从嫩江组末期到古近纪晚期长垣地区总体处于构造反转抬升阶段(降温速率达到约3℃/Ma),28Ma至今相对稳定。说明大庆长垣的构造反转最晚开始于晚白垩世(约77Ma),并于古近纪晚期(28Ma)基本定型。
     4、以实测的裂变径迹数据为基础,利用AFTsolve模拟软件,获得了松辽盆地构造反转的热史(T-t)曲线。
     本论文自东向西选取了东南反转构造带、中央反转构造带、西部反转构造带的四个典型样品,并利用Ketcham退火模型及AFTsolve软件进行热史模拟分析。这些热史曲线表明,不同的反转构造带的热史差异明显,在盆地全面降温的起始时间上,东部最早,中央其次,西部最晚,降温速率也表现为东大西小,体现盆地构造反转东强西弱和东早西晚的基本特征。由热历史所体现的无论是升温或降温事件,都不是线性的、均一的、单纯的过程,而是在某阶段内总体埋藏升温或降温,同时总体升或降温阶段期间,还具有更次一级的快-慢-快-慢的幕式的变化速率差异。总体上,在盆地的整个裂后期的热沉降阶段构造反转阶段,发生了二个快速埋藏升温阶段和至少四次明显的降温事件。二次快速埋藏升温阶段,时间分别为106Ma至88.5Ma和87Ma至77Ma,升温速率均表现为中央大,两侧小,对应泉头组的裂后热沉降、青山口组和嫩江组最大湖侵所导致的快速沉降。第一次降温事件时间约88.5Ma-87Ma左右,是全盆地性的降温;第二次降温事件,其时间约78Ma-77Ma左右,该事件仅影响大庆长垣及以东地区;第三次降温事件,其时间约73Ma左右,影响范围比较大,是盆地大部分地区降温;第四次降温事件,其时间为65Ma,影响范围最大,盆地整体抬升降温。第五次降温事件可能从白垩纪末期持续到古近纪末期。每次降温事件的降温速率都表现为东大西小,且逐渐增大的趋势。以上的幕式降温事件与盆地的不整合面的发育时间及空间变化规律,以及主要构造反转幕次和幅度都有良好的对应关系。本次研究还获得了鸡西盆地的热史曲线,同样表现为幕式特征,其总体演化趋势和幕次与松辽盆地基本一致,揭示了构造反转引起的降温事件是区域性的,不仅仅局限于松辽盆地内部。且鸡西盆地全面降温的开始时间比松辽盆地的要更早,降温幅度更大,表明其距离引起构造反转的力源更近,受到更大挤压应力作用。
     5.重点总结和分析了太平洋板块一侧中新生代的板块构造运动学重组事件和演化过程,建立了松辽盆地裂后阶段幕式构造反转的动力学模式。
     松辽盆地内部的多幕构造变形表明其区域应力场曾发生多次变化,且与板块边界应力作用引起的长距离板内应力传导密切相关。中生代以来欧亚板块东侧发生了多次板块运动学重组事件,其中大洋板块俯冲方向和强度的变化很有可能是引起松辽盆地裂后期构造反转的重要驱动因素。晚白垩世(100Ma)以来为大洋板块扩张速度急剧增加的脉动期,脉动期内大洋板块向大陆板块作用表现脉动式俯冲消减。88Ma时,太平洋一侧板块发生重大板块运动学重组事件,主压应力方向在很短的时间间隔内由NNW调整为NWW,姚家组底界面(T11)发育的时代也在这个时期,且区域上构造配置关系也高度吻合,显然,T11界面是该次板块运动学重组事件在盆地内的响应界面。90-45Ma期间太平洋板块脉动式俯冲消减加速阶段基本对应松辽盆地姚家组至古近纪中期的幕式反转作用的高峰阶段。因此,推断这种板块脉动式俯冲消减作用正是松辽盆地乃至整个东北地区晚白垩世强烈构造反转的基本动力学背景。这种俯冲消减过程中所产生的挤压应力导致板块内部自东向西差异隆升,形成一系列构造反转界面。松辽盆地温度-时间曲线与周缘板块运动学重组事件也有很好的耦合效应,90Ma之前板块运动相对稳定,盆地埋藏升温。88-65Ma由于Kula板块的出现、Izanagi板块的消亡,板块活动突然脉动式加强,欧亚板块的绝对运动也多次调整,盆地幕式构造反转,呈现埋藏升温-反转降温-再埋藏升温-再反转降温的幕式特点。欧亚板块的绝对运动在65Ma全面加强,与大洋板块向其俯冲产生的强烈挤压,造成大规模的反转抬升降温一直持续到始新世中期的板块运动衰弱期。之后盆地东部一直在降温,西部小幅度埋藏升温。28Ma时日本海扩张,整个盆地再次抬升降温,此次降温事件一直持续到日本海的闭合(约17Ma)。从17Ma日本海闭合至今盆地比较稳定的小幅度埋藏升温。位于松辽盆地东部鸡西盆地的构造-热演化历史也表现出类似的演化模式。
The Multi-episode inversion of Songliao Basin has its special characteristics during the evolvement period of China east Mesozoic-Cenozoic basin. It is broad in scale and its related tectonic-stratigraphy development is remained comprehensively. Based on the traditional sediment-tectonic analysis, by the advanced methodology of low-temperature thermochronology, we do the quantitative or semi-quantitative research on the beginning time, developing episode of post-rift inversion structure and its tectonic-thermal history in Songliao Basin. This research contributes to build a comparative framework between the evolution of sedimentary basin and the kinematic reorganization of plate tectonic of adjacent plates, which can deepen our recognition on basin inversion system and procedure, and complete the kinematic model for east extension basins of china. Yaojia Formation and above middle-shallow layer are the most important and realizable exploration layer system. On the background of compressional structure, the movement of basin stratigraphic framework, sedimentary system, hydrocarbon trap, reservoir-forming combination and hydrocarbon fluid can be changed significantly and displayed conspicuously different styles compared with which in thermal subsidence and syn-rift period. As a result, this research also has the practical significance in oil-gas prospecting.
     This thesis is accomplished on the foundation of systematic summary and analysis for geological characteristics in Songliao Basin post-rifting, focusing on the apatite fission track (AFT) and zircon fission track (ZFT) low-temperature thermochronology aging test technology application of inversion structures in Songliao Basin postrift. The main results and findings are:
     1,This paper systematic describes and summarizes the main synthesized geological remarks of the post-rift inversion structure in the Songliao basin, included seismic, well logging,sedimentary, paleontology and structure.
     Based on the detailed sequence interpretation of the seismic profiles, we described and analyzed the geological features and structure properties of the main unconformities T11, T06, T03 and T02 which formed during the post-rifting stage of the Songliao basin. Beneath these unconformities, the truncation is very obvious. The boundary T11 truncates the axial region of the underlay regional gentle anticline and the red soil bed wide-spreads above T11. This shows that the Songliao basin was underwent a long expose and erosion stage in this sedimentary period. The boundary T07 and T06 above the T11 both appeared as a top truncation boundary of the westward prograding complex, which is very different from the both eastward and westward onlap in the underlay strata. We summarized the abundant inversion structures in this study area, determined 4 striking NE and NNE regional inversion fold-thrust belts from east to west in whole basin, and recognized the positive formal negative flower structure which formed related to the regional compression and is very significant for the hydrocarbon practice. The paleogeomorphology of main important boundary surface of was rebuilt with subsidence backstrip method, which is the conversion surface of the rift stage and post-rift stage (T3), the max flooding surface (T2), the inversion structure conversion surface (T11) and the inversion boundary surface (T06). The boundary T11 divides the developing model into two kinds:one is the transtensional ring-type and the other is the compressional ring-type. The isopach maps and the subsidence analysis indicates that the subsidence center of the Songliao basin migrated westward 4 times obviously at least and the migration span increased gradually from early stage to late stage. The analysis of the regional sedimentary system and the source setting relationship and the attribute extraction feature of the 3D seismic data shows that the source systems before the deposition of the Yajia Formation was extreme different from that after the Yajia Formation. This difference caused by the tectonic uplift of the east part of the basin and the new eastern source system began to form.
     2,The starting time of inversion structure in post-rift is re-determined. We also identify multi-episode inversion structure and qualitative describe its intensity of inversion and regional change.
     Comprehensive geologic tracer analysis shows that T11 boundary is an important structural disturbance boundary in the post-rift sequece filling. The phenomenon that has been identified in the east of boundary, such as uplift and denudation, palaeosol layer development, regional lake level decline, foreset bed formation from east to west on the boundary and eastern provenance emergence etc., show the boundary is the starting boundary in post-rift thermal subsidence inversion structure. The boundary developed in 88Ma, so evidently that about 15Ma earlier than formerly early Sifangtai (ie 73Ma). Moreover, inversion structures stage is composed of multiple unconfonnity and different periods subsidence center migration, this means such tectonic inversion structures is not single or instantaneous extrusion process but duration longer, multi period times, episodic evolution, and each inversion structure plays have experienced enhanced compressive stress-compressive stress weakening process. This study suggests that, in the late Cretaceous period, the basin has experienced at least four relatively strong tectonic inversion screen. The first phase inversion structure (the late Qingshankou, T11 boundary), took place at about 88.5Ma, the wide array of NNE swell slightly slow the fold zone developed from east to west; the second phase inversion structure (Nenjiang sections in the second stage, T06 boundary), took place at about 77Ma or so, east layer extrusion uplift, formation west forest overlap, black mudstone and eroded in some areas; the third inversion structure (the end of Nenjiang formation, also known as Nenjiang movement, T03 boundary), took place at about 73Ma or so, east layer uplift, five stage of Nenjiang formaition missing, truncated range westward; the fourth phase inversion structure (the late Cretaceous, T02 boundary), took place at about 65Ma or so and may continued to Cenozoic, a large number of early normal fault tectonic inversion, strong uplift and erosion in eastern, serious stratigraphic break.
     3,In view of the multi-episode tectonic inversion of post-rift in Songliao basin, lots of research on low-temperature thermochronology were made systemic and synthetically, this paper pick-up a series of AFT and ZFT parameter which reflect a lot of low-temperature thermochronology information about the occurrence of multi-episode tectonic inversion, and also analyze low-temperature thermochronology token systemic of different tectonic units in the basin.
     This paper analyzes area, the data of 30 AFTs,2 ZFTs and the AFT of the Jixi basin JiD6 well in the major tectonic unit of Songliao basin, and picks-up a lot of information about low-temperature thermochronology. In the length aspect of AFT, the multi peak values frequency distribution of the track length in eastern tectonic inversion zone indicate the occurrence of multi-episode burial-inversion-burial. The track length is short at large in the central sag zone, this phenomena indicates this area is the center of subsidence and the sample has been buried deeply so that the track annealing disappeared. The track length in western ramp is relative long, this indicates the process of tectonic-thermal evolution is relative simple and the thermal response of the late tectonic inversion is weak. In the statistical characters aspect of fission track age, including all of sample, the statistical peak value of AFT and ZFT single grain central age correspond with the unconformities and block kinematic recombination very well. According to the connection of age and burial depth, there were at least 5 episodes of uplift and temperature drop in the east,4 in the central area,and 2-3 in west. In addition, this paper confirms the depth of annealing threshold which is 389.2m in Quantou formation of eastern uplift area, the depth in Qingshankou formation of western ramp is 427m.Through the analysis on fission track age profile of 5 fission track well tie profiles, this paper considers that the age in inversion and terrace is big, but small in the sag and synclinal area, the bigger fission track age in southeast and northeast uplift area shows the tectonic inversion is early, the smaller age in west shows that the tectonic inversion is late. The character of the AFTA isopleths is that the southeast part is crowd, the age is also big, this indicates the intensity of inversion in southeast is big, and the time of inversion in southeast is early. The trend of AFTA isopleths is the same as the trend of principal stress in Cretaceous and Cenozoic of the basin. This paper gets the AFT data of Pu434 well and Gao111 well in Daqing for the first time, so far it is a reliable record of the earliest uplift(may not be the primary uplift) in the central sag of Songliao basin we can obtain. Integrating the interpretation of AFTA, this paper considers that the temperature of Quantou formation, Qingshankou formation, Yaojia formation and Nenjiang formation in Daqing Changyuan area increased rapidly, this area is also the central of subsidence, the T06 tectonic inversion in late Cretaceous made the formation which the samples locate in out off the zircon closure temperature (250℃). The Changyuan area was in the stage of inversion uplift from late Nenjiang formation to late paleogene, relative stable from 28Ma to present. It indicates that the inversion of Daqing Changyuan initiated in late Cretaceous, maintain the shape in late paleogene.
     4, Base on the substantive data of fission track, with the AFTsolve modeling sofrware, this paper obtains the curve of tectonic inversion thermal history in Songliao basin.
     This paper chose 4 typical samples of southeast tectonic inversion zone, central tectonic inversion zone and west tectonic inversion zone, and made the modeling thermal history analysis with Ketcham model and AFTsolve software. This thermal history curve shows that the thermal history varies a lot in different tectonic inversion zones, The time when the temperature of basin began to decline, is the earliest in the east, then in the center, the latest in the west, and the same trend in the rate of thermal history decline, it shows the character of inversion is strong and early in the east, weak and late in the west. The occurrence of temperature increase and decline, reflected by thermal history, is not linear, uniform and pure process, but the temperature increase or decline as a whole in some stage, at the same time, has a kind of sub-level rapid-slow-rapid-slow episodic rates variety, In general, in the stage of post-rift tectonic inversion, there were 2 stages of rapid burial temperature increase and 2 occurrences of temperature decline. There are two stages of rapid burial temperature increase, the first one is 106Ma to 88.5Ma,the other is 87Ma to 77Ma.Corresponding to the thermal subsidence of Quantou formation and the rapid subsidence lead by maximum flooding surface of Qingshankou formation and Nenjiang formation, The rate of temperature increase represent the character of big in the center and small in sides. The first occurrence of temperature decline is from 88.5Ma to 87Ma, the decline occurred in the whole basin, the second time is from about 78Ma to 77Ma, it only influence Daqing Changyuan area, the third time is about 73 Ma, the area influenced by it is big, it include most parts of basin, the fourth time is about 65Ma, the area influenced by it is the biggest, the whole basin uplift and temperature of it decline, the fifth time is from about late Cretaceous to late Paleogene. Every occurrence of temperature decline represent the its rate character of big in east and small in west, the trend of increase gradually. The occurrence of episodic temperature decline above corresponds very well to the formation of unconformity and its space variety,major inversion episode and its extent. This paper also obtains the thermal history curve of Jixi basin, the character of it is episodic, and its evolution trend and episode is the same as Songliao basin, this phenomena indicates the occurrence of temperature decline lead by tectonic inversion is regional, not only in Songliao basin. In addition, the time of temperature decline in Jixi basin is earlier, and the range of it is bigger than in Songliao basin, it shows the source of stress is nearer to Jixi basin, and compression stress is bigger.
     5,The plate kinematics reconstructions and evolution processes of West Pacific in Meso-Cenozoic are summarized emphatically. The kinetics model of the episode inversion structure during post-rifting period in Songliao Basin is rebuilt.
     Muti-episode tectonic deformations developed within Songliao Basin, which indicated that the regional stress field shifted many times and the long-distance intra-plate stress conduction raised by the stress of plate boundaries was correlative. Many times plate kinematics reconstructions happened in East of Eurasia plate since Mesozoic. The shift of direction and velocity of plate subduction may be the factor which drove the inversion structure during post-rifting period in Songliao Basin. Since Late Cretaceous (100Ma) the velocity of plate spreading increased sharply. During this pulsating period, the subduction of ocean plate toward to continental plate was the pulsating subduction.
     The important plate kinematics reconstructions beside the Pacific happened at the age of 88Ma, which induced the main compressive stress shift from NNW to NWW during a short interval. The boundary of Yaojia Formation(T11) developed at this time and the regional tectonic configurations were well correlative. Evidently, the boundary of T11 is the response to this plate kinematics reconstruction in basin. And then, the pulsating subduction of Pacific accelerated during 90-45Ma, when was consistent with the peak of episode inversion from Yaojia to middle Paleogene in Songliao Basin. Thus, this inferred plate pulsating subduction is just the kinetics background of the intense inversion structures in Songliao Basin and even the whole North-western China. The compressive stress induced by the process of subduction resulted in the discrepancy uplift of intra-plate from east to west. Series of boundaries of inversion structure formed.
     The temperature-time curve of Songliao Basin was well coupling with the kinematics reconstruction events of periphery plates. Before the age of 90Ma, the motion of plates kept steady relatively and the temperature of basin burial rose. By the appearance of Kula plate and the underthrusts of Izanagi plate during 88-65Ma, the activity of plates was pulsatile enhanced and the episode inversion structures developed. It was episode characteristics of buried temperature increasing-inversional temperature decreasing-another buried temperature increasing-another inversional temperature decreasing. The absolute velocity of Eurasia plate increased entirely at the age of 65Ma. And the compression stress induced by the subduction of the ocean plate with Eurasia plate resulted in large-scale inversion-uplift-temperature decreasing until the asthenia period of plate motion in middle-Eocene. Then the temperature was decreasing all along in western basin and increasing small-scale in eastern basin. The basin experienced uplift-temperature decreasing again when the Japan Sea shut up at the age of 17Ma. Since then the basin began to bury and temperature increasing small-scale until present. The evolution of tectonic and thermal history of Jixi Basin in the east put up the similarities with Songliao Basin.
引文
[1]Glennie K W., Boegner P L E., Sole pit inversion tectonics, In:Itling L. V. Hobson G. D. Eds Petroleum Geology of the continental Shell of Northwest Europe[M]. London:institute of petroleum,1984:110-120.
    [2]Bally A W., Tectogenese at seism ique reflexion[J], Bulletin Society Geologique France, 1984,7:279-285.
    [3]Harding. T. P. Seismic Characteristics and Identification of Negative Flower Structure, Positive Flower Structures and Positive structural Inversion[J]. AAPG,1985,(63):1016-1058
    [4]Cooper, M. A., and. Williams, G. D (eds), Inversion Tectonics[M], Geological Society, London, Special Publication,1989,44:201-219
    [5]Mitra. S., Geometry and Kinematic evolution of inversion[J]. AAPG Bulletin,1993, 77(7):1159-1191
    [6]翟光明,王志武,高瑞祺.中国石油地质志(卷2)[M].北京:石油工业出版社,1993:55-305.
    [7]高瑞祺,张莹,崔同翠.松辽盆地白垩纪石油地层[M].北京:石油工业出版社,1985:1-234.
    [8]迟元林,云金表,蒙启安,等.松辽盆地深部结构及成盆动力学与油气聚集[M].北京:石油工业出版社,2002:1-112.
    [9]宋鹰,任建业,阳怀忠等.松辽盆地北部姚家组底界面特征及其动力学背景[J].石油学报,2010,31(2):16-24.
    [10]王雅峰,林铁峰,李杰等.松辽盆地北部葡萄花油层隐蔽油气藏分布规律[J].地质科学,2009,44(2):385-398.
    [11]卓弘春,林春明,李艳丽,等.松辽盆地北部上白垩统青山口—姚家组沉积相及层序地层界面特征[J].沉积学报,2007,25(1):30-38.
    [12]崔莹.大庆油田徐22井青山口组-姚家组界线地层及古气候记录[D].中国地质大学(北京),2006.
    [13]向才富,冯志强,吴河勇等.松辽盆地西部斜坡带油气运聚动力因素探讨[J].沉积学报,2005,23(4):719-725
    [14]蔡希源,王根海,迟元林等.中国油气区反转构造[M].北京:石油工业出版社,2001:3-177
    [15]杨万里,高瑞祺,郭庆福等.松辽盆地陆相油气生成、运移和聚集[M].哈尔滨:黑龙江科学技术出版社,1985:200-208
    [16]Zhou Y C, Littke R, Numerical simulation of the thermal maturation, oil generation and migration in the Songliao Basin, Northeastern China[J]. Marine and Petroleum geology,1999, 16:771-792
    [17]闫全人,高山林,王宗起等.松辽盆地沉积岩地球化学特征对物源区、沉积环境和原型盆地构 造环境的反映[J].地质学报,2002,76(4):12-18
    [18]S Cloetingh, Henk Koo.Intraplate stresses and dynamical aspects of rifted basins[J].Tectonophysics,1992,215:167-185.
    [19]S Cloetingh,L O Boldreel,B T Larsen,et al.Tectonics of sedimentary basin formation:models and constraints[J].Tectonophysics,1998,300:1-11.
    [20]P A Ziegler.Late Cretaceous and Cenozoic intraplate compressional deformations in Alpine foreland—a geodynamic model[J].Tectonophysics,1987,137:389-420.
    [21]P A Ziegler,J D Wees,S Cloetingh,et al.Mechanical controls on collision-related compressional intraplate deformation[J].Tectonophysics,1998,300:103-129.
    [22]S Dyksterhuis,R D Muller.Cause and evolution of intraplate orogeny in Australia[J].Geology, 2008,36:495-498.
    [23]Jonas Kley, Thomas Voigt.Late Cretaceous intraplate thrusting in central Europe:Effect of Africa-Iberia-Europe convergence,not Alpine collision. Geology[J],2008,36:839-842.
    [24]万天丰.中国东部中—新生代板内变形构造应力场及其应用[M].北京:地质出版社,1993:12-83.
    [25]Ren J Y,Tamaki K,Li S T,et al.Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas[J].Tectonophysics,2002,344:175-205.
    [26]A A Stepashko.The Cretaceous Dynamics of the Pacific Plate and Stages of Magmatic Activity in Northeastern Asia[J].Geotectonics,2006,40(3):225-235.
    [27]A A Stepashko.Spreading Cycles in the Pacific Ocean[J].Oceanology,2008,48(3):401-408.
    [28]Maruyama S, Tetsuzo S. Orogeny and relative plate motions:example of the Japanese islands[J]. Tectonophysics,1986,127:305-329.
    [29]Sun w D, Ding X, Hu Y H, et al. The golden transformation of the Cretaceous plate subduction in the West Pacific[J]. Earth and planetary science letters,2007,262:533-542.
    [30]Sharp W D, Clague D A.50-Ma initiation of Hawaiian-Emperor Bend records major change in Pacific plate motion[J]. Science,2006,3131(9):10-13
    [31]Takada Y, Matsu'ura M. A unified interpretation of vertical movement in Himalaya and horizontal deformation in Tibet on the basis of elastic and viscoelastic dislocation theory[J]. Tectonophysics,2004,383:105-131
    [32]Heidbach,CASMI—A visualization tool for the World Stress Map database. Computers and Geosciences,008, doi:10.1016/j.cageo.2007.06.004
    [33]Schellart W P, Lister G S, Toy V G. A Late Cretaceous and Cenozoic reconstruction of the Southwest Pacific region:Tectonics controlled by subduction and slab rollback processes[J].Earth-science reviews,2006,76:191-223
    [34]Tapponnier P and Molnar P. Active faulting and Cenozoic tectonics of the Tie shan, Mongolia, and Baikal regions[J].Journal of Geophysical Research,1979,84:3425-3459
    [35]Shuto K, Ishimoto H, Hirahara Y, et al., Geochemical secular variation of magma source during Early to Middle Miocene time in the Niigata area, NE Japan:Asthenospheric mantle upwelling during back-arc basin opening[J]. Lithos,2006,86:1-33
    [36]Nakajima J, Hasegawa A. Tomographic evidence for the mantle upwelling beneath southwestern Japan and its implications for arc magmatism[J].Earth and planetary science letters,2007,254:90-105
    [37]Worrall D M, Kruglyak V, Kunst F, et al. Tertiary tectonics of the Sea of Okhotsk, Russia:Far-field effects of the India_Eurasia collision[J].Tectonics,1996,15(4):813-826
    [38]Sloan H, Patriat P. Kinematics of the North American-African plate boundary between 28 and 29N during the last 10Ma:evolution of the axial geometry and spreading rate and direction[J]. Earth and planetary science letters,1992,113:323-341
    [39]Lee Y H, Chen C C, Liu T K, et al. Mountain building mechanisms in the Southern Central Range of the Taiwan Orogenic Belt—From accretionary wedge deformation to arc-continental collision[J].Earth and planeatary science letters,2007,252:413-422
    [40]Sibuet J C, Hsu S K, Pichon X L. East Asia plate tectonics since 15Ma:constraints from the Taiwan region[J].Tectonophysics,2002,344:103-134
    [41]Huang C Y, Wu W Y, Chang C P, et al. Tectonic evolution of accretionary prism in the arc-continent collision terrane of Taiwan[J].Tectonophysics,1997,281:31-51
    [42]Kong F C, Lawver L A, Lee T Y. Evolution of the Southern Taiwan-Sinzi floded zone and opening of the Southern Okinawa trogh[J].Journal of Asian earth sciences,2000,18:325-341.
    [43]Rasmussen B, Fletcher I R, Muhling J R, et al.. Prolonged history of episodic fluid flow in giant hematite ore bodies:Evidence from in situ U-Pb geochronology of hydrothermal xenotime[J]. Earth and planetary science letters,2007,258:249-259
    [44]Zwingmann H, Manchtelow N. Timing of Alpine fault gouges[J]. Earth and planetary science letters,2004,223:415-425.
    [45]Gabet E. J, Burbank D W, sitaula P B, et al. Modern erosion rates in the High Himalayas of Nepal [J]. Earth and planetary science letters,2008,267:482-494
    [46]李晶.松辽盆地大庆长垣形成机制的讨论[J].大庆石油地质与开发,1995,14(2):1-3.
    [47]李娟,舒良树.松辽盆地中、新生代构造特征及其演化[J].南京大学学报(自然科学),2002,38(4):525-531.
    [48]方石,刘招君,郭巍.松辽盆地与大兴安岭新生代热构造耦合研究[J].核技术,2005,28(9):718-721.
    [49]任延广,陈均亮,冯志强等.喜山运动对松辽盆地含油气系统的影响[J].石油与天然气地质,2004,25(2):185-190
    [50]Waples D W. Time and temperature in petroleum exploration:Application of Lopatin's Method to petroleum exploration[J]. AAPG Bulletin,1980,64:916-926
    [51]王行信,辛国强,冯永才.松辽盆地粘土矿物研究[m].黑龙江科学技术出版社,1990.
    [52]Gleedow, Duddy, et al. Fission track lengths in the apatite annealing zone and the interpretation of mixed ages[J].Earth and planetary science letters,1986,78:245-254.
    [53]Henry P, Deloule E, Michard A. The erosion of the AIps:Nd isotopic and geothemical constrains on the sources of the peri-Alpine molasses sediments[J].Earth and planetary science letters, 1996,146:627-644.
    [54]Carter A, Moss S T. Combined detrital-zircon fission-track and U-Pb dating:a new approach to understanding hinterland evolution[J]. Geology,1999,27(3):235-238
    [55]康铁笙,王世成.地质热历史研究的裂变径迹方法[M].北京:地质出版社,1991.
    [56]袁万明,王世成,李胜荣等.西藏冈底斯带构造活动的裂变径迹证据[J].科学通报,2001,46(20):1739-1742.
    [57]邱楠生,胡圣标,何丽娟.沉积盆地热体制研究的理论与应用[M].北京:石油工业出版社,2004.
    [58]周祖翼,毛凤鸣,廖宗廷等.裂变径迹年龄多成分分离技术及其在沉积盆地物源分析中的应用[J].沉积学报,2001,19(3):456-458.
    [59]向才富,冯志强,庞雄奇,吴河勇,李军虹.松辽盆地晚期热历史及其构造意义:磷灰石裂变径迹(AFT)证据[J].中国科学(D辑:地球科学),2007,37(8):1024-1031.
    [60]杨峰平,陈发景,王玉华等.松辽盆地中央坳陷磷灰石裂变径迹分析[J].石油勘探与开发,1995,22(6):20-27.
    [61]王璞珺等.事件沉积:导论、实例、应用[M].吉林科学技术出版社,2001.
    [62]杨万里主编.松辽陆相盆地石油地质[M].北京:石油工业出版,1985.
    [63]高瑞祺,蔡希源.松辽盆地油气田形成条件与分布规律[M].北京:石油工业出版社,1997。
    [64]陈昭年,陈发景.松辽盆地反转构造[M].北京:地质出版社,1998.
    [65]任延广,王稚峰,王占国,等.松辽盆地北部葡萄花油层高频层序地层特征[J].石油学报,2006,27(增刊):25-30.
    [66]蔡希源,辛仁臣.松辽坳陷深水湖盆层序构成模式对岩性圈闭分布的控制[J].石油学报,2004,25(5):6-10.
    [67]高瑞棋,赵传本,乔秀云等.松辽盆地白垩纪石油地层孢粉学[M].北京:地质出版社,1999:55-103.
    [68]张雷,王英民,李树青等.松辽盆地北部四方台组-明水组高分辨率层序地层特征与有利区带预测[J].中南大学学报(自然科学版),2009,40(6):1679-1688.
    [69]程日辉,王国栋,王璞裙等.松科一井北孔四方台组-明水组沉积微相及其沉积环境演化[J].地学前缘,2009,16(6):85-95.
    [70]王燮培,宋廷光.从松辽盆地的构造反转看中国东部盆地构造圈闭的形成[J].地球科学-中国地质大学学报,1994,21(4):374-382.
    [71]Gleedow A J W,Brown R W. Fission traek thermoehronology,and the long-term denudational response to tectonics.in Summer field MJ, eds[M]. Geomorphology and Global Tectonics,Chichester:John Wiley and Sons,2000.
    [72]Gleadow A J W,Duddy 1 R,Green P F, et al. Confined fission track lengths in apatite:a diagnostic tool for thermal history analysis[J]. Contributions to Mineralogy and Petrology,1986a,94:405—415.
    [73]Gleadow A J W,Kohn B P,Brown R W,etal. Fission traek thermotectonie imaging of the Australian continent [J].TectonoPhysics,2002,349:5—21.
    [74]Marilyn E. M, Gleadow A J.W., John F et al. Thermal evolution of rifted continental margins:new evidence from fission tracks in basement apatites from southeastern Australia[J].Earth and Planetary Science Letters,1986,78(2-3):255-270.
    [75]Fleiseher R L,Price P B,Walker R M. Nuelear tracks in solids Principles and applications[M],Berkeley:University of Califormia Press,1975.
    [76]R.D. Loss, J.R. De Laeter, K.J.R. Rosman, et al. The Oklo natural reactors:cumulative fission yields and nuclear characteristics of Reactor Zone 9[J]. Earth and Planetary Science Letters, 1988,89(2):193-206.
    [77]Price P B,Walker R M.Fission tracks of charged particles in mica and the age of minerals[J].Journal of GeoPhysical Research,1963,68:4847-4862.
    [78]Wagner G A,Van Den HauteP.Fission track dating[M].Dordrecht:Kluwer Aeademic Publishers,1992.
    [79]Green P F, Duddy I R, Gleadow A J W, et al. Thermal annealing offission tracks in apatite.1. A qualitative description[J].Chem Geol,1986,59:237-253.
    [80]Tagami T, Carter A, Hurford A J. Natural long-term annealing of zircon fission-track system in Vienna Basin deep borehole samples:Constrains upon the partial annealing zone and closure temperature[J]. Chem Geol,1996,130:147-157.
    [81]Green P F. Comparison of zeta calibration baselines for fission-track dating of apatite, zircon and sphene[J]. Chemical Geology,1985,58:1-22.
    [82]Wagner G A. Fission-track ages and their geological interpretation [J],Nuelear Tracks 1981, 5:15-25.
    [83]Johan De G. Apatite fission-track thermochronology of theAltai Mountains(South Siberia) and theTien Shan Mountains(Kyrgyzstan):relevance to Meso-Cenozozic tectonics and denudation in Central Asia:(dissertation) [M].Gent:Universiteit Gent,2003.
    [84]Ketcham R A, Ddonelick R A, Carlson W D. Variability of apatite fission-track annealing kinetics Ⅲ:Extrapolation to geological time scales[J].American Mineralogist,1999, 84:1235-1255.
    [85]Ketcham R A, Donelick R A, Donelick M B. AFTSolve:A program for multi-kinetic modeling of apatite fission-track data[J].Geological Materials Research,2000,2(1):1-32.
    [86]任战利.中国北方沉积盆地构造热演化史研究[M].北京:石油工业出版社,1999.
    [87]王瑜.构造热年代学-发展与思考[J].地学前缘,2004,11(4):436-443.
    [88]Clothingh S. Me Queen,Lambeck K. On a tectonci mechanism for tegional scalevel variations[J].Earth Planet Sci Lett.1985,75:157-166.
    [89]TWC Hilde,S Uyeda,L Kroenke.Evolution of the western pacific and its margin[J]. Tectonophysics,1977,38:145-152.
    [90]Stuart R.Clark,R.D.Muller.Convection models in the Kamchatka region using imposed plate motion and thermal histories[J].Journal of Geodynamics,2008,46:1-9.
    [91]谢鸣谦.拼贴板块及其驱动机理:中国东北及邻区的大地构造演化[M].北京:科学出版社, 2000.
    [92]Maruyama S,Isozaki Y,Kimura Gaku,et al.Paleogeographic maps of the Japanese Islands:Plate tectonic synthesis from 750 Ma to the present[J]. The Island Arc,1997,6:121-142.
    [93]Kenshiro Otsuki.W estward migration of the Izu-Bonin Trench, northward motion of the Philippine Sea Plate, and their relationships to the Cenozoic tectonics of Japanese island arcs[J]. Tectonophysics 1990,180(2-4):351-367.
    [94]李志安.松辽盆地地幔热流的演化特征[J].大地构造与成矿学,1995,19(2):104-112.
    [95]R L Larson,C G Chase.Late Mesozoic Evolution of the Western Pacific Ocean[J]. Geological Society of America Bulletin,1972,83(12):3627-3644.
    [96]上田,都城等.板块构造和日本列岛构造史[J].Geological Society of America Bulletin,1974,85(7).
    [97]R L Larson.Latest pulse of Earth:Evidence for a mid-Cretaceous superplume[J].Geology,1991,19:547-550.
    [98]王成善,胡修棉.白垩纪世界与大洋红层[J].地学前缘,2005,12(2):11-21.
    [99]W. W. Sager,A. A. P. Koppers,.Late Cretaceous Polar Wander of the Pacific Plate:Evidence of a Rapid True Polar Wander Events[J]. Science 2000,287:455-459
    [100]A Cox, Michel G. D.C Engebretson.Terrane trajectories and plate interactions along continental margins in the north Pacific Basin[M]. The evolution of the Pacific Ocean margins.Oxford University Press,1989.
    [101]Alexey Soloviev,John Garver,Galina Ledneva.Cretaceous accretionary complex related to Okhotsk-Chukotka Subduction,Omgon Range, Western Kamchatka, Russian Far East[J]. Journal of Asian Earth Sciences,2006,27:437-453.
    [102]方大钧,王兆樑,金国海,等.中国松辽盆地白垩系磁性地层[J].中国科学(B辑),1989,10:1084-1091.
    [103]高瑞祺.松辽盆地白垩纪被子植物花粉的演化[J].古生物学报,1982,21(2):217-222
    [104]叶得泉,黄清华,张莹.松辽盆地白垩系介形类生物地层学[M].北京:石油工业出版社,2002.
    [105]王璞裙,杜小弟,王俊,等.松辽盆地白垩纪年代地层研究及地层时代划分[J].地质学报,1995,69(4):372-379.
    [106]黄清华,谭伟,杨会臣.松辽盆地白垩纪地层序列与年代地层[J].大庆石油地质与开发,1999,18(6):15-17.
    [107]Harland W B,Smith D G,Armstrong R L.A geologic time scale 1989[M]. Cambridge:Cambridge University Press,1990:1-114.
    [108]任凤楼,张岳桥,邱连贵,等.胶莱盆地白垩纪构造应力场与转换机制[J].大地构造与成矿学,2007,31(2):157-167.
    [109]陈刚,孙建博,周立发,等.鄂尔多斯盆地西南缘中生代构造事件的裂变径迹年龄记录[J].中国科学(D辑:地球科学),2007,37(增刊):110-118.
    [110]任建业.渤海湾盆地东营凹陷S6'界面的构造变革意义[J].地球科学—中国地质大学学报,2004,29(1):69-76.
    [111]任建业,陆永潮,李思田等.伊舒地堑构造演化的沉积充填响应[J].地质科学,1999,34(2):196-203.
    [112]Ru,K., Pigott,J. D.,1986. Episodic rifting and subsidence in the South China Sea[J]. AAPG Bulletin,70:1136-1155.
    [113]孙向阳,任建业.东海西湖凹陷裂后期构造演化驱动机制探讨[J].地球科学——中国地质大学学报,2001,26(增刊):22-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700