用户名: 密码: 验证码:
隔断式凝胶段塞堵漏机理及技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钻井工程中,恶性漏失严重影响勘探开发的进程,恶性漏失堵漏技术是油气钻井技术的“瓶颈”之一,是急需解决的技术难题。目前恶性漏失堵漏仍然主要是依靠经验和多次重复(十几次、几十次、甚至上百次)的积累效应来达到堵漏的目的。
     隔断式凝胶段塞堵漏的基本原理在分析恶性漏失堵漏的技术难点和堵漏材料及堵漏技术作用原理基础上已经提出,而且根据该原理,按照能同时满足“裂缝性及破碎性地层恶性漏失堵漏材料必须满足的几个条件”的要求,利用“结构流体流变学”和“超分子化学”的最新理论和研究成果,已经研制成功了一种特殊的堵漏剂——特种凝胶ZND,凝胶ZND在现场处理恶性漏失中取得了初步的效果,虽然如此,凝胶ZND的流变性还缺乏系统研究,已提出的隔断式凝胶段塞堵漏原理的正确性和可行性需要进一步验证、改进和完善,才有可能形成解决恶性漏失重大技术难题的实用技术,为此,应进一步证实和解决的问题包括:①凝胶ZND是否具备“解决裂缝性及破碎性地层恶性漏失的堵漏材料必须满足的几个条件”;②凝胶ZND是否能够形成隔断地层流体与井筒流体联系的隔断式凝胶段塞,所形成的凝胶段塞是否具有启动压力梯度及其调控措施仍需实验和现场试验证实;③基于凝胶ZND而形成的堵漏技术仍不完善,有待进一步的发展和完善,使其能够形成有效的解决裂缝性及破碎性地层的恶性漏失的技术难题的堵漏技术。
     本文围绕上述必须解决的问题展开了深入研究,通过理论、实验和现场试验研究,取得的主要成果和认识如下:
     (1)通过凝胶ZND的流变性系统研究,证实了凝胶ZND具有优良的剪切稀释性能,它在地面管线、钻柱内和环空内高速梯下易流动,在地层裂缝及孔隙中低速梯流动十分困难;证实了凝胶是一种高弹性的黏弹性流体;验证了凝胶具有静屈服应力,这是隔断式凝胶段塞的形成和产生启动压力梯度的必备条件。
     (2)建立了用稀释热评价凝胶抗冲稀难易程度的评价方法和用孔径为0.9mm的20目筛网作为凝胶在稀释一定时间后保留的抗冲稀能力判别手段的凝胶抗冲稀能力的评价方法,研究表明凝胶ZND具有强的抗冲稀能力,凝胶在填充孔隙空间及停留后仍能保持原有优良的性能,强的抗冲稀能力是形成“隔断式凝胶段塞”的另一基本条件。
     (3)选用了PTT本构模型描述凝胶的非线性黏弹性能,将凝胶经裂缝狭窄处进入较宽裂缝(或经孔喉进入孔道)时的流道简化为1:4突扩流道,通过polyflow软件数值模拟了凝胶在1:4突扩流道内流动状态和膨胀性能,数值计算表明凝胶过喉道能产生膨胀,而且通过调控Weissenberg数可以实现凝胶过喉道或裂缝狭窄处膨胀后完全充填满孔道空间,研究结果为凝胶ZND形成隔断式凝胶段塞提供了理论指导。(4)分别通过自行研制的破碎性地层大孔道堵漏模拟装置和可视化裂缝性堵漏模拟装置实验验证了凝胶ZND在破碎性地层和裂缝性地层中完全能形成隔断式凝胶段塞,而且此凝胶段塞具有启动压力梯度,研究了增大凝胶段塞启动压力梯度的各种方法,可能将启动压力梯度提高到0.3MPa/m以上,以实现堵漏的目的,验证了隔断式凝胶段塞堵漏原理的正确性和可行性。
     (5)凝胶与常用钻井液体系的配伍性、与水泥浆的相容性、硫化氢和二氧化碳气体对凝胶ZND的性能影响的研究表明凝胶具有现场堵漏的适应性;以凝胶为基础结合其它现有各种堵漏材料形成了适用的综合堵漏技术,这些综合堵漏技术能够实现“解决裂缝性及破碎性地层恶性漏失的堵漏材料及技术必须满足的几个条件”,,发展和完善后的隔断式凝胶段塞堵漏系列技术包括:
     ①只用凝胶ZND堵液的堵漏技术;
     ②在凝胶ZND堵液中加交联剂,提高凝胶强度的堵漏技术;
     ③在凝胶ZND堵液中加入其它堵漏材料(如粘土、单封、桥堵剂、果壳、体膨聚合物等)的堵漏技术;
     ④先注凝胶ZND堵液,后尾追堵漏水泥浆、纤维水泥浆堵漏的堵漏技术。
     (6)隔断式凝胶段塞堵漏系列技术之“①只用凝胶ZND堵液的堵漏技术”和“④先注凝胶ZND堵液,后尾追堵漏水泥浆、纤维水泥浆堵漏的堵漏技术”在长庆油田和川东北地区等三十余口井/次的恶性漏失井的现场试验效果显著,采用凝胶ZND堵液后尾追堵漏水泥浆的综合堵漏技术在双庙1井和罗家2井等由“裂缝性恶性漏失与三高气层形成的负安全密度窗口”造成的喷漏同存的恶性漏失复杂取得了成功。隔断式凝胶段塞堵漏技术是在新的堵漏思路发展起来的一项新技术,在恶性漏失堵漏技术上取得了重要突破。
     本文通过理论、实验和现场试验研究证实了隔断式凝胶段塞堵漏原理的正确性和技术可行性,为有效解决恶性漏失的隔断式凝胶段塞堵漏技术的建立和现场应用提供必要的理论基础和实验依据。
In drilling engineering, plugging technology for vicious lost circulation is one of the "bottlenecks" in oil and gas well drilling technology, which seriously affects the process of exploration and development. And the plugging technology is the technique problem which needs to be solved urgently. At present, the way to plug vicious lost circulation is still mainly relying on the experience plugging method and repeatedly (10 times, dozens or even hundreds of times) plugging to achieve the-purpose of plugging by cumulative effects.
     Based on analyzing the difficulties of plugging vicious lost circulation and the basic action principles of plugging materials and their technologiesy, Professor Luo proposed the plugging principle of separating-type gel slug. And according to this principle and the requirement of simultaneously satisfying "the necessary conditions to plug the vicious lost circulation in fractured or broken formations", it has developed a a special sealant-special gel ZND by using the-latest theories and research results of "Rheology of Structural Fluid" and "Supramolecular Chemistry". It achieved preliminary effect when the gel ZND was used to deal with vicious lost circulation. However, it was still lack of systematic study of rheology of gel ZND. And the rationality, correctness and feasibility of the separating-type gel slug principle need to be verified yet. The problems must to be resolve or verified include:①whether can the gel ZND satisfy "the necessary conditions to plug the vicious lost circulation in fractured or broken formations"?②whether can the gel ZND form the separating-type gel slug cutting off the possible contact between the formation water and the wellbore fluid, and whether can the separating-type gel slug exit threshold pressure gradient?③the plugging technology based on gel ZND which is not good enough needs further development and improvement, so that it can effectively solve the vicious leakage problems in fractured and broken formations.
     This paper conducts in-depth theory and experiments and field tests study focused on the issues that must be resolved. The main achievements and recognition include:
     ①Based on the rheology study of gel ZND, it confirmed that the gel ZND had good shear thinning properties, in high-speed ladder (such as 300~500s-1) with lower viscosity (100~200mPa-s),but in low ladder (lower than 10s-1) with a high viscosity (more than 100,000mPa-s, cone plate system test results). Gel can flow easily in the ground pipelines, drill string and the annulus, but flow hard in cracks and pores. And it confirmed that gel ZND had strong'elastic which help gel flooding. And confirmed the gel ZND had static yield stress, which was the necessary condition for separating-type gel slug generating threshold pressure and threshold pressure gradient.
     ②Established a evaluation method to evaluate the difficulty degree of gel ZND been diluted by using dilution heat of gel. The lower the dilution heat, the gel was harder been diluted. And establish sieve method to evaluate the anti-dilution ability of gel under certain time diluted by choosing 20 mesh sieve with 0.9mm aperture as the discrimination means. The results showed gel had strong anti-dilution ability that made the gel fill fractures and pores with its excellent performance, which was the basic condition to form "separating-type gel slug".
     ③Used the PTT constitutive model to describe the nonlinear viscoelastic property of gel. And simplified the situation that flows from narrowest cracks into a wide crack (or flows from pore throat into the channel) to 1:4 sudden expansion channel. Numerically simulated the flow status and swelling properties of gel flow in the 1:4 sudden expansion channel by Polyflow software. Numerical calculations showed that the gel can swell after pass throat. And it could achieve the gel fill the pore of fracture space completely after pass throat or narrow fracture by regulating the Weissenberg number. Gel ZND has the possibility to form separating-type gel slug.
     ④Through experimental study by using developed large pores of formation plugging analog devices and visual fractured plugging analog device separately, it confirmed that the gel ZND could form separating-type gel slug in broken and fracture formations, and the forming separating-type gel slug had threshold pressure gradient which could be regulated. And it verified that the plugging principle of separating-type gel slug had rationality, correctness and feasibility. Gel ZND can realize the principle.
     ⑤Base on the study of the compatibility between the gel ZND and common used drilling fluid systems, and the compatibility between the gel ZND and cement slurry, and the gel properties affected by hydrogen sulfide and carbon dioxide gas, the gel can combine existing types of sealing materials to form integrated application technologies to satisfy the necessary conditions to plug the vicious lost circulation in fractured or broken formations. The integrated application technologies which are based on gel ZND include:
     A. just use gel ZND for plugging
     B. cross-linked gel system
     C. gel ZND add other sealing material, such as clay, single letters, bridge agents et al. D. first injectinggel ZND, plugging cement slurry after (first inject gel ZND, then inject plugging cement slurry)
     ⑥The plugging technologies of seprarating-type gel slug were used to deal with vicious lost circulation in more than thirty wells in Changqing oil field and northeast Sichuan area et al which achieved significant effect. Moreover, the technology of first injecting gel ZND, plugging cement slurry after was successfully used to deal with the vicious lost circulation with server blowout in Shuangmiao-1 well and Luojia-2 well caused by negative security window formed by fractured vicious lost circulation and high pressure in three-high gas formation.
     The plugging technology of separating-type gel slug achieves important technical breakthroughs in vicious lost circulation plugging, which is a new technology developed from new idea.
     In this paper, it verified the plugging principle of separating-type gel slug has rationality and technical feasibility base on theoretical, experimental and field test study. It can provide field experience, theoretical basis and guidance for field application of the plugging principle and technology of the separating-type gel slug.
引文
[1]谢公健等.川东北地区堵漏新技术的开发与应用.钻采工艺,2003,26(4):97~100
    [2]姚声贤等.安东1井井漏的启示.天然气工业,2004,24(1):50~52
    [3]陈武等.钻井工作量及钻速分析.天然气工业,2003,23(1):45~47
    [4]王维斌等.川东宣汉—开江地区恶性井漏特征及地质因素.天然气工业,2005;25(2):90~92
    [5]赵炬肃.塔河油田盐下探井三开长裸眼井壁稳定问题的探讨.钻井液与完井液,2005,22(5):69~74
    [6]殷平艺,亢青岭.吐哈油田防漏堵漏泥浆技术.石油钻探技术,1995,23(1):36~38
    [7]徐向台,刘玉杰,申威等编著.钻井工程防漏堵漏技术.北京:石油工业出版,2000:1
    [8]G.E.Loeppke and 8.C.Caskey. "A FULL-SCALE FACILITY FOR EVALUATING LOST CIRCULATION MATERIALS AND TECHNIQUES*." Geothermal Technology Development Division 9741 Sandia National Laboratories Albuquerque, New Mexico.
    [9]A.D. Black. "Investigationof Lost Circulation Problems with Oil Base Drilling Fluids." DRL reports, Phase 1-May 1986.
    [10]N.Morita and A.D.Black. "Theory of Lost Circulation Pressure." SPE 20409,1990.
    [11]Glen E.Loeppke, David A.Glowkp, et al. "Design and Evaluation of Lost-Circulation Materials for Severe Environments." SPE18022,1990.
    [12]Fuh,G.,et al.:"A New Approach to Preventing Lost Circulation While Drilling", Paper SPE 24599 presentet at the 1992 SPE Annual Technical Conference and Exhibition,Washington D.C.,Oct.4-7.
    [13]All,A.,Kallo C.L.and Singh,U.B.:"Preventing Lost Circulation in Severely Depleted Unconsolidated Sandstone Reservoirs", SPE Drilling & Completion (1994) 9(1):p.32-38.
    [14]Espin,D.,Chavez,J.C.and Ranson,A.:"Method for cosolidation of sand formations using nanoparticles", United State patent 6513592,Issued on Feb.4(2003).
    [15]张敬荣.桥堵泥浆间隙关井挤堵漏工艺技术的现场应用.天然气工业.1998,18(3):86~87
    [16]薄晓林.用屏蔽桥堵技术提高长庆油田洛河组漏层的承压能力.西南石油学院学报,1995,17(2):78~84
    [17]蒲晓林.压裂实验法评价裂缝性桥塞堵漏.钻井液与完井液,1998,15(4):19~22
    [18]王书琪.塔里木山前构造带高密度钻井液堵漏技术.钻井液与完井液,2006,23(1):76~77
    [19]郭红峰.桥塞堵漏工艺及堵剂研究.石油钻探技术,2000,28(5):39~40
    [20]崔雪花.井漏控制:减少井下泥浆漏失的技术和策略.国外油田工程,2004,20(5):10~14
    [21]周保中.泡沫桥堵钻井液在吉林油田海31井的应用.钻井液与完井液,2004,21(2):52~54
    [22]黄立新,张光明.固相颗粒封堵孔隙喉道的机理研究.江汉石油学报,1996,21(2):41~43
    [23]陈亮,王立峰,蔡利山.塔河油田盐上承压堵漏工艺技术.石油钻探技术,2006,34(3):60-63
    [24]李家学,黄进军,罗平亚等.随钻防漏堵漏技术研究.钻井液与完井液,2008,25(3):25-29
    [25]黄进军,罗平亚,李家学等.提高地层承压能力技术.钻井液与完井液.2009,26(2):69-7
    [26]熊继有,蒲克勇,王平全等。物理法随钻防漏堵漏机制与试验.中国石油大学学报(自然科学版),2009,33(4):76-80
    [27]熊继有,薛亮,周鹏高等.物理法随钻防漏堵漏机理研究.天然气工业,2007,27(7):69-72
    [28]程仲,熊继有,程昆等.物理法随钻堵漏技术的试验研究.石油钻探技术,2009,37(1):53-57
    [29]Li, D.,et al.:"Laboratory Evaluation Of Chemical Grouts for Wellbore Stabilization",Paper SPE 85655 presented at the 2003 Nigeria Annual International Conference and Exhibition, Abuja,.Nigeria, Aug.4-6.
    [30]Wang,H.,et al.:"The Key to Successfully Applying Today's Lost-Circulation Solutions",Paper SPE 95895 presentated at the SPE Annual Technical Conference and Exhibition,Dallas,Texas,Oct.9-12
    [31]Santos, H., da Fontoura, Concepts and Misconceptions of Mud Selection Criteria:How to Minimize Borehole Stability Problems?[M];SPE 38644;1997
    [32]Franck Labenski, Paul Reid, Helio Santos. Drilling Fluids Approaches for Control of Wellbore Instability in Fractured Formations, SPE 85304-MS,2003
    [33]Hower,W.and Brown,W.:"Large scale laboratory investigation of sand consolidation techniques",JPT (Dec.1961):p.1221-1229.
    [34]Ng,R.and Adisa,O.:"Coiled tubing resin squeeze to mitigate water production in offshore gravelpack wells", Paper SPE 38836 presented at the 1997 SPE Annual Technical Conference and Exhibition,San Antonio,Texas, Oct.5-8.
    [35]Cole,R.:"Epoxy sealant for combating well corrosion", Paper SPE 7874 at the 1979 SPE/AIME International Symposium on Oilfield and Geothermal Chemistry, Houston,Texas,Jan.22-24.
    [36]Khorasani Zadeh,H.A.:"Formation strengthening for one trip well",MSc Thesis,Curtin University of Technology, Perth(2005)70.
    [37]Santos,H.,Leuchtenberg,C.,and Shayegi,C.:"Micro-Flux Control:The Next Generation in Drilling Process",Paper SPE 81183 presented at the 2003 SPE Latin American and Caribbean Petroleum Engineering Conference,Port-of-Spain,Trinidad and Tobago,April 27-30.
    [38]Santos,H.,Reid,P.,Jones,J.and McCaskill,J.:"Developing the Micro-Flux Control Method—Part 1: System Development,Field Test Preparation,and Results", Paper SPE 97025 presented at the 2005 SPE/IADC Middle East Drilling Technology Conference and Exhibition, Dubai,UAE,Sep.l2-14.
    [39]M.S.Aston, M.W.Alberty, et al. "Drilling Fluids for Wellbore Strengthening." IADC/SPE 87130,2004.
    [40]Mark W.Alberty and Michael R.McLean. "A Physical Model for Stress Cages." SPE 90493,2004.
    [41]Wang, H., Sweatman, R., Deeg, W.:"The Difference between Fracture Gradient and Wellbore Pressure Containment and the Effect on Drilling Beyond Natural Pressure Limits," paper AADE-03-NTCE-26 presented at the 2003 National Technology Conference:Practical Solutions for Drilling Challenges, Houston, Texas, April 1-3
    [42]Fred E.Dupriest. "Fracture Closure Stress(FCS)and Lost Returns Practices." SPE/IADC 92192,2005
    [43]Jae H. Song, Juan C. Rojas.Preventing Mud Losses by Wellbore Strengthening, SPE101593,2006
    [44]Giin-Fa Fuh, Dave Beardmore, et al. "Further Development,Field Testing,and Application of the Wellbore Strengthening Technique for Drilling Operations." SPE/IADC 105809,2007
    [45]Hong (Max) Wang, Brian F. Towler, M.Y. Soliman. Near-Wellbore Stress Analysis and Wellbore Strengthening for Drilling Depleted Formations,SPE 102719,2007
    [46]Hong (Max) Wang, Brian F. Towler. Fractured Wellbore Stress Analysis:Sealing Cracks To Strengthen a Wellbore. SPE/IADC 104947, presented at the 2007 SPE/IADC Drilling Conference held in Amsterdam
    [47]Mark S. Aston, Mark W. Alberty Simon Duncum. A New Treatment for Wellbore Strengthening in Shale, SPE 110713,2007
    [48]Hong(Max) Wang, Mohamed Y. Soliman, et al. "Investigation of Factors for Strengthening a Wellbore by Propping Fractures." IADC/SPE 112629,2008.
    [49]N. Kaageson-Loe, M. W. Sanders, et al. "Particulate-Based Loss-Prevention Material-The Secrets of Fracture Sealing Revealed!" IADC/SPE 112595,2008.
    [50]R.J. Bell Jr., Exxon Co. Intl., and J.M. Davis, Esso Production Malaysia Inc.SPE Member.Lost Circulation Challenges:Drilling Thick Carbonate Gas Reservoir, Natuna D-Alpha Block SPE/IADC 16157,1987,Drilling Conference
    [51]FLE, Krause,ARCO Alaska Inc.Lost Circulation Material Usage in Coiled Tubing Remedial Cementing at Prudhoe Bay.SPE22067.This paper was prepared for presentation at the International Arctic Technology Conference held in Anchorage, Alaska, May 29-31,1991
    [52]E. Fidan, SPE, Halliburton, T. Babadagli, SPE, University of Alberta, E. Kuru, SPE, University of Alberta.Use of Cement As Lost Circulation Material-Field Case Studies.IADC/SPE 88005.This paper was prepared for presentation at the IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition held in Kuala Lumpur, Malaysia,13-15 September 2004.
    [53]胥永杰,黄卫平,曾庆旭.四川盆地高陡构造碳酸盐岩钻井技术发展方向.天然气工业,2000,20(3):47~50
    [54]郑有成,李向碧,邓传光等.川东北地区恶性井漏处理技术探索.天然气工业,2003,23(6):84~85
    [55]Ron Sweatman, Hong Wang, Harry Xenakis, Halliburton. Wellbore Stabilization Increases Fracture Gradients and Controls Losses/Flows During Drilling. SPE 88701.International Petroleum Exhibition and Conference held in Abu Dhabi, U.A.E.,2004
    [56]Deeg, W. and Wang, H.:"Changing Borehole Geometry and Lost Circulation Control," paper ARMA/NARMS 04-577 to be presented at the 2004 Gulf Rocks Symposium, Houston, Texas, June 7-9.
    [57]吴应凯等.低压易漏地层防漏堵漏机理探讨及现场应用.天然气工业,2004;24(3):81~83
    [58]Mack M. G. and Warpinski N. R., "Mechanics of Hydraulic Fracturing", Reservoir Stimulation, Third Edition, M. J.Economides and K. G. Nolte (Ed,), Chichester, UK, Wiley,(2000),6-1-6-49.
    [59]J.U.梅辛杰.井漏.第一版,石油工业出版社,北京,1986:67~75
    [60]Catalin D. Ivan, M-I L.L.C., James R. Bruton, ect.Making a Case for Rethinking Lost Circulation Treatments in Induced Fractures.SPE 77353. This paper was prepared for presentation at the SPE Annual Technical Conference and Exhibition held in San Antonio, Texas,29 September-2 October 2002.
    [61]林英松,蒋金宝,秦涛.井漏处理技术的研究及发展.断块油气藏.2005,12(2):3~7
    [62]杨新斌.大庆英台地区防漏堵漏技术研究.2003届硕士毕业论文,13~16
    [63]何远信.钻井液技术展望.探矿工程,1999(1):24~31
    [64]吴其哗,巫静安著.高分子材料流变学导论.北京,化学工业出版社.1994,5~12
    [65]沈崇棠,刘鹤年.非牛顿流体力学及其应用,高等教育出版社.北京,1989年3月第一版,240.248
    [66]Hoyt.J.W.The effect of additive fluid friction.Trans ASME Journ Basic Engineering Series D,2,1972, 258-285
    [67]A.Hill,F.Candau, and J.Selb. Aqueous solution properties of hydrophobically associating copolymers. Progress in Colloid &Polymer Science.1991,84:61-65
    [68]郑晓松.聚合物溶液的弹性粘度理论及应用.大庆石油学院博士论文,2004
    [69]SouthwicK J. G. and Mank, C. W.:"Molecular Degradation, Injectivity, and Elastic Properties of Polymer Solutions", SPE 15652
    [70]R.S.Seright. The Effects of Mechanical Degradation and Viscoelastic Behavior on Injectivity of Polyacrylamide Solutions." SPE,Exxon Production Research Co. June 1983
    [71]梁基照.聚合物材料加工流变学,北京:国防工业出版社,2008.1:5
    [72]王槐三,寇晓康编著.高分子物理教程.北京:科学教育出版社,2008,249
    [73]江体乾.化工流变学.上海:华东理工大学出版社,2004,6:122-123
    [74]Gebhard Schramm著,朱怀江译.实用流变测量学(修订版).北京:石油工业出版社,2009年
    [75]国丽萍,韩洪升.井筒中高温高压可循环微泡沫钻井液流动实验.大庆石油学院学报,2007,31(01):41-45
    [76]鲁港,李晓光,陈铁铮等.钻井液幂律模式非线性最小二乘参数估计的新算法.钻井液与完井液,2007,24(S1):66-71
    [77]刘崇建;刘孝良.触变性水泥的评价方法及其应用.天然气工业,2001,21(2):56~60
    [78]孙晓,王树众,白玉等.应用幂律和改良幂律模型研究干法泡沫压裂液流变性.西安石油大学学报(自然科学版),2009,24(02):60-64
    [79]沈林华,王树众,段百齐等.基于气泡尺度的泡沫压裂液流变机理研究.西安交通大学学报,2006,40(03):344-347
    [80]段百齐,管保山,王树众等.氮气泡沫压裂液流变特性试验.石油钻采工艺,2005,27(04):71-75
    [81]张凯,樊灵,姚军等.聚合物驱垂直井筒流动和视粘度模型.中国石油大学学报(自然科学版),2007,31(03):85-89
    [82]聂勋勇,王平全,罗平亚等.用于钻井堵漏的特种凝胶的屈服应力研究.天然气工业,2010,30(3):80-82
    [83]鲁港,王立波.赫-巴流体圆管轴向层流压降的数值计算.钻井液与完井液,2009,(03):60-62
    [84]Jin Liu, R.S.Seright.:"Rheology of Gels Used for Conformance Control in Fractures", the SPE 70810 was revised for publication from paper SPE 59318, first presented at the 2000 SPE/DOE Improved Oil Recovery Symposium, Tulsa, Oklahoma,3-5 April.
    [85]Kakadjian,S.,Rauseo,0.,and Mejias, F.:"Dynamic Rheology as a Method to Quantify Gel Strength of Water Shutoff Systems," paper SPE 50751 presented at the 1999 International Symposium on Oilfield Chemistry, Houston,16-19 February.
    [86]李兆敏,张平等.屈服假塑性流体轴向同心环空中速度及温度分布研究.水动力学研究与进展,2004,A.19(1):31-37
    [87]Nguyen,Q.D. and D.V.Boger, "Yield stress measurement for concentrated suspensions," J.Rheol. 1983(27):321-349
    [88]Yang,M.C., L.E.Scriven, and C.W.Macosko, "Some rheological measurements on magnetic iron oxide suspensions in silicone oil", J.Rheol.1986(30):1015-1029
    [89]Husband,D.M.,and N.Aksel,"The existence of static yield stresses in suspensions, containing noncolloidal particles,"J.Rheol.1993(37):215-235
    [90]Shih,W.Y.,W.-H.Shih.and I.A.Aksay, "Elastic and yield behavior of strongly flocculated colloids,"J.Am. Ceram.Soc.1999(82):616-624
    [91]H.J.Walls, B. Caines, et al. "Yield stress and wall slip phenomena in colloidal silica gels." J.Rheol. 2003,47(4):847-868
    [92]黄汉仁,杨昆鹏等.泥浆工艺原理,石油工业出版社,1981
    [93]SHIH,W.Y, W.-H.SHIH, I.A.AKSAY. Elastic and yield behavior of strongly flocculated colloids[J]. Journal of the American Ceramic Society,1999(82):616-624.
    [94]林名桢,李传宪,杨飞等.触变性含蜡原油等温胶凝过程特性及模型研究.化学学报,2009,67(23):2685-2691
    [95]马俊涛.疏水缔合型聚丙烯酰胺的合成与性能及其与离子型表面活性剂的相互用.四川大学博士论文,2002:3-9
    [96]冯玉军,郑焰,罗平亚.疏水缔合聚丙烯酰胺的合成及溶液性能研究.化学研究与应用,2000,12(1):70-72
    [97]过梅丽,赵德禄主编.高分子物理.北京:北京航空航天大学出版社,2005,9:9~10
    [98]符若文,李谷,冯开才编.高分子物理.北京:化学工业出版社,2005,3:32~33
    [99]山东大学编.物理化学与胶体化学实验.北京:人民教育出版社,1981,30-31
    [100]Hermans J,Pathiaseril A and Anderson A. Excess free energy of liquids from molecular dynamics simulations Application to water models. J. Am. Chem. Soc.1988,110:5982
    [101]William L. Jorgensen, James F. Blake, J. Kathleen Buckner. Free energy of TIP4P water and the free energies of hydration of CH4 and Cl. from statistical perturbation theory. Chemical Physics,1989, 129(2):193-200
    [102]冯玉军.疏水缔合水溶性聚合物溶液结构及其对溶液流变性影响的研究田.西南石油学院博士论文,1999
    [103]张新民,郭拥军,冯如森等.疏水缔合聚合物溶液抗稀释性研究.内蒙古石油化工,2007,8:58-59
    [104]尹洪军,姜海梅,钟会影等.SPTT黏弹性流体在突缩流道内的流动.大庆石油地质与开发,2008,27(2):56-59
    [105]Azaiez J,Guenette R,Ait-Kadi A.Numberical simulation of viscoelastic flows through a planar contraction[J].J Non-Newtonian Fluid Mech,1996,62:253-277
    [106]Byars JA,Binnington RJ,Boger DV.Entry flow and constitutive modeling of fluid S1. J Non-Newtonian Fluid Mechanics,1997,72:219-235
    [107]S.H. Hashemabadi and S.M. Mirnajafizadeh. Analytical Solution of Simplified Phan-Thien Tanner Fluid between Nearly Parallel Plates of a Small Inclination. Journal of Applied Sciences 2007,7(9): 1271-1278
    [108]Paulo J.Oliveir A,Fernando T. Pinh. Analytical solution for fully developed channel and pipe flow of Phan-Thien-Tanner fluids. J.Fluid Mech.1999,vol.387:271-280
    [109]Pinho F T, Oliveira P J-Analysis of forced convection in pipes and channelswith the simplified Phan-Thien-Tanner fluid [J]-Inter J Heat andMassTransfer,2000,43:2273-2287
    [110]AlvesM A, Pinho F T, Oliveira-Study of steady pipe and channel flows of a single-mode Phan-Thien-Tanner fluid [J]-JNon-Newtoni-an FluidMechanics,2001:55-76
    [111]Tanner RI,Huilgol RR.On a classification scheme for flow fields.Rheol Acta 14,1975,959-962
    [112]Nhan Phan, Thien, and Roger I. Tanner. A new constitutive equation derived from network theory, Journal of Non-Newtonian Fluid Mechanics, Volume 2, Issue 4, July 1977, Pages 353-365
    [113]J.F.T. Pittman, O.C. Zienkiewicz, R.D. Wood et at al. Edit.Numerical Analysis of Forming Processes. Chapter 8:".Numerical Simulation of Viscoelastic Flow in Some Polymer Processing Applications" Edited by M.J. Corchet, R. Keunings, John Wiley & Sons Ltd,1984:241-243
    [114]Crew EOA, Townsend P,Webster MF.A Taylor-Petrov-Galerkin algorithm for viscoelastic flow. J Non-Newtonian Fluid Mech,1993,50:253-287
    [115]J. Azaiez, R. Guenette, A. Ait-Kadi.Numerical simulation of viscositc flows through a plannar contraction. J. Non-Newtonian Fluid Mech.,1996,62:253-277
    [116]Tanner R. I. Engineering Rheology. Oxford Univ. Press,1984
    [117]STOVALI T, DELARRARD F, BUIL M, et al. Linear Packing Density model of grain mixtures. Powder Technology,1986,48(1):1-12
    [118]向兴金,郭留敢.影响聚合物泥浆体系静结构的因素分析.钻井液与完井液,1992,9(2):43-47
    [119]张智,付建红,施太和等.高酸性气井钻井过程中的井控机理.天然气工业,2008,28(4):56-58
    [120]张新民,聂勋勇,王平全等.特种凝胶在钻井堵漏中的应用.钻井液与完井液,2007,24(5):83-85
    [121]王平全,聂勋勇,张新民等.特种凝胶在处理“井漏井喷”中的应用.天然气工业,2008,28(6):81-82
    [122]王平全,罗平亚,聂勋勇等.双庙1井喷漏同存复杂井况的处理.天然气工业,2007,27(1):60-63

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700