用户名: 密码: 验证码:
水热合成ZnS超细材料的白光及X射线发光研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对目前对近紫外(n-UV)LED用白光发光材料和高发光效率纳米X射线发光材料的迫切需求,本论文进行了掺杂型硫化锌白光发光材料、X射线激发材料的合成和发光特性研究。主要工作包括:
     采用水热法直接合成了高发光强度的类球形ZnS:Cu,Al纳米荧光粉。制备的纳米晶为纯立方相结构,其粒子尺寸约为15nm,且分散性较好。系统研究了在343nm激发下,不同摩尔比的ns/nZn、nCu/nAl及表面活性剂对清洗样品和未清洗样品的光致发光(PL)光谱的影响。实验结果表明,激活剂浓度不变而改变ns/nZn摩尔比时发光强度显著增强,同时未清洗样品的PL强度均比清洗样品的强,且未清洗样品的PL强度增强的比值在低的ns/nZn时更显著。另外,PL强度还与是否添加表面活性剂有关,说明其PL强度与纳米材料的表面态有很大的关系。在我们的实验中,用343nm紫外光激发时,nCu/nZn, ns/nZn, nCu/nAl分别为0.0003,3和0.5时未清洗样品的发光最强,此时于室内照明条件下可观察到明亮的绿光。
     借助X射线能谱(EDX)和原子吸收光谱仪,研究了样品中S,Zn和Cu的含量并详细研究了在ns/nZn=3时改变nCu/nZn,nCu/nAl摩尔比对ZnS:Cu,Al样品在375nm紫外光激发下PL光谱的特性。结果证明存在大量Zn空缺,Cu离子经过水热处理后已掺入到ZnS基体中。PL光谱特性为:样品的激发谱为宽带谱,利用370-410nm之间任意波长的光激发时,发射谱均为宽带谱,且它们基本重合。表明此材料作为近紫外(370-410nm)发光二极管·[(n)-UV(370-410nm)LED)用荧光粉及全色荧光粉具有很大的应用潜力。样品在375nm激发下全色宽带发射谱是460,510和576nm带光谱的高斯叠加。当nCu/nZn,nCu/nAl分别为3×10-4和2时,于室内照明条件下肉眼可观察到白色发光。
     采用低温水热法结合热处理工艺成功制备了ZnS:Cu,Al、ZnS:Au,Cu和ZnS:Cu,Tm三种超细X射线发光粉材料。研究结果表明:1)水热法直接制备的ZnS:Cu,Al的PL和X射线激发发光(XEL)光谱均为宽带谱,在nCu/nZn,nCn/nAl分别为3×10-4和0.5时PL和XEL光谱强度最大,XEL峰值在470nm处。在此条件下,水热处理3h直接合成的纳米晶在氩气保护下于800℃退火1h后样品的XEL发光进一步增强。XEL光谱强度约是退火前样品的8倍,此时峰值波长在520nm,团聚后粒径为200-500nm的类球形六方相结构。发光强度增强,但粒径很小,对提高成像系统分辨率非常有意义。通过比较样品的XEL和PL光谱,讨论了XEL和PL光谱的发光机理和激发机制及退火对其特性的影响;2)水热法直接制备的ZnS:Au,Cu的PL和XEL光谱均为宽带谱,在nCu/nZn,nCu/nAl分别为3×10-5和0.5时PL和XEL光谱强度最大,XEL峰值在459nm处。在此条件下,水热处理12h直接合成的纳米晶在氩气保护下于1000℃退火1h后样品的XEL发光最强,此时其两个峰值分别位于445和513nm,且与未退火前相比XEL强度增强了10倍左右。团聚后尺寸为1-2μm的类球形六方相结构。另外,在未经退火的ZnS:Cu,Al和ZnS:Au,Cu纳米材料中,均观察到随着Cu2+离子摩尔比的增大,XEL光谱峰值的红移现象;3)通过研究水热处理时间对ZnS:Cu,Tm纳米晶的结构、形貌、XEL光谱的影响,发现随着水热处理时间的延长,样品的尺寸增大且结晶性增强,但是其XEL发光强度却降低。分析认为这一异常现象可归因于表面态的影响。因此,水热合成ZnS:Cu,Tm纳米晶的反应时间不宜过长,最佳时间为12小时。ZnS:Cu,Tm在nCu/nZn,nCu/nTm分别为3×10-4和0.5时PL和XEL光谱强度最大,900℃为最佳退火温度,此时所得样品的粒子尺寸为200~600nm的类球形六方相结构,且与未退火前相比XEL发光增强了11倍,其两个发射峰值分别位于453nm和525nm。
Based on the urgent requirement of white light emission (n) UV LEDs phosphors and X-ray nano-phosphors with high luminescent efficiency, this paper focuses on the syntheses and study on luminescence properties of ZnS white light and X-ray phosphors activated with different dopants. The major works are shown as follows:
     Spherical ZnS:Cu,Al nanocrystals with high luminescence intensity were synthesized by a hydrothermal method. The synthesized nanocrystals show single cubic structure and well dispersity with average grain size of about 15nm. The effects of the molar ratio of ns/nZn、nCu/nAland surfactant on the photoluminescence (PL) spectra of rinsed and unrinsed samples under 343nm excitation were investigated systematically. The results indicate that with the increase of ns/nZn the PL intensity increases remarkably, and the PL intensites of unrinsed samples are stronger than that of rinsed ones. Moreover, the PL intensities of unrinsed samples are increased more significantly under a low ratio of nS/nZn. The PL intensity has a relation to the surfactants, this suggests that surface state of nanomaterials can also affect the PL intensity. In our experiment, the optimal condition is the unrinsed sample under n(Cu/Zn)=0.0003, nS/nZn=3, n(Cu/Al)=0.5, and the bright green light can be observed with the naked eye in the daytime.
     The energy dispersive X-ray spectroscopy (EDX) and atomic absorption spectrometry were applied to the analysis of S, Zn and Cu content in the sample. The results proved that a large number of zinc vacancies exist and Cu is incorporation into the sample lattice. The excitation spectrum is broad. Under 370-410nm excitation the sample emits white light. The broad emission spectra are almost coincident with any excitation wavelength of between 370-410nm making them attractive as conversion phosphors for LED application and full-color fluorescent display devices. The emitted white light under 375nm excitation was found to be the result of blue, green, and orange emission bands. For nCu/nZn, nCu/nAl and nS/nZn molar ratios of 0.0003,2 and 3, respectively, the near blue white light can be observed with the naked eye in daylight.
     ZnS:Cu,Al, ZnS:Au,Cu and ZnS:Cu,Tm fine X-Ray phosphors were successfully synthesized using a hydrothermal method combined with heat treatment technology. The experimental results are shown as follows:1) For ZnS:Cu,Al, the PL and XEL spectra of all of the samples show a broad emission band. The maximum PL and X-ray excited luminescence (XEL) intensities are observed for sample with nCu/nZn=0.0003 and nCu/nAl=0.5. The XEL peak center is at about 470nm. In this condition, the XEL intensity of the sample which was hydrothermally treated at 200℃for 3h then annealed in Ar at 800℃for 1h is enhanced and the peak is located at 520nm. In the mean time, the XEL intensity is about eight times by comparison with that of the samples without annealing. The particles agglomerate size is about 200-500nm and roughly spherical particles show pure hexagonal structure. The Samples with highly luminescence efficiencies and the smaller size could enhance the resolution of imaging systems. By comparing the PL and XEL spectra, the luminescence mechanism and different excitation mechanism of PL and XEL and effect of annealing on XEL have been discussed.2) For ZnS:Au,Cu, the PL and XEL spectra of all of samples show a broad emission band. The maximum XEL intensity of sample directly synthesized by hydrothermal treatment is observed for sample with nCu/nZn=0.00003 and n(Cu/Au)=0.5. The XEL peak center is at about 459nm. In this condition, the strongest XEL emission is observed for the direct synthesized sample further annealing in Argon at 1000℃for 1h sample and the XEL peak was centered at about 445 and 513nm, respectively. In the meantime, the XEL intensity increased about ten times by comparison with directly synthesized without annealing. The particles agglomerate size is about 1-2μm and roughly spherical particles show pure hexagonal structure. In addition, with the increase of Cu2+ content, we observe the red shift of XEL spectra both in ZnS:Cu,Al and ZnS:Au,Cu without annealing samples.3) For ZnS:Cu,Tm, the effects of hydrothermal treatment time on the structure, morphology and XEL spectrum of ZnS:Cu,Tm nanocrystals were studied. It is found that with the prolonging of hydrothermal treatment time the particle size and crystallization are increased, while the intensity of XEL is decreased. The analyzed results show that the decrease of XEL intensity can be attributed to the surface state. Based on the above results, it is suggested that the long hydrothermal treatment time is not beneficial to the XEL intensity of ZnS:Cu,Tm nanocrystals, and the optimal treatment time is 12h. The maximum XEL intensity of sample directly synthesized by hydrothermal treatment is observed for nCu/nZn=0.0003 and nCu/nTm=0.5. the optimal annealing temperature is 900℃. After annealing at this temperature, the particle size is 200-600nm. the sample with pure hexagonal structure shows the stronger XEL spectrum with emission peaks at 453nm and 525nm, the XEL intensity increased about eleven times by comparison with directly synthesized without annealing.
引文
[1]孙家跃,杜海燕.固体发光材料.北京:化学工业出版社,2005.
    [2]徐叙瑢,苏勉曾.发光学与发光材料.北京:化学工业出版社,2004.
    [3]Schlotter P, Schmidt R, Schneider J.Luminescence conversion of blue light emitting diodes. Appl. Phys.1997, A 64:417-418.
    [4]Nakamura S, Mukai T, Senoh M. High-brightness InGaN/AlGaN double-heterostructure blue-green-light-emitting diodes. J. Appl. Phys.1994,76:8189-8191.
    [5]Nakamura S, Senoh M, Iwasa N et al. High-Brightness In GaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures. Jpn. J. Appl. Phys. Part 1.1995,34: L1332-L1334.
    [6]Nakamura S, Fasol G, eds. The Blue Laser Diode:GaN Based Light Emitters and Lasers. Berlin:Springer,1997.
    [7]Radkov E, Bompiedi R. Srivastava A M. Third International Conference on Solid State Lighting. Proc. SPIE.2004,5187:171.
    [8]Koyama T, Onuma T, Masui H et al. Prospective emission efficiency and in-plane light polarization of nonpolar m-plane InxGa1-xN/GaN blue light emitting diodes fabricated on freestanding GaN substrates. Appl Phys Lett.2006,89:091906-1-091906-3.
    [9]Sakuma K, Omichi K, Kimura N et al. Warm-white light-emitting diode with yellowish orange SiAlON ceramic phosphor. Opt. Lett.2004,29(17):2001-2003.
    [10]Yang S, Shmatov O, Li Z M S.3D simulation of InGaN/GaN micro-ring light-emitting diodes. Opt Quant Electron.2007,39:597-602.
    [11]Kim J S, Park Y H, Kim S M et al. Temperature-dependent emission spectra of M2SiO4:Eu2+ (M=Ca, Sr, Ba) phosphors for green and greenish white LEDs. Solid State Commun.2005, 133:21-23.
    [12]Niu Q L, Shao Y X, Xu W et al. Full color and monochrome passive-matrix polymer light-emitting diodes flat panel displays made with solution processes. Org. Electron,2008, (9): 95-100.
    [13]Kuo C H, Sheu J K, Chang S J et al. n-UV+blue/green/red white light emitting diode lamps. Jpn J.Appl Phys part 1.,2003,42(4B):2284-2287.
    [14]Nakamura S, Mukai T, Senoh M.High-brightnessInGaN/AlGaNdouble-heterostructure blue-green light-emitting diodes. J. Appl. Phys.1994,76:8189-8191.
    [15]肖志国.蓄光型发光材料及其制品.北京:化学工业出版社,2002.
    [16]Liu G K, Jacquier B.Spectroscopic properties of rare earth in optical materials.北京:清华大学出版社,2005.
    [17]Auzel F. Upconversion Anti-Stokes Processes with f and d Ions in Solids. Chem. Rev.2004, 104:139-173.
    [18]Sato Y, Takahashi N, Sato S. Full-color fluorescent dispalay devices using a near-UV light-emitting diode. Jpn. J. Appl.Phys.1996,35:L838-L839.
    [19]Kar S, Biswas S. White light emission fromsurface-oxidized manganese-doped ZnS nanorods.J.Phys.Chem.C.2008;112:11144-11149.
    [20]刘行仁,薛胜薜,黄德森等.白光LED现状和问题.光源与照明.2003,(3):4-8.
    [21]王国宏.半导体照明大功率LED进展.产业透视.2004,6:26-29.
    [22]张凯,刘河洲,胡文彬.白光LED用荧光粉研究进展.材料导报.2005,19(9):50-53.
    [23]刘洁,孙家跃,石春山.与LED匹配的白光发射荧光体的研究进展.化学通报.2005,6417-424.
    [24]Narendran N, Maliyagoda N, Deng L et al.Characterizing LEDs for feneral illumination applications:mixed-color and phosphor-based white sources. SPIE. Proc.2001,4445:137-147.
    [25]Muthu S, Schuurmans F J P, Pashley M D. Red, Green, and Blue LEDs for white light illumination. IEEE J. Select. Topics. Quantum. Electron.2002,8:333-338.
    [26]Xiao D, Kim K, Bedair S et al. Design of white light-emitting diodes using InGaN/AlInGaN quantum-well structures.Appl. Phys. Lett.2004,84:672-674.
    [27]Yamada M, Mitani T, Narukawa Y et al. InGaN-based near ultraviolet and blue light emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode. Jpn. J. Appl. Phys.2002,41:L1431-L1433.
    [28]Lowney D, Mcnally P J, Hare M O. Examination of the structural and optical failure of ultra-bright LEDs under varying degrees of electrical stress using synchrotron X-ray topography and optical emission spectroscopy. J. Mater. Sci.-Mater. Electron.2001,12: 249-253.
    [29]Krevel J W H V, Hintzen H T, Metselaar R.Long wavelength Ce3+ in Y-Si-O-N materials. J. Alloys Compd.1998,268:272-277.
    [30]Krevel J W H V, Hintzen H T, Metselaar R. On the Ce3+ luminescence in the melilite-type oxide nitride compound Y2Si3-xAlxO3+xN42x.Mater. Res. Bull.2000,35:747-754.
    [31]Zhao X X, Wang X J, Chen B J et al. Luminescent properties of Eu3+ doped a-Gd2(MoO4)3 phosphor for white light emitting diodes.Opt. Mater.2007,433:352-355.
    [32]Park W J, Yoon S G, Yoon D H. Photoluminescence properties of Y2O3 co-doped with Eu and Bi compounds as red-emitting phosphor for white LED. J. Electroceram.2006,17:41-44.
    [33]Ding W J, Wang J, Zhang M. A novel orange phosphor of Eu2+-activated calcium chlorosilicate for white light-emitting diodes. J. Solid State Chem.2006,179:3582-3585.
    [34]Guo C F, Huang D X, Su Q et al. Methods to improve the fluorescence intensity of CaS:Eu2+ red-emitting phosphor for white LED. Mater. Sci. Eng. B.2006,130:189-193.
    [35]Jang H S, Im W B, Lee D C. Enhancement of red spectral emission intensity of Y3Al5O12:Ce3+ phosphor via Pr co-doping and Tb substitution for the application to white LEDs. J. lumen.2007, 126:371-377.
    [36]Park J H, Lee S H, Kim J S et al. White-electroluminescent device with ZnS:Mn,Cu,Cl phosphor. J. Lumin.2007,126:566-570.
    [37]Tsuruokal M, Yamamoto S, Ogata K et al. Built-in LED contact lens electrode for S-cone electroretinographic. Documenta Ophthalmologica.2004,108:61-66.
    [38]Komine T, Haruyama S. Nakagawa M. A Study of Shadowing on Indoor Visible-Light Wireless Communication Utilizing Plural White LED Lightings. Wireless Personal Communications.2005,34:211-225.
    [39]Kim T, Kang S. Potential red phosphor for UV-white LED device. J. lumin.2007,122-123: 964-966.
    [40]Nazarov M, Yoon C. Controlled peak wavelength shift of Ca1-xSrx(SySe1-y):Eu2+ phosphor for LED application. J. Solid State Chem.2006,179:2529-2533.
    [41]Yin S. Combustion synthesis and luminescent properties of CaTiO3:Pr, Al persistent phosphors.J. Alloys Compd. (2006), doi:10.1016/j.jallcom.2006.09.120.
    [42]Zhang M, Wang J, Ding W. A novel white light-emitting diode (w-LED) fabricated with Sr6BP5O20:Eu2+ phosphor. Appl. Phys. B.2007,86:647-651.
    [43]Choy W C H, Wu Y S, Chen C H. Optical properties of a novel yellow fluorescent dopant for use in organic LEDs. Appl. Phys. A.2005,81:517-521.
    [44]Yang L Z, Yu X B, Yang S P. Preparation and luminescence properties of LED conversion novel phosphors SrZnO2:Sm. Mater. Lett.2008,62:907-910.
    [45]Zhu C F, Yang Y X, Liang X L et al. Rare earth ions doped full-color luminescence glasses for white LED. J. lumin.2007,126:707-710.
    [46]Kim J S, Jeon P E, Choi J C et al. Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+,Mn2+ phosphor. Appl Phys Lett.2004,84(15):2931-2933.
    [47]Kim J S, Kang J Y, Jeon P E et al. GaN-based white-light-emitting diodes fabricated with a mixture of Ba3MgSi208:Eu2+ and Sr2SiO4:Eu2+ phosphors. Jpn J. Appl Phys Part 1,2004,43(3): 989-992.
    [48]Kim J S, Jeon P E, Park Y H et al. White-light generation through ultraviolet-emitting diode and white-emitting phosphor. Appl Phys Lett.2004,85(17):3696-3698.
    [49]Park W J, Jung M K, Kang S M et al. Synthesis and photoluminescence characterization of Ca3Si2O7:Eu2+as a potential green-emitting white LED phosphor. J. phys. Chem. Solids.2008, 69:1505-1508.
    [50]罗昔贤,曹望和,孙菲.硅酸盐基质白光LED用宽激发带发光材料研究进展.科学通报,2008,53(9):1010-1016.
    [51]Yao S S, Chen D H.Combustion synthesis and luminescent properties of a new material Li2(Bao.99,Eu0.01)SiO4:B3+for ultraviolet light emitting diodes. Optics & Laser Technology. 2008,40:477-471.
    [52]Yao S S, Chen D H, Luminescent properties of Li2 (Ca0.99, Eu0.01) SiO4:B3+ particles as a potential bluish green phosphor for ultraviolet light-emitting diodes. Cent. Eur. J. Phys. DOI: 10.2478/s11534-007-0042-5.
    [53]Leel K M, Cheah K W, An B L. Emission characteristics of inorganic/organic hybrid white-light phosphor. Appl. Phys.2005, A 80:337-339.
    [54]周密.工业X-CT用新型X射线探测器性能的模拟研究:(硕士学位论文).重庆:重庆大学,2004.
    [55]喻春雨.新型X光影像探测器及成像系统研究:(博士学位论文).南京:南京理工大学,2006.
    [56]Pupin M. Radiologic science for technologist. St. Louis:C. V. Mosby,1975.
    [57]Blasse G, Grabmaier B C. Luminescence materials. Berlin:Springer-Verlag,1994.
    [58]S. V. Moharial.A Review of X-ray imaging phosphors. Bull. Mater. Sci.1994,17:25-33.
    [59]Issler S L, Torardi C C.Solid state chemistry and luminescence of x-ray phosphors. J. Alloys & Comp.1995,229:54-65.
    [60]Brixner L H. New X-ray phosphors. Mater Chem Phys.1987,16:253-281.
    [61]Ye C Z, Liao J Y, Shao P F et al. Growth and scintillation properties of F-doped PWO crystals. Nucl. Instrum. Methods Phys. Res., Sect. A.2006,566:757-761.
    [62]Huang Y L, Zhu W L, Feng X Q et al. The effects of sequential annealing in air atmosphere on luminescence properties of PbWO4 single crystal. J.Electron Spectrosc. Relat. Phenom.2003, 133:39-45.
    [63]Huang Y L, Zhu W L, Feng X Q et al. Spectroscopic properties of Yb3+-doped PbWO4single crystal. Mater. Lett.2003,58:159-162.
    [64]Morlotti R, Nikl M, Piazza M. Intrinsic conversion efficiency of X-rays to light in Gd2O2S:Tb3+ powder phosphors. J. Lumin.1997,72-74:772-774.
    [65]Tian Y, Cao W H, Luo X X et al. Preparation and luminescence property of Gd2O2S:Tb3+ X-ray nano-phosphors using the complex precipitation method. J.Alloys Compd.2007,433:313-317.
    [66]Valais 1, Nikolopoulos D, Kaliras N. A systematic study of the performance of the CsI:Ti single-crystal scintillator under X-ray excitation. Nucl. Instrum. Methods Phys. Res., Sect.A. 2007,571:343-345.
    [67]Chen J M, Shen D Z, Zhang H B et al.Study of effects of F/Cl ratio on crystal growth and X-ray excited luminescence of PbFCl. J.Cryst.Growth.2004,263:431-435.
    [68]Williams G V M, Schweizer S, Henke B. X-ray and UV induced photo-luminescence from RbCdF3:Mn2+. Curr. Appl.Phys.2006,6:351-354.
    [69]Mikhvin S B, Mishin A N, Potapov A S et al. X-ray excited luminescence of some molybdates. Nucl. Instrum. Methods Phys. Res., Sect.A.2002,486:295-297.
    [70]Lei F, Yan B. Hydrothermal synthesis and luminescence of CaMO4:RE3+(M=W, Mo; RE=Eu,Tb),Submicro-phosphors. J. Solid State Chem.2008,181(4):855-862.
    [71]Liu B, Shi C S. Development of medical scintillator. Chin.Sci.Bull.2002,47(13):1057-1064.
    [72]Mansuy C, Nedelec J M, Dujardin C et al. Scintillation of Sol-Gel derived lutetium orthophosphate doped with rare earth ions. J.Sol-Gel Sci. Technol.2006,38:97-105.
    [73]van Loef E V, Higgins W M, Glodo J et al. Crystal growth and characterization of rare earth iodides for scintillation detection. J. Crystal Growth.2008,310:2090-2093.
    [74]Cavouras D, Kandarakis I, Pahayiotakis G S et al.Integrated model for estimating phosphor signal and noise transfer characteristics on medical images:application to CdPO3Cl:Mn phosphor screens. Med Biol Eng Comput.2002,40:273-278.
    [75]Duan C J, Yuan J L, Zhao J T. Luminescence properties of efficient X-ray phosphors of YBa3B9O18, LuBa3(BO3)3, a-YBa3(BO3)3 and LuBO3. J. Solid state chem.2005, 178:3698-3702.
    [76]Duan C J, Li W F, Wu X Y et al. Syntheses and X-ray excited luminescence properties of Ba3BPO5 and Ba3BPO7. J. Lumin.2006,117:83-89.
    [77]Yuan J L, Zhang H, Chen H H et al. synthesis structure and X-ray excited luminescence of Ce3+-doped AREP2O7-type alkali rare earth diphosphates (A=Na, K, Rb, Cs; RE=Y, Lu).J.Solid state chem.2007,180:3381-3387.
    [78]He M, Wang W Y, Sun Y P. Growth and optical properties of YBa3B9O18:Ce crystals. J. Cryst. Growth.2007,307:427-431.
    [79]Duan C J, Chen H H, Yang X X et al. Luminescence properties of Eu2+, Tb3+ or Tm3+ activated Ca4GdO(BO3)3 under X-ray and UV excitation. Opt.Mater.2006,28:956-961.
    [80]Cai G M, Chen X L, Wang W Y et al. A new promising scintillator Ba3InB9O18.J. solid state chem.2008,181:646-651.
    [81]Chapman Y P, Courchesne E B, Derenzo S E. Bi3+luminescence in ABiO2Cl (A=Sr,Ba) and BaBiO2Br. J.Lumin.2008,128:87-91.
    [82]Liu X L, Liu B J, Gu M et al. Highly enhanced photoluminescence and X-ray excited luminescence of Li doped Gd2O3:Eu3+ thin films.Solid State Commun.2006,137:162-165.
    [83]Xu X D, Zhao Z W, Song P X et al. Optical Spectroscopy of Yb3Al5O12 Single Crystal. Spectrochim. Acta, part A.2005,62:645-648.
    [84]Mahakhode J G, Dhoble S J, Joshi C P et al. Combustion synthesis of phosphors for plasma display panels.J. Alloys Compd.2007,438:293-297.
    [85]Nair B S K, Sunder D, Tomita A. Thermostimulated luminescence, photoluminescence and X-ray-induced luminescence in CaSO4:Ce; CaSO4:Ce, Na; CaSC4:Ce, Mn and CaSO4:Ce, Mn, Na phosphors. J. Lumin.2007,86:67-78.
    [86]Ishii M, Tanaka Y, Komuro S et al. X-ray-excited optical luminescence of erbium-doped semiconductor:site-selective X-ray absorbtion. J.Electron.Spectrosc. Relat. Phenom.2001, 114-116:521-525.
    [87]Wang W D, Huang F Q, Xia Y J et al. Effect of activator distribution on photo-and X-ray excited luminescence properties of ZnS:Cu,Cl phosphors. Mater. Res. Bull.2008,43: 1892-1897.
    [88]Kandarakis I, Cavouras D, Panayiotakis G S et al. X-ray induced luminescenceand spatial resolution of La2O2S:Tb phosphor screen. Phys. Med. Biol.1996,41:297-307.
    [89]Cavouras D, Kandarakis I, Panayiotakis G S et al. An investigation of the imaging characteristic of the Y2O2S:Eu3+ phosphor for application in X-ray detectors of digital mammography. Appl. Radiat. Isot.1998,49(8):931-937.
    [90]Kandarakis I, Cavouras D, Panayiotakis G S et al. Europium-activated phosphors for use in X-ray detectors of medical imaging systems. Eur.Radiol.1998,8:313-318.
    [91]Kandarakis I, Cavouras D, Panayiotakis G S et al. Evaluating x-ray detectors for radiographic application:a comparison of ZnSCdS:Ag with Gd2O2S:Tb and Y2O2S:Tb screen. Phys. Med. Biol.1997,42:1351-1373.
    [92]Kandarakis I, Cavouras D, Nomicos C D et al. X-ray luminescence of ZnSCdS:Au,Au phosphor using X-ray beam for medical applications. Nucl. Instru. Meth. Phys. Res. B.2001,179: 215-224.
    [93]Kandarakis I, Cavouras D, Nikolopoulos D et al.Evaluating of ZnS:Cu phosphors as X-ray to light converter under mammographic conditions. Rad. Meas.2005,39 (3):263-275.
    [94]Lu H Y, Chu S Y. The mechanism and characteristics of ZnS-based phosphors powders. J. Crystal Growth.2004,265:476-481.
    [95]Bhargava R N, Gallagher D, Hong X et al. Optical properties of manganese-doped nanocrystals of ZnS. Phys. Rev. Lett.1994,72:416-419.
    [96]Hao E C, Sun Y P, Yang B et al.Synthesis and photophysical properties of ZnS colloidal particles doped with silver. J. Col. Interf. Sci.1998,204:369-373
    [97]Yu X B, Mao L H, Liang Z F et al. The synthesis of ZnS:Mn2+ nano-particles by solid-state method at low temperature and their photoluminescence characteristics. Mater. Lett.2004,58: 3661-3664.
    [98]Manzoor K, Vadera S R, Kumara N et al. Synthesis and photoluminescent properties of ZnS nanocrystals doped with copper and halogen. Mater. Chem. Phys.2003,82:718-725.
    [99]Qi L, Leea B I, Kimb J M et al. Synthesis and characterization of ZnS:Cu,Al phosphor prepared by a chemical solution method. J. Lumin.2003,104:261-266.
    [100]Yang P, Lii M K, Song C F et al. Luminescence of Cu2+ and In3+ co-activated ZnS nanoparticles. Opt. Mater.2002,20:141-145.
    [101]Yang P, Lu M K, Xu D et al. Synthesis and photoluminescence characteristics of doped ZnS Nanoparticles. Appl. Phys. A.2001,73:455-458.
    [102]Wang M W, Sun L D, Fu X F et al. Synthesis and optical properties of ZnS:Cu(II)nanoparticles. Solid State Commun.2000,115:493-496.
    [103]Sugimoto T, Wu S, Itoh H et al. Well-defined fluorescent particles of ZnS:Cu 1. preparation and effects of annealing. J. Colloid Interface Sci.2003,257:47-55.
    [104]Luo X X, Cao W H, Zhou L X. Synthesis and luminescence properties of (Zn,Cd)S:Ag nanocrystals by hydrothermal method. J. Lumin.2007,122-123:812-815.
    [105]Wang L C, Chen L Y, Luo T et al. A hydrothermal method to prepare the spherical ZnS and flower-like CdS microcrystallites. Mater. Lett.2006,60:3627-3630.
    [106]Li J P, Xu Y, Wu D et al. Hydrothermal synthesis of novel sandwich-like structured ZnS/octylamine hybrid nanosheets. Solid State Commun.2004,130:619-622.
    [107]Qian Y Y, Su Y, Xie Y et al. Hydrothermal preparation and characterization of nanocrystalline powder of sphalerite. Mater. Res. Bull.1995,30(5):601-605.
    [108]Yue G H, Yan P X, Yan D et al. Hydrothermal synthesis of single-crystal ZnS nanowires. Appl. Phys.2006, A84:409-412.
    [109]Peng W Q, Cong G W, Qu S C et al. Synthesis and photoluminescence of ZnS:Cu nanoparticles. Opt. Mater.2006,29:313-317.
    [110]Kim D, Min K D, Lee J et al. Influences of surface capping on particle size and optical characteristics of ZnS:Cu nanocrystals. Mater. Sci. Eng., B.2006,131:13-17.
    [11]Lee S, Song D, Kim D et al. Effects of synthesis temperature on particle size/shape and photoluminescence characteristics of ZnS:Cu nanocrystals. Mater. Lett.2004,58:342-346.
    [112]Chen Y Y, Duh J G, Chiou B S et al. Luminescent mechanisms of ZnS:Cu:Cl and ZnS:Cu:Al Phosphors. Thin Solid Films.2001,392:50-55.
    [113]Saenger D U, Jung G, Mennig M. Optical and structural properties of doped ZnS nanoparticles produced by the sol-gel method. J. Sol-Gel Sci.Technol.1998,13:635-639.
    [114]Chen D L, Gao L. Microemulsion-mediated synthesis of cadmium zinc sulfide nanocrystals with composition-modulated optical properties.Solid State Commun.2005,133:145-150.
    [115]Lenggoro l W, Okuyama K, Ferrnanndez J M. Preparation of ZnS nanoparticles by electrospray pyrolysis. J. Aerosol Sci.2000,31(1):121-136.
    [116]Xue X, Chen J F, Hu Y. Preparation of well uniform-sized and monodisperse ZnS nanoballs by γ-irradiation method. Mater. Lett.2007,61:115-118.
    [117]Qiao Z P, Xie Y, Qian Y T et al. g-Irradiation preparation and characterization of nanocrystalline ZnS.Mater. Chem. Phys.2000,62:88-90.
    [118]Khoskavi A A, Lalita M K, Deshpande S K. Green luminescence from copper doped zinc sulphide quantum particles. Appl Phys Lett.1995,67:2702-2704.
    [119]Yu X B, Mao L H, Liang Z F et al., Shiping Yang, The synthesis of ZnS:Mn2+ nano-particles by solid-state method at low temperature and their photoluminescence characteristics, Mater. Lett.2004,58:3661-3664.
    [120]Yang H, Yu L X, Shen L C et al. Preparation and luminescent properties of Eu3+-doped zinc sulfide nanocrystals. Mater. Lett.2004,58:1172-1175.
    [121]Karar N. Photoluminescence from doped ZnS nanostructures. Solid State Commun.2007,142: 261-264.
    [122]Tsuji I, Kudo A. H2 evolution from aqueous sulfite solutions under visible-light irradiation over Pb and halogen-codoped ZnS photocatalysts. J. Photochem. Photobiol., A.2003,156: 249-252.
    [123]Sychov M M, Mjakin S V, Nakanishi Y et al. Study of active surface centers in electroluminescent ZnS:Cu,Cl phosphors. Appl. Surf. Sci.2005,244:461-464.
    [124]Liu C X, Liu J Y, Xu W et al. The g factor-shift in ZnS:Mn2+ nanocrystals pyrex glasses. Mater. Sci. Eng.2000, B75:78-81.
    [125]Raevskaya A E, Korzhak A V, Stroyuk A L et al. Spectro-optical and photochemical properties of ZnS nanoparticles. Theor. Exp.Chem.200,541(2):111-116.
    [126]Morozova N K, Karetnikov I A, Golub K V et al. The Effect of Oxygen on the ZnS Electronic Energy-Band Structure. Semiconductor.2005,39(5):485-492.
    [127]Bacherikov Y, Kitsyuk N V, Optasyuk S V et al. The Effect of Pressing on the Luminescent Properties of ZnS:Ga Powders. Semiconductors.2005,39(3):296-299.
    [128]Yang P, Song C F, Lu M K et al. Photoluminescence of Cu+-doped and Cu2+-doped ZnS nanocrystallites. J. Phys. Chem.2002,3:639-643.
    [129]Sang W B, Qian Y B, Min J H et al. Microstructural and optical properties of ZnS:Cu nanocrystals prepared by an ion complex transformation method.Solid State commun.2002,21: 475-478.
    [130]Bol A A, Ferwerda J, Bergwerff J A et al. Luminescence of nanocrystalline ZnS:Cu2+.J. Lumin. 2002,99:325-334.
    [131]Sun L D, Liu C H, Liao C S et al. Optical properties of ZnS:Cu colloid prepared with sulfurous ligands.Solid State commun.1999,11:83-488.
    [132]Jian W P, Zhuang J Q, Zhang D W et al, Synthesis of highly luminescent and photostable ZnS:Ag nanocrystals under microwave irradiation. Mater. Chem. Phys.2006,99:494-497.
    [133]Lee J C, Park D H. Self-defects properties of ZnS with sintering temperature. Mater Lett.2003, 57:2872-2878.
    [134]Suyver J F, Wuister S F, Kelly J J et al. Synthesis and photoluminescence of nanocrystalline ZnS:Mn2+. Nano Let.2001,1(8):429-433.
    [135]Hu H, Zhang W H. Synthesis and properties of transition metals and rare-earth metals doped ZnS nanoparticles.Opt Mater.2006,28:536-550.
    [136]菅文平,张大巍,王凌凌等.微波辅助合成发光可调ZnS:Cu纳米晶.高等学校化学学报.2006,27(12):2340-2343.
    [137]王志鹏,李晓东,罗群等.半导体纳米复合材料ZnS/PMMA制备及其光学性质的研究.高等学校化学学报.2006,27(3):527-530.
    [138]杨旭东,徐仲英,罗向东等.ZnS中Te等电子中心的时间分辨光谱研究.物理学报.2005,54(5):2272-2276.
    [139]曹立新,吕艳玲,孙大可等.制备条件对ZnS:Mn纳米晶晶体结构和发光性质的影响.功能材料.2008,39(2):194-196.
    [140]Zhang X B, Song H W, Yu L X et al. Surface states and its influence on luminescence in ZnS nanocrystallite. J. Lumin.2006,118:251.
    [141]仲维卓,王步国,施尔畏等.水热条件下ZnS晶体的极性生长机制与双晶的形成.人工晶体学报.1998,27:1-7.
    [142]李亚玲,王玉红,甄崇礼.纳米硫化锌的制备及光谱分析.光谱学与光谱分析,2007,27(9):1890-1893.
    [143]Gard R, Sun Z X, Forsling W. FT-IR and FT-Raman studies of colloidal ZnS,1.Acidic and Alkaline Sites at the ZnS/water interface. J. Coll. Interf. Sci.,1995,169:393-399.
    [144]冉红彦,曹俊臣,张惠芬.层间阳离子对水黑云母层间水赋存状态的影响.矿物学报,1999,19(2):215-221.
    [145]Jiang J Z. Phase transformations in nanocrystals. J. Mater. Sci.2004,39:5103-5110.
    [146]张小波,宋宏伟,于立新等.退火对ZnS纳米晶结构相变及发光的影响.发光学报,2004,25(1):67-71.
    [147]Datta A, Panda S K, Chaudhuri S. Phase transformation and optical properties of Cu-doped ZnS nanorods. J. Solid. State. Chem.2008,181:2332-2337.
    [148]Lee J C, Park D H. Self- defects properties of ZnS with sintering temperature. Mater Lett. 2003,57:2872-2878
    [149]So W W, Jang J S, Rhee Y W et al. Preparation of nanosized crystalline CdSparticles by the hydrothermal treatment. J. Coll. Interf. Sci.2001,237:136-141.
    [150]苏海桥,薛书文,陈猛等.离子注入和退火对ZnS薄膜结构和光学性质的影响.物理学报,2009,58(10):7108-7113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700