用户名: 密码: 验证码:
露天采场内大型边缘矿开采的岩体稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是露天矿开采较多的国家。许多大型露天矿山始建于50至60年代,且当前约有80%以上的露天铁矿将进入中晚期。随着每年以12~20m的速度开采,部分露天矿正处于转地下开采的过渡时期,主要有以下工程特点:
     1.露天开采接近晚期,产量下降,在地下开采投产之前必须开采替代矿体以满足选矿的需要。而这些多为赋存条件比较复杂的矿体,大多数为露天坑内的边缘矿。
     2.边缘矿或地下开采与露天开采同时进行。
     3.对于复杂边缘矿开采,通常会采用稳定结构的采矿方法,留有矿柱和保安矿柱,以防止其开采对边坡稳定性的影响。
     那么,面临的主要问题有:
     1.矿柱的稳定性分析。
     2.由矿体采动造成应力场扰动的边坡稳定性分析。
     3.塌陷区范围的确定。
     本文以峨口铁矿南西西边缘矿为工程背景,采用块体理论、矢量和法以及扩展有限元法对上述三个问题进行了系统研究,核心内容如下:。
     1.基于三维节理裂隙网络进行矿柱的几何稳定性和力学稳定性分析:
     (1)总结了目前关键块体搜索的两种主流方法,并分析了二者的优缺点。本文将二种方法结合起来,即采用砍树法找到矿柱开采自由面上的所有闭合环路,以每个闭合环路为基本单元生成闭合环路子区域,将组成该闭合环路的第一类节理和相关节理视为无限大平面切割此子区域,找到闭合环路相对应的块体。该方法既不需对复杂块体进行繁杂的判断,且避免了因视节理为无限大平面切割研究区域生成大量的块体从而造成计算量巨大,亦可以简单地实现凹面体的搜索。
     (2)分析了矿柱的岩体结构特征,认为矿柱与节理裂隙是同尺度的,不能简单地将矿柱岩体视为连续介质。将节理视为无限大平面,切割矿柱区域,生成具有凸性的子块体,而后进行子块体拼装,由此生成的块体能够准确地反应矿柱节理裂隙统计特征,随后将其导入3DEC中进行块体力学分析,避免3DEC自身生成块体须将节理视为无限大切割已有块体的局限性。当节理数目较多时,可将研究区域等分成一系列子区域,相应的节理切割和块体拼装都在子区域中进行,然后将子区域组装在一起完成研究区域块体的重构,能够有效降低计算量。
     2.分析了目前边坡安全系数计算的各种方法,认为基于边坡应力场的矢量和法更加适合矿体采动前后边坡安全系数的计算。改进了蚁群算法,将蚂蚁前进的关键判断量—信息素视为连续变量,使其在搜索边坡临界滑面时无需对边坡进行离散。本文还将改进的蚁群算法与遗传算法联合来搜索边坡临界滑面,较好地克服了遗传算法不利用空间信息反馈而易于陷入局部最优的缺点,同时也克服了蚁群算法在初始信息素匮乏而启动贪婪式搜索造成的求解效率低下的不足,在一定程度上达到了求解效率与时间效率相互平衡。
     3.开采沉陷是岩体的破坏过程。对于大规模的矿山开采,除Ⅲ级及其以上结构面外,其余的普遍节理应视为对岩体参数的弱化而反映到岩体力学参数中。目前,常用于开采沉降计算的有限元和离散元方法均不能很好的反映上述特点。本文采用扩展有限元方法评价开采沉陷,进行了显式解法推导,并进行了程序实现,避免了裂隙扩展后需要重新组总刚。采用接触面的切向与法向刚度来反映裂隙段上高斯点跳跃的位移与力之间的关系,实现了扩展有限元接触问题。根据子结构法由尖端单元与其相邻单元形成子结构刚度矩阵,使每步的尖端加强自由度可直接由常规自由度和跳跃自由度得到,从而避免了系统收敛指标过多以及由此带来的系统振荡。通过平板不同位置裂隙的拉伸、压剪以及扩展说明了本文方法的有效性。
The open-pit mining is prevalent in China. Most large open pit mines were established in 1950-60's, of which about 80% will step into advanced. With the rate of 12-20m mining annually, some open-pit mines are in the transition period of turning to underground mining. Currently, the main features of open-pit are as follows:
     1. Before the commissioning of the underground mining, some alternate ore-bodies must be exploited to meet the needs of dressing due to the production drawdown when the open pit is approach to be closed. They are always border ores with complicated geological conditions in the open pit.
     2. The marginal ores mining or underground mining is simultaneous with open pit mining.
     3. When exploiting the marginal ore-body, the pillars and safety pillars were kept to prevent the influence on open pit slope as mining method of stable structure was adopted.
     As a result, the main questions are:
     1. Evaluation on mine pillar stability.
     2. Analysis of slope stability under stress field disturbance due to mining.
     3. Determination of the scope of subsidence area.
     With the background of SWW marginal ore-bodies in Ekou iron mine, the Block Theory, Vector Sum Analysis and Extend Finite Element Method (XFEM) have been introduced to study the above-mentioned three problems systematically in this dissertation, of which the key contents are as follows:
     1. Study the geometric and mechanical stability of ore pillar based on 3D Joint Network.
     (1) There existing shortcomings of two popular methods in searching the key block, which are overcome by combining them in this dissertation. First of all, searching the closed loops on the free surface of mine pillar by Tree Cut Method; then, the sub-region of every single closed loop, which is a range box of typeⅠjoints, is cut by infinite plane of type I and other relevant joints to form many small blocks, the block which has the exact face of closed loop is the key block. The combined method has no requirement of intricate judgment when the block is complicated, also will not cause enormous computational cost when the joints are token as infinite plane, and can realize concave block searching without any special algorithm.
     (2) The material of ore pillar cannot be treated as continuative simply as the size of which is the same as or slightly bigger than joints. The pillar region was cut by infinite planes of joints to generate a series of convex polytopes, and then the non-exist face of polytope is deleted to make the combination of convex polytopes to form the blocks that can truly match the joints network. Sometimes, the joint cut and polytope combination take place only in sub-region which is generated by equally divided the pillar region to avoid forming large number of polytopes. The blocks of entire pillar region can be formed by piecing together all sub-region blocks. Mechanical analysis can be carried out once the formation of pillar block is finished. The block formation method is prior to 3DEC itself in which the joint is regarded as infinite plane to cut the blocks and lead to inconsistence with statistical parameters of the joint such as trace length.
     2. Calculating the FOS (factor of safety) of slip surface and searching the critical slip surface.
     (1) The Vector Sum Analysis can calculate the FOS of the slope based on the stress field without iteration, and it's more suitable for analyzing the slope stability with stress disturbance due to mining.
     (2) The Ant Colony Algorithm (ACO) was improved to search the slope critical slip surface without the discretization of the slope body by taking the pheromone as a continuous distribution variable. In addition, to overcome low speed of ACO owing to absence of original pheromone, as well as multiple redundancies and low efficient solving of genetic algorithms as a result of no feedback ability, the ACO was integrated with genetic algorithm to complement each other's disadvantages.
     3. Actually, mine subsidence is the failure process of the rock mass. Also, the ubiquitous-joint is equivalent to the weakness of the mechanical parameters of rock mass in large-scale mining except classⅢand above. The FEM and DEM which are commonly used to analyze the mine collapse can not reveal the above features very well. The XFEM was adopted to solve this subject. In order to avoid rebuilding the overall stiffness matrix, the XFEM was realized by explicit solution technique. The normal and shear stiffness of contact surface was used to reflect the relationship of jumping displacement and stress on Gauss points of the fracture segments. Moreover, the tip-enriched freedoms can be directly derived by normal and Heaviside freedoms using the sub-structural stiffness matrix which is based on sub-structure method and made up of tip element and its neighbor elements, in the prevention of too many convergence indicators and oscillation of system. Then, some numerical simulations of crack tensile, compression and shear as well as propagation in a plate were carried out to illustrate the effectiveness of the methods. Finally, the section of 18# prospecting line was used for analyzing the rock failure by exploitation of north ore-body.
引文
1.孙玉科,杨志法,丁恩保等,中国露天铁矿边坡稳定性研究[M].北京:中国科学技术出版社,1999.
    2.蔡路军,马建军,江兵等.高陡边坡挂帮矿开采方法研究[J].金属矿山,2006,355:65-67.
    3.李明,郑怀昌,马蓬勃,鞠锋钰.黑旺铁矿边角矿体联合开采的应用[J].金属矿山,2001,296:20-22.
    4. 《采矿手册》编委会.采矿手册第4卷[M].北京:冶金工业出版社,1990.
    5.李斯基.露天转地下开采不停产过渡的探讨[J].冶金矿山设计与建设,1999,15:3-8.
    6.李辉.滑坡体下挂帮矿开采边坡安全控制策略与数值分析[硕士论文D].武汉:中国科学院武汉岩土力学研究所,2005.
    7.黄平路,陈从新.露天和地下联合开采引起矿山岩层移动规律的数值模拟研究[J].岩石力学与工程学报,2007,26(增2):4037-4043.
    8.邢利伟.露井联合开采的边坡稳定性研究[硕士论文D].武汉:武汉理工大学,2007.
    9.杨占军.露井联合开采对边坡及地表稳定性影响的研究[J].露天采矿技术,2008,4:1-3.
    10.何俊锋,高广运,刘文生.矿山露天与地下联合开采实例安全性分析[J].地下空间与工程学报,2009,5:803-813.
    11.徐长佑,露天转地下开采[M].武汉:武汉工业大学出版社,1989.
    12.浙江省工业设计研究院.太原钢铁(集团)有限公司矿业分公司峨口铁矿西部露天转地下采矿可行性研究报告[R].2007.(未公开).
    13.邹友峰,邓喀中,马伟民.矿山开采沉陷工程[M].徐州:中国矿业大学出版社,2003.
    14.于广明.矿山开采沉陷的非线性理论与实践[M].北京:煤炭工业出版社,1998.
    15.何国清.矿山开采沉陷学[M].徐州:中国矿业大学出版社,1991.
    16.王金庄.矿山开采沉陷及其损害防治[M].北京:煤炭工业出版社,1995
    17.黄平路.构造应力型矿山地下开采引起岩层移动规律的研究[博士论文D].武汉:中国科学院武汉岩土力学研究所,2008.
    18. Brauner. Subsidence due to underground ming[M]. Bureau of Mines, USA,1973.
    19.陈从新,夏金瑞等.复杂条件下地下采矿稳定性研究[M].武汉:湖北科学技术出版社,2005
    20. Barry H. G. B, Edwin T. B. Rock mechanics:for underground mining[M]. Berlin: SpringerVerlag,2004.
    21.马建军,周惠新等.大冶铁矿缓倾斜侍帮矿开采方法的研究[J].金属矿山,2002,2:10-12.
    22.李忠,郭廖武,李德春等.大冶铁矿象鼻山北帮滑坡体下采矿实践[J].金属矿山,2005,3:22-25.
    23.蔡路军,马建军,江兵等.大冶铁矿2“挂帮矿开采方法研究[J].矿冶工程,2006,26:8-10.
    24.许利生.露天矿挂帮矿开采方法的研究[J].矿业快报,2002,19:10-11.
    25.王章,苗涛.姑山铁矿露天采场挂帮矿开采方案及其优化[J].采矿技术,2008,8:3-4.
    26.康志强,李富平,李闻杰等.挂帮矿开采引起的残采边坡位移场分布规律[J].金属矿山,2009,402:50-52,60.
    27.岑佑华.铜山口铜矿挂帮矿体的开采设计[J].现代矿业,2009,5:78-79.
    28.赖活生.露天边帮残矿回收实践[J].金属矿山,2007,1:92-93.
    29.柳小胜,宋嘉栋,肖木恩.露天转地下开采矿山延长露天采场服务年限的途径[J].采矿 技术,2006,6:7-8.
    30.刘仁刚.露天高台阶作业在残矿回收过程中的作用[J].矿业快报,2002,20:7-8.
    31.孙玉科,姚宝魁.盐池河磷矿山体崩坍破坏机制的研究[J].水文地质工程地质,1983,01:1-7.
    32.中国岩石力学与工程学会地面岩石工程专业委员会,中国地质学,会工程地质专业委员.中国典型滑波[M].北京:科学出版社,1988.
    33.贾建称,王根厚,魏铭.北京周口店太平山滑坡形成机理与预防措施[J].青海大学学报(自然科学版),2006,24:4-9.
    34.孙世国,王思敬.地下与露天复合采动影响下边坡岩体稳定性评价方法的研究[J].工程地质学报,1998,4:312-317.
    35.孙世国,蔡美峰,程五一.地下采动对边坡岩体稳定性的影响规律[J].勘察科学技术,1999,4:22-25.
    36.孙世国,林国棋.地下工程开挖对斜坡体影响的研究[J].市政技术,2004 6:357-358.
    37.朱洪威.紫金山金铜矿露地联合开采地下采场稳定性分析[硕士论文D].赣州: 江西理工大学,2008.
    38.院雷.露天地下联合开采采动损害规律研究[硕士论文D].武汉:武汉理工大学,2008.
    39.黄金寿,杨祖荫,马光.边界元法在金河磷矿矿柱稳定性分析中的应用[J].岩石力学与工程学报,1986,01.
    40. Tang D. H. Y, Peng S. S. Structural analysis of mine pillars using finite element method-a case study[J]. Mining Engineering,1988,40:893-897.
    41. Den J. Yue Z. Q. Tham L. G. Zhu H. H. Pillar design by combining finite element methods, neural networks and reliability:A case study of the Feng Huangshan copper mine, China[J]. International Journal of Rock Mechanics and Mining Sciences,2003,40:585-599.
    42. Jaiswal A. Shrivastva B. K. Numerical simulation of coal pillar strength[J]. International Journal of Rock Mechanics & Mining Sciences,2009,46:779-788.
    43. Mortazavi A. Hassani F. P. Shabani M. A numerical investigation of rock pillar failure mechanism in underground openings[J]. Computers and Geotechnics,2009,36:691-697.
    44.李江腾,曹平.硬岩矿柱纵向劈裂失稳突变理论分析[J].中南大学学报(自然科学版),2006,37:371-375.
    45.郭建军,窦源东,杨玉泉.矿柱裂隙扩展机理分析研究[J].采矿技术,2009,9:24-26,37.
    46.郭建军,窦源东,杨玉泉.矿柱破坏宽度的计算分析[J].采矿技术,2009,9:73-75,112.
    47.郑泽岱,刘沐字,祝文化.计算矿柱安全系数的新方法[J].化工矿山技术,1994,23:16-19.
    48.刘沐字,徐长佑.矿柱的可靠度分析[J].化工矿物与加工,1999,7:15-17,32.
    49.刘沐字,徐长佑.地下采空区矿柱稳定性分析[J].矿冶工程,2000,20:19-22.
    50.张玉卓,仲惟林等.岩层移动的错位理论解与边界元法计算[J].煤炭学报,1983.2
    51.张玉卓,仲惟林等.断层影响下地表移动的统计和数值模拟研究[J].煤炭学报,1983.1
    52.谢和平,陈至达.非线性大变形有限元分析及在岩层移动中的应用[J].中国矿业大学学报.1988.2.
    53.何满潮.中国矿业大学北京研究生部博士后研究报告[R].北京:1994.
    54.王泳嘉.离散元法及其在岩石力学中的应用[J].金属矿山,1992.3.
    1.蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002.
    2.冶金工业部.“八·五”国家重点科技公关项目,峨口铁矿深部边坡工程研究及边坡现代化管理系统研究[R].1996.
    3.张筠,林绍文.利用测井进行地层弹性特征及应力场分析[J].测井技术,2001,25:467-472.
    4.杨秀娟,张敏,闫相祯.基于声波测井信息的岩石弹性力学参数研究[J].石油地质与工程,2008,28:39-42.
    5. Margolin L. G. Elastic moduli of a cracked body[J]. Int. Journ. of Fracture,1983,22:65-79.
    6.杨松林,徐卫亚.裂隙岩体有效弹性模量估计的一种方法[J].河海大学学报(自然科学版),2003,31:399-402.
    7. Hoek E. Brown E. T. Empirical strength criterion for rock massed[J]. J. Geotech. Engng. Div., 1980,9:1013-1035.
    8. Hoek E. Brown E. T. The Hoek-Brown failure criterion[J]. Proceedings of the 15#Canadian Rock Mechanics Symposium,1988,31-38.
    9. Hoek E. Strength of jointrock masses[J]. ISRM News Journal,1994,2:4-16.
    10. Hoek E. Brown E. T. Practical estimation ofr rock mass strength[J]. Int. J. Rock Mech.& Mining Sci.& Geomechanics Abstracts,1997,8:1165-1186.
    11.中钢集团马鞍山矿山研究院,攀钢集团矿业公司.攀钢集团矿业公司朱家包包铁矿南帮边坡稳定性研究及滑坡综合治理研究[R].2004.11(未公开).
    12.中冶北方工程技术有限公司.太钢(集团)矿业分公司峨口铁矿南西西地下采矿工程可行性研究报告[R].2009.
    13. The MathWorks, Inc. Global Optimization Toolbox User's Guide[M].2010.
    14.中国科学院武汉岩土力学研究所.武钢矿业公司金山店铁矿张福山矿床地下采矿陷落角、移动角研究[R].武汉:2005.
    15.周维垣,杨若琼,剡公瑞.大坝整体稳定分析系统[J].岩石力学与工程学报,1997,16:424-430.
    16.董玉文,任青文.高拱坝稳定安全度研究综述[J].水利水电科技进展,2006,26:78-82.
    1.蔡美峰,何满潮.刘东燕.岩石力学与工程[M].北京:科学出版社,2002.
    2. 肖树芳,杨淑碧.岩体力学[M].北京:地质出版社,1987.
    3. Hudson J. A. Harrison J. P. E. Engineering rock mechanics:an introduction to the principles[M]. London:Elsevier,1997
    4.贾洪彪,唐辉明,刘佑荣等.岩体结松面三维网络模拟与工程应用[M].北京:科学出版社,2008.
    5.鲁岩,邹喜正,刘长友.基于修正普氏拱的巷道锚杆支护技术[J].采矿与安全工程学报,2007,12:461-464.
    6.王明洋,宋华,郑大亮等.深部巷道围岩的分区破裂机制及”深部”界定探讨[J].岩石力学与工程学报,2006,25:1771-1776.
    7.石根华.岩体稳定分析的赤平投影方法[J].中国科学,1977:260-271.
    8. Shi G. Goodman R. E. A new Concept for support of underground and surface exeavation in disecontinuous rocks based on a Keystone principle[J].22th U. S. Symposium on Rock Mechanies,1981,310-316.
    9. Shi G. A geometric method for stability analysis of discontinuos rocks[J]. Scientia Sinica, 1982,25:883-898.
    10. Goodman R. E. Shi G. Boyle W. Caculation of support for hard jointed rock using the keyblock principle[J].23th U. S. Symposium on Rock Mechanics,1981,310-316.
    11. Goodman R.E. Shi G. Block theory and its application to rock engineering[M]. USA:Prentice Hall,1985.
    12.刘锦华,吕祖晰.块体理论在工程岩体稳定分析中的应用[J].水利电力出版社,1988.
    13.张清,莫助涛.利用关键块体理论估计隧道的塌方部位[J].岩石力学与工程学报,1989,8:163-168.
    14.李爱兵.块体理论在边坡稳定性分析中的应用[J].长沙矿山研究院季刊,1989,9:41-46.
    15.邬爱清,任放,郭玉.节理岩体开挖面上块体随机分布及锚固方式研究[J].长江科学院院报,1991,8:27-33.
    16.杨宏宝.块体理论在采场稳定性分析中的应用[J].有色金属:矿山部分,1998,17-22.
    17.盛谦,黄正加,邬爱清.三峡工程地下厂房随机块体稳定性分析[J].岩土力学,2002,23:747-749.
    18.张奇华.块体理论的应用基础研究与软件开发[博士论文D].武汉:武汉大学,2004.
    19.卢波,陈剑平,王良奎.基于三维网络模拟基础的复杂有限块体的自动搜索及其空间几 何形态的判定[J].岩石力学与工程学报,2002,21:62-64.
    20.邬爱清,张奇华.岩石块体理论中三维随机块体几何搜索[J].水利学报,2005,36:1-9.
    21.于青春,薛果夫,陈德基.裂隙岩体一般块体理论[M].北京:中国水利水电出版社,2007.
    22. Yu Q. Ohnishi Y. Xue G. Chen D. A generailized procedure to identify three-dimensional rock blocks around complex excavations[J]. Int. J. Numer. Anal. Meth. Geomech.2009,33: 355-375.
    23.张奇华,邬爱清.基于凹形区分类的块体几何形态分析方法[J].岩土工程学报,2005,27:299-303.
    24. http://itasca.cntech.com.cn/itasca764.html.中仿科技,UDEC/3DEC系列—高级非连续力学分析程序.
    25. Itasca Consulting Group, Inc.3 Dimensional Distinct Element Code Command Reference[M]. Minnesota:Itasca,2005.
    26. Itasca Consulting Group, Inc.3 Dimensional Distinct Element Code Verification Problems and Example Applications M]. Minnesota:Itasca,2005.
    27. Oda M. Fabric tensor for discontinuous geological material[J]. Soils and Foundation,1982,22: 96-108.
    28.尹健民,周维垣,杨若琼.岩体三维节理网络模拟及其在三峡工程中的应用[J].岩石力学与工程学报,2001,20(z1):1702-1704.
    29.盛骤,谢式千,潘承毅.概率论与数理统计[M].北京:高等教育出版社,1989.
    30.王勖成.有限单元法[M].北京:清华大学出版社,2003.
    31. Philip J. S. David H. E.计算机图形学几何工具算法详解[M].周长发译.北京:电子工业出版社,2005.
    32.陈学工,潘懋.空间散点集Delaunay四面体剖分切割算法[J].计算机辅助设计与图形学学报,2002,14:93-94.
    33. Warburton P. M. Vector stability analysis of an arbitrary polyhedral rock block with any number of free faces[J]. Int. J. Rock Mech.& Mining Sci.& Geomechanics Abstracts, 1981,18:415-427.
    34.伏玉琛,周洞汝.计算机图形学—原理、方法与应用[M].武汉:华中科技大学出版社,2003.
    35.马小虎,潘志庚,石教英.确定多边形凸凹顶点的快速算法及其应用[J].计算机工程与设计,1988,19:45-49.
    36.陈一民,李超,熊玉梅.任意多面体的四面体剖分算法[J].计算机工程与应用,2003,30:69-71,93.
    37.冶金工业部.“八·五”国家重点科技公关项目,峨口铁矿深部边坡工程研究及边坡现代化管理系统研究[R].1996.
    1.刘艳章.边坡与坝基抗滑稳定的矢量和分析方法[博士论文D].武汉: 中国科学院武汉岩土力学研究所,2007.
    2.蔡美峰,何满潮.刘东燕.岩石力学与工程[M].北京:科学出版社,2002.
    3. Ducan J M. State of the art:Limit equilibrium and finite-element analysis of slopes[J]. Journal of Geotechnical Engineering,1996,122:577-596.
    4. Fellenius W. Calculation of the stability of earth dams[J]. Trans.2nd Congr. Large Dams, 1936,4:445.
    5. Bishop A W. The use of the slip circle in the stability analysis of slopes[J]. Geotechnique, 1955,5:7-17.
    6. Lowe J. Karafiath L. Stability of earth dams upon drawdown[A]. Proceeedings of the 1st Pan-American Conference on Soil Mechanics and Foundation Engineering[C]. Mexico City: [s. n.],537-552.
    7. Jaubu N. Application of composite slip surface for stability[A]. In:European Conference on Stability of Earth Slopes[C]. Stockholm:1954,43-49.
    8. Jaubu N. Slope stability computations[A]. In Hirschfield R C, Poulos S J. ed. Embankment-Dam Engineering[C]. New York:John Wiley,1973,47-86.
    9. Morgenstern N R, Price V E. The analysis of the stability of general slip surfaces[J]. Geotechnique,1965,15:79-93.
    10. Spencer E. A method of analysis of the stability of embankments assuming parallel inter-slice forces[J]. Geotechnique,1967,17:11-26.
    11. Sarma S K. Stability analysis of embankments and slopes[J]. Geotechnique,1973,23:85-100.
    12. Sarma S K. Stability analysis of embankments and slopes[J]. Jorunal of the Geotechnical Engineering Division,1979,105:1511-1524.
    13.陈祖煜.土质边坡稳定分析:原理·方法·程序[M].北京:中国水利水电出版社,2003.
    14. Rocscience Inc. RocPlane:planar sliding stability analysis for rock slopes[M].2001.
    15.中华人民共和国国家标准编写组.建筑边坡工程技述规范(GB50330-2002)[S].北京:中国建筑工业出版社,2002.
    16.中华人民共和国水利部.水利水电工程边坡设计规范(SL 386-2007)[S].北京:中国水利水电出版社,2007.
    17.中华人民共和国国家发展和改革委员会.水电水利工程边坡工程地质勘察技术规程(DL/T5337-2006)[S].北京:中国电力出版社,2006.
    18.童志怡,陈从新,徐建等.边坡稳定性分析的条块稳定系数法[J].岩土力学,2009,5:1398-1393.
    19.曹平.边坡稳定性分析的运动单元法[M].世界采矿快报,1998,16:18-19.
    20.曹平,Gussmann P.运动单元法与边坡稳定性分析[M].岩石力学与工程学报,1999,18:663-666.
    21. Zienkiewicz O C, Humpheson C, Lewis R W. Associated and non-associated visco-plasticity and plasticity in soil mechanics[J]. Geotechnique,1975,25:671-689.
    22.刘金龙,栾茂田,赵少飞等.关于强度拆减有限元方法中边坡失稳判据的讨论[J].岩土力学,2005,26:1345-1348.
    23. Zheng H., Liu D. F., Li C. G., Slope stability analysis based on elasto-plastic finite element method[J]. International journal for numerical methods in engineering.2005,64(14): 1871-1888.
    24.孙冠华,郑宏,李春光.基于等效塑性应变的边坡滑面搜索[J].岩土力学,2008,5:1159-1163.
    25.郑颖人,赵尚毅,张鲁渝.用有限元强度拆减法进行边坡稳定性分析[J].中国工程科学,2002,24:626-628.
    26.郑颖人,赵尚毅.有限元强度折减在土坡和岩坡中的应用[J].岩石力学与工程学报,2004,23:3381-3388.
    27.卓家寿,邵国建.工程稳定问题中确定滑坍面,滑向与安全度的干扰能量法[J].水利学报,1997,8:80-84.
    28.邵国建,卓家寿,章青.岩体稳定性分析与判别准则研究[J].岩石力学与工程学报,2003,22:691:696.
    29.郑宏,田斌,刘德富,冯强.关于有限元边坡稳定性分析中安全系数的定义问题[J].岩石力学与工程学报,2005,24:2225-2230.
    30.土坡有限元稳定性分析的若干问题探讨[M].岩土力学,2000,21:152-155.
    31.葛修润.用PC型微机对岩体工程课题进行有限元分析[A].第一届全国计算岩土力学研讨会论文集[C].峨嵋:西南交通大学出版社,1987,74-85.
    32. Ge X. Feng D. Gu X, et al. Stability and deformation analysis of complex rock foundations of several large dams and hydropower stations in China[A]. In:Yoshinaka R, Kikuchi K ed. Rock Fundation:Proceeding of International Workshop on Rock Foundation[C]. Tokyo:A ABALKEMA,1995,243-248.
    33.刘艳章,葛修润,李春光,王水林.基于矢量法安全系数的边坡与坝基稳定性分析[J].岩石力学与工程学报,2007,26:2130-2140.
    34.郭明伟,李春光,葛修润等.基于矢量和分析方法的边坡滑面搜索[J].岩土力学,2009,30:1775-1781.
    35.高大钊.土力学与基础工程[M].北京:中国建筑工业出版社,1998.
    36. http://baike.baidu.com/view/845143.htm?fr=ala0_1,百度百科,枚举法.
    37.陈昌富,龚晓南,王贻荪.自适应蚁群算法及其在边坡工程中应用[J].浙江大学学报(工学版),2003,37(5):566-569.
    38.肖专文,张志奇,梁力,林韵梅.遗传进化算法在边坡稳定性分析中的应用[J].岩土工程学报,1998,20:44-46.
    39. Goh, A.T.C. Genetic algorithm search for critical slip surface in multi-wedge stability analysis[J]. Canadian Geotechnical Journal,1999,36(2):383-391.
    40.包太,刘宝琛.遗传算法在边坡稳定系数计算中的应用[J].重庆建筑大学学报,2007,29(1):49-51.
    41.陈昌富,龚晓南.混沌扰动启发式蚁群算法及其在边坡非圆弧临界滑动面搜索中的应用[J].岩石力学与工程学报,2004,23(20):3450-3453.
    42.李亮,迟世春,林皋.基于蚁群算法的复合形法及其在边坡稳定性分析中的应用[J].岩土工程学报,2004,26(5):691-696.
    43.石露,李小春,任伟等.蚁群算法与遗传算法融合及其在边坡临界滑动面搜索中的应用[J].岩土力学,3486-3492.
    44.朱大勇.边坡临界滑动场及其数值模拟[J].岩土工程学报,1997,19:63-69.
    45.朱大勇.钱七虎.严格极限平衡条分法框架下的边坡临界滑动场[J].土木工程学报,2000,35:68-67.
    46.郭明伟,葛修润,李春光等.基于矢量和方法的边坡稳定性分析中整体下滑趋势方向的讨论[J].岩土工程学报,2009,31:577-583.
    47.玄光男,程润伟.遗传算法与工程设计[M].北京:科学出版社,2000.
    48.李士勇,陈永强,李研.蚁群算法及其应用[M].哈尔滨:哈尔滨工业大学出版社,2004.
    49. Back T. Evolutionary Algorithms in Theory and Practice[M]. Oxford:Oxford Press,1996.
    50.李春光,郑宏,葛修润等.交面体单元等参逆变换的一种迭代解法[M].岩土力学,2004,25:1050-1052.
    51.朱以文,蔡元奇,李伟.等参元逆变换算法在渗流-位移耦合场分析中的应用[J].计算力学学报,2002,19(2):233-235.
    52.刘光廷,高政.三维凸型混凝土骨料随机投放算法[J].清华大学学报(自然科学版),2003,43(8):1120-1123.
    53.中国科学院武汉岩土力学研究所,武钢矿业公司大冶铁矿.武钢矿业公司大冶铁矿龙洞采区塌陷区预测及尾矿管防护措施研究[R].2008.
    1. 《采矿手册》编委会.采矿手册第4卷[M].北京:冶金工业出版社,1990.
    2.姚宝魁等.矿山地下开采稳定性研究[M].北京:中国科学技术出版社,1994.
    3.邹友峰,邓喀中,马伟民.矿山开采沉陷工程[M].徐州:中国矿业大学出版社,2003.
    4.李开泰,黄艾香,黄庆怀.有限元方法及其应用[M].北京:科学出版社,2006.
    5.陆金甫,关治.偏微分方程的数值解法[M].北京:清华大学出版社,2004.
    6. Itasca Consulting Group, Inc. Fast Lagrangian Analysis of Continua in 3 Dimensions:Theory and Background [M]. Minneapolis, Minnesota USA,2005.
    7. Cundall, P. A. A computer model for simulating progressive, large-scale movements in blocky rock systems[A]. Proceedings of the symposium of the International Society of Rock Mechanics[C], Nancy, France:1971,1-8.
    8. Shi G H. Discontinuous Deformation Analysis—A New Numerical Model for the Statics and Dynamics of Block Systems[D]. Berkeley:Department of Civil Engineering University of California,1988.
    9.马永政.非连续变形分析法位移模式改进及工程应用[博士论文D].武汉:中国科学院武汉岩土力学研究所,2007.
    10. Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing[J]. Int. J. Numer. Meth. Engng,1999,45:601-620.
    11. Moes N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing[J]. Int. J. Numer. Meth. Engng,1999,46:131-150.
    12. Daux C, Moes N, Dolbow J, Sukumar N, Belytschko T. Arbitrary branched and intersecting cracks with the extended finite element method[J]. International Journal for Numerical Method in Engineering,1999,46:131-150.
    13.李录贤,王铁军.扩展有限元法(XFEM)及其应用[J].力学进展,2005,35:5-20.
    14. Y. Liu, Q. Z. Xiao, B. L. Karihaloo. XFEM for direct evaluation of mixed mode SIFS in homogeneous and bi-material[J]. Int. J. Numer. Meth. Engng,2004,59:1103-1118.
    15. Dolbow J, Moes N, Belytschko T. An extended finite element method for modeling crack growth with frictional contact[J]. Computer methods in applied mechanics and engineering,2001,190: 6825-6846.
    16. E. Giner, N. Sukumar, J. E. Tarancon, F. J. Fuenmayor. An Abaqus implementation of the extended finite element method[J]. Engineering Fracture Mechanics,2009,76:347-368.
    17. http://www.simulia.com/.Dassault Simulia, Abaqus 6.9EF.
    18.孙卫涛.弹性波动方程的有限差分数值方法[M].北京:清华大学出版社,2009.
    19.白金泽.LS-DYNA3D理论基础与实例分析[M].北京:科学出版社,2005.
    20.王勖成.有限单元法[M].北京:清华大学出版社,2003.
    21.蔡美峰,何满潮.刘东燕.岩石力学与工程[M].北京:科学出版社,2002.
    22.彭自强,王水林,葛修润.单位分解法、无网络法、数值流形方法之形函数的内在系系[J].岩土力学与工程学报,2002,21(增2):2429-2431.
    23. Duarte C A, Oden J T. An H-P adaptive method using clouds[J]. Computer methods in Apphed Mechanics and Engineering,1996,139:237-262.
    24. Osher S. Sethian J A. Fronts propagating with curvature dependent speed Algorithnis based on Hannlton-Jacobi formulations [J]. Journal of Computational Physics,1988,79:12-49.
    25. Sethian J A. Level set method and fast marching methods:evolving interfaces in computation geometry, fluid mechanics, computer version and materials science[M]. Cambridge, UK: Cambridge University Press,1999.
    26. Barth T J. Sethian J A. Numerical schemes for the Hamilton-Jacobi and level set equation on triangulated domain[J]. Journal of Computational Physics 1998,145:1-40.
    27.尹双增.断裂,损伤理论及应用[M].北京:清华大学出版社,1992.
    28.李世愚,和泰名,尹祥础.岩石断裂力学导论[M].合肥:中国科学技术大学出版社,2010.
    29. Rice J R. A path independent integral and the approximate analysis of strain concentration by notches and cracks[J]. Journal of Applied Mechanics,1968,35:379-386.
    30. Ewalds H, W ahill R. Fracture Mechanics[M]. Edward Arnold:New York,1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700