用户名: 密码: 验证码:
深部巷道破裂岩体块系介质模型及工程应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,随着我国国民经济的迅速发展,水利、交通、冶金、煤炭等各行业地下工程的规模和深度均呈增大趋势,特别是煤炭行业,矿井开采深度正在逐年增加。深部岩体处于复杂的地质环境中,高地应力、高地温、高渗透压以及强时间效应,使得深部岩体的组织结构、基本行为特征和工程响应与浅部岩体相比均发生了根本性变化。在这些因素共同作用下,即使是在浅部表现为坚硬稳定的岩体,在深部一般也会表现出显著的软岩特征,且由于存在着高赋存地应力和围岩体低强度之间的突出矛盾,深部地下工程开挖后造成的应力集中和应力重分布将导致很大范围内的岩体进入峰后破裂状态,而且这个过程中也往往伴随着破裂围岩的非线性大变形。
     本文针对煤矿深部巷道围岩普遍处于破裂状态,且表现出强烈非线性大变形的特点,采用能够表征破裂岩体几何非连续性特征以及模拟巷道围岩大变形的非连续介质方法,提出一种深部巷道破裂岩体块系介质模型,并以此为出发点,在系统科学思想指导下,采用试验研究、理论分析和数值模拟相结合的方法,分别进行了岩石块体力学特性研究、岩块间胶结界面力学特性研究以及硐室周边破裂岩体结构特征模拟方法研究。最后,综合集成上述研究成果,将所提出的深部巷道破裂岩体块系介质模型应用于淮南矿区顾北煤矿-648m水平南翼回风大巷的围岩稳定性分析中。概括来讲,本论文的主要研究内容如下:
     1)基于淮南矿区顾北煤矿深埋段砂岩常规三轴压缩以及峰前卸围压试验的结果,从变形、强度、破坏等不同角度对砂岩在不同应力路径下的变形和强度特征进行了较为系统的分析,获得了岩石基本力学特性,并揭示了岩石扩容—碎胀变形破坏机理,明确了岩石峰后碎胀变形是导致破裂围岩非线性大变形的主要原因。
     2)在前述试验基础上,研究了各特征应力值(裂纹闭合应力σcc、初始扩容应力σci、损伤扩容应力σcd、以及峰值应力σf)随围压变化的演化特征,提出了经验的砂岩进入峰前损伤扩容与峰后碎胀变形的临界条件准则,并考虑岩石峰前非弹性变形特点及卸荷过程中力学参数(粘聚力、内摩擦角、膨胀角)的损伤劣化过程,建立了反映深部岩石峰前损伤扩容与峰后破裂碎胀变形的渐近破坏本构模型,进而推导了本构模型的增量迭代格式,并在离散元数值分析软件UDEC中进行了数值实现以及模型验证,证明了该模型的有效性。
     3)基于经典的弹塑性理论,以块体接触界面抗拉、抗剪屈服函数为屈服准则,且考虑块体接触界面屈服破坏后粘聚力、抗拉强度的渐近软化,建立了块体胶结界面弹塑性本构模型,并推导了上述本构模型的增量迭代格式,进而采用VC++语言编制了相应的自定义本构模型,将其嵌入到离散元软件UDEC中,最后通过数值直剪试验,证明了此嵌入的数值本构模型与UDEC中内置的含残余强度的Coulomb滑移模型模拟结果的优越性。
     4)针对深部巷道地下硐室周边破裂岩体结构特征及动态力学行为,结合Voronoi图的多样性,提出Voronoi离散块体模型,指出了该模型的特点,并借鉴PFC2D软件中微观力学参数的获取方法,研究了其微观力学参数的校准方法,同时对各微观力学参数变化对材料宏观特性(主要指弹性模量及抗压强度)的影响进行了敏感性分析,进而得到了各微观力学参数的取值原则。
     5)以淮南矿区顾北煤矿-648m水平南翼回风大巷为工程实例,在前述对岩石变形破坏机理认识以及提出的岩石扩容—碎胀渐近本构模型、块体胶结界面本构模型以及Voronoi离散块体模型基础上,主要集中于开展深部巷道围岩破裂演化规律及开挖支护对策的研究工作。首先根据巷道所处工程区的地质条件建立相应的计算模型,并根据室内岩石物理试验结果,通过双轴数值试验校准确定相应的微观力学参数取值,进而从工程应用的角度系统地从位移矢量场、主应力矢量场、塑性屈服区以及破裂损伤区分布及其深度和大小等不同角度分析和总结了围岩体破裂演化规律和特征,并据此提出“分步联合支护”的设计方案,最后通过数值仿真分析和现场支护试验研究,从理论和实践上验证研究了该支护方案的有效性,这些问题的研究为深部破裂岩体中巷道工程的科学设计和安全施工提供了科学依据。
At present, as the rapid development of national economy, the scale and depth of underground engineering tends to increase in various industries mainly including water conservancy, transportation, metallurgy, coal and so on, especially in the coal industry, mining depth of the coal is increasing year by year. Comparing with the shallow rock, the deep rock mass located in complicated geology environment, the high stress, high temperature, high seepage pressure and strong time-dependent effect cause essential changes in mechanics structure, basic behavior characteristic and response to project of deep rock. Influenced by these factors, the deep rock mass exhibits marked characteristics of soft rock, though it is hard and steady in shallow. For the existence of sharp contradictory between the high ground stress and low strength of surrounding rock mass, the stress concentration and stress redistribution made by the excavation of the deep underground project result in a wide range of rock mass entering the fracturing condition after peak, and during the process, it is often accompany the nonlinear large deformation of the cracked rock mass.
     Aim at the broken status and the characters of strong nonlinear mechanical phenomenon of surrounding rocks in deep coal mine, a model of blocks for cracked rock mass of deep roadway is proposed. Then combining the experiment research, theoretical analysis and numerical simulation, this paper systematically studies the mechanics feature of rock blocks, block bonding interface and the structural characteristic of cracked rock mass around the roadway. Lastly, the fruits of the above studies are applied to analyze the stability control of the return airway at the -648 m level of Gubei colliery in Huainan mining area.
     Generally, the main research works included in the dissertation are as following:
     1) Based on the multi-angle experimental results of sandstone in Gubei colliery, such as conventional triaxial compression tests and pre-peak unloading confining pressure tests, a more systematic analysis on the deformation and strength characteristics of the soft rocks under different circumstances in different states of stress is carried out from the deformation, strength, and failure view, which has access to the basic mechanical properties and the dilatation-bulking deformation and failure mechanism of the rock. It is clear that post-peak bulking deformation is the main reason of the nonlinear large deformation of cracked rock mass.
     2) Based on the results of experimental test, the evolution characteristics of the typical stress values(including crack closure stressσcc、initial dilatancy stressσci、damage dilatancy stressσcd and peak stressσf) with the confining pressure are researched. And the experimental critical condition criterion of sandstone entering pre-peak damage dilatancy and post-peak bulking deformation is proposed. Then considering the pre-peak inelasticity characteristic of rock, and the damage and degradation process of mechanics parameters (cohesion, angle of internal friction, dilation angle) during unloading, a progressive failure constitutive model, which can reflect pre-peak damage dilatancy and post-peak bulking deformation of the deep rock mass is established. The incremental iterative scheme of the constitutive model is derived, its numerical implementation and model verification are proceeded by using the UDEC (universal distinct element code) and the validity of the model is proved.
     3) Based on the classical elastoplasticity theory, a block bonding interface elasto-plastic constitutive model is established by using tensile and shear function of the block contact interface as yield criterion and considering the progressive soften of the cohesion and tensile strength after the block bonding interface yield failure. The incremental iterative scheme of the above constitutive model is then derived, and the program about the constitutive model is compiled by VC++ Programming Language, and embedded it in the distinct element code UDEC. At last, by the numerical direct shear test, the advantage of the numerical constitutive model embedded is proved comparing the simulation results with the UDEC built-in Coulomb slip model with residual strength.
     4) Aim at the structural characteristics and the dynamic mechanical behavior of cracked rock mass of deep roadway among the underground cavernunderground cavern, a Voronoi discrete block model is proposed combining with the variety of the Voronoi figures. Then the characteristic of the model is pointed out and the calibration technique of micromechanics parameters is studied by referring the PFC2D's method to obtain the micromechanics parameters. At the same time, the sensitivity analysis about the variation of the micromechanics parameters impacted on the macro-deformation characteristics of materials (mainly the young's modulus and compressive strength) is carried out, and the adoption principle of the micromechanics parameters value is obtained further more.
     5) Using the return airway at the -648 m level of Gubei colliery in Huainan mining area as an engineering example, the researches about failure evolutionary process of surrounding rock in deep roadway and the plan of excavation support are carried out on the basis of the deformation and failure mechanism of rock mass, the dilatancy-bulking progressive constitutive model, the block bonding interface constitutive model and Voronoi discrete block model. Firstly, According to the geological conditions of the return airway, a corresponding computational model is proposed, following the laboratory experimental results, the corresponding micromechanics parameters are determined by means of numerical biaxial compression test. And then failure evolutionary law and characteristic of surrounding rock mass are systematically analyzed and summarized from the views of displacement vector field, the primary stress vector field, as well as size and depth of the plastic yielded zone and broken bulking zone. On this basis the stepped combined support method is put forward and lastly by the numerical simulation and field monitoring, the availability of the support method is verified both from theory and practice, so as to provide important basis for scientific designing and safe construction of engineering in deep roadway cracked rock mass.
引文
1. 关宝树.地下工程概论[M].成都:西南交通大学出版社,2001.
    2. 钱七虎.非线性岩石力学的新进展—深部岩体力学的若干问题[A].中国岩石力学与工程学会编.第八次全国岩石力学与工程学术大会论文集[C].北京:科学出版社,2004.
    3. Anagnostou G. A model for swelling rock in tunneling[J]. Rock Mechanics and Rock Engineering, 1993,26(4):307-331.
    4. Tydan o., Akagi T., KawamotoT.. The squeezing potential of rocks around tunnels[J]. Rock Mechanics and Rock Engineering,1993,26(4):137-163.
    5. T Kitagawa. Application of Convergence Confinement Analysis to the Study of Predicating Displacement of a Squeezing Rock Tunnel[J]. Rock Mechanics and Rock Engineering,1991 24(1):31-51.
    6. 靖洪文.深部巷道破裂围岩位移分析及应用[D].徐州:中国矿业大学,2001.
    7. 章梦涛.积极开展矿山岩体变形稳定性的研究[J].岩石力学与工程学报,1993,12(3):290-291.
    8. 陈子荫.地下工程中岩石力学问题的基本特点[J].煤炭学报,1986,4:1-6.
    9. 山东省岩石力学与工程学会.煤矿山岩石力学与工程战略问题[J].岩石力学与工程学报,1993,12(2):180-183.
    10. Bridgman PW.Volume changes in the plastic stages of simple compression[J]. J Appl Phys, 20:241-1251.
    11. Matsushima S. On the flow and fracture of igneous rocks and on the deformation and fracture of granite under high confining pressure[J]. Bull. Disaster Prevention Res. Inst., Kyoto Univ.,1960, 36:20-26.
    12. Handin J, Hager RV, Friedman M, Feather JN. Experimental deformation of sedimentary rocks under confining pressure:pore pressure effects. Bull Am Assoc Petrol Geol,1963,47:717-755
    13. Brace WF, Paulding BW, Scholz C. Dilatancy in the fracture of crystalline rocks[J]. J Geophys Res,1966,71:3939-3953.
    14. Lama R D, Vutukuri V S. Handbook on Mechanical Properties of Rocks[M]. Clausthal, Germany: Trans Tech Publications,1978.
    15. 陈颙,姚孝新,耿乃光.应力路径、岩石的强度和体积膨胀[J].中国科学,1979,(11):1093-1100.
    16. 许东俊,李小春,蔡忠理,李纪鼎.应力状态与岩石扩容特性[J].岩土力学,1992,13:37-44.
    17. 金济山岩石扩容性质及其本构模型的研究[J].岩石力学与工程学报,1993,12(2):162-172.
    18. 李晓.岩石峰后力学特性及其损坏软化模型的研究与应用[D].北京:中国矿业大学,1995.
    19. 靖洪文,李世平,牟宾善.零围压下岩石剪胀性能的试验研究[J].中国矿业大学学报,1998.3, 27(1):19-22.
    20. 朱建明,徐秉业,岑章志.岩石类材料峰后滑移剪膨变形特征研究[J].力学与实践,2001,23(5):19-22.
    21. Y. Mahmutoglu, M. Vardar. Effects of inelastic volume increase on fractured rock behaviour[J].Bull Eng Geol Env,2003,62:117-121.
    22. MOGI, K., Effect of the triaxial stress system on rock failure[J]. Rock Mechanics in Japan, 1970,Vol. I,53-55.
    23. TAKAHASHI, M. and H. KOIDE, Effect of the intermediate principal stress on strength and deformation behavior of sedimentary rocks at the depth shallower than 2000 m[J]. In V. Maury and D. Fourmaintraux (eds), Rock at Great Depth,. Balkema, Rotterdam,1989,1:19-26.
    24. HAIMSON, B. and C. CHANG, A new true triaxial cell for testing mechanical properties of rock, and its use to determine rock strength and deformability of Westerly granite[J]. Int. J. Rock Mech. Min. Sci.,2000,37:285-296.
    25. CHANG, C. and B. HAIMSON, True triaxial strength and deformability of the German Continental Deep Drilling Program (KTB) deep hole amphibolite[J]. J. Geophys. Res.,2000, 105(B8),18999-19013.
    26. Kwasniewski, M., Takahashi, M.& Li, X., Volume changes in sandstone under true triaxial compression conditions. ISRM 2003-Technology roadmap for rock mechanics, South African Institute of Mining and Metallurgy,2003.
    27. 陈旦熹,戴冠一.三向应力状态下大理岩压缩变形试验研究[J].岩土力学,1982,3(1):27-44.
    28. 吴玉山,李纪鼎.大理岩卸载力学特性研究[[J].岩土力学,1984,5(1):30-36.
    29. 李天斌,王兰生.卸荷应力状态下玄武岩变形破坏特征的试验研究[J].岩石力学与工程学报,1993,12(4):321-327.
    30. 徐林生,王兰生.岩爆形成机理研究[J].重庆大学院学报(自然科学版),2001,24(2):115-117..
    31. 王贤能,黄润秋.岩石卸荷破坏特征与岩爆效应[J].山地研究,1998,16(4):281-285.
    32. 徐松林,吴文,王广印等.大理岩等围压三轴压缩全过程研究Ⅰ:三轴压缩全过程和峰前、峰后卸围压全过程试验[J].岩石力学与工程学报,2001,20(6):763-767.
    33. 许东俊,耿乃光.岩体变形和破坏的各种应力途径[J].岩土力学,1986,7(2):17-25.
    34. 吴刚.红砂岩卸荷破坏特性的试验研究[A].岩土力学与工程的理论与实践[C],大连:大连理工大学出版社,1995:228-236.
    35. 吴刚.完整岩体卸荷破坏的模型试验研究[J].实验力学,1997,12(4):549-555.
    36. 吴刚.不同应力状态下岩石类材料破坏的声发射特性[J].岩土工程学报,1998,20(2):82-85.
    37. 吴刚.岩体在加、卸荷条件下破坏效应的对比分析[J].岩土力学,1997,18(2):13-16.
    38. 吴刚,孙钧.卸荷应力状态下裂隙岩体的变形和强度特性[J].岩石力学与工程学报,1998,17(6):615-621
    39. Vermeer PA, de Borst R. Non associated plasticity for soils, concrete and rock[J]. Heron 1984; 29(3):3-64.
    40. Detournay E. Elasto-plastic model of a deep tunnel for a rock with variable dilatancy[J]. Rock Mech. Rock Eng.1986;19:99-108.
    41. Ogawa,T., Lo, K.Y.. Effects of dilatancy and yield criteria on displacements around tunnels[J]. Can. Geotech.J.1987,24,100-113.
    42. Duncan Fama ME, Trueman R, Craig MS. Two and three dimensional elastoplastic analysis for coal pillar design and its application to Highwall-mining[J]. Int. J. Rock Mech. Sci. Geomech. Abstr.1995;32(3):215-225.
    43. Hoek, E., Brown, E.T.. Practical estimates of rock mass strength[J]. Int. J. Rock Mech. Min. Sci. 1997,34(8),1165-1186.
    44. Kaiser, P.K., McCreath, D.R., and Tanant, D.D. Rock bulking due to fracturing-analysis and support design[J]. In Canadian Rock-burst Research Program 1990-1995,(published by CAMIRO, Sudbury),1997,Volt,324p.
    45. S.-C. Yuan, J.P. Harrison. An empirical dilatancy index for the dilatant deformation of rock.[J]. International Journal of Rock Mechanics& Mining Sciences,2004:41:679-686.
    46. L.R. Alejano, E. Alonso. Considerations of the dilatancy angle in rocks and rock masses[J]. International Journal of Rock Mechanics& Mining Sciences,2005:42:481-507.
    47. 陈宗基,闻宣梅.膨胀岩与隧洞稳定[J].岩石力学与工程学报,1983,2(1):1-10.
    48. 陈宗基,崔文法.在岩石破坏和地震之前与时间有关的扩容[J].岩石力学与工程学报,1983,2(1):11-21.
    49. 陈宗基,石泽全,于智海,伍向阳.用8000kN多功能三轴仪测量脆性岩石的扩容,蠕变和松弛[J].岩石力学与工程学报,1989,8(2):87-117.
    50. 蔡美峰.岩石力学与工程[M].北京:科学出版社,2002.
    51. Martin CD. Seventeenth Canadian geotechnical colloquium:the effect of cohesion loss and stress path on brittle rock strength[J]. Can Geotech 1997,34(5):698-725.
    52. V Hajiabdolmajid. P.K. Kaiser, C.D. Martin. Modelling brittle failure of rock[J]. International Journal of Rock Mechanics and Mining Sciences,2002,39(6):731-741.
    53. 殷有泉,曲圣年.弹塑性耦合和广义正交法则[J].力学学报,1982,14(1):29-41.
    54. 何开胜,沈珠江.两种Lagrangian大变形比奥固结理论有限元法基于小变形的比较[J].岩土工程学报,2000,22(1):30-34.
    55. 曹文贵,速宝玉.岩体蠕变大变形有限元分析及其在金川矿的应用[J].矿冶工程,1999,19(3):22-24.
    56. 谢新宇,夏建中,朱向荣,潘秋元.饱和土体一维大变形固结系数研究[J].浙江大学学报,1998,32(3):319-324.
    57. 石根华.岩体稳定分析的赤平投影方法[J].中国科学,1997(3):269-271.
    58. 石根华著, 任放译.块体系统的非连续变形数值分析新方法[M].北京:科学技术出版社,1993.
    59. 石根华著,裴觉民译.数值流形方法和非连续变形分析[M].北京:清华大学出版社,1997.
    60. Kim YongIl, Amadei B, Pan E. Modeling the effect of water, excavation sequence and rock reinforcement with discontinuous deformation analysis[J]. Int. J. of Rock Mech.& Min. Sci.,1999, 36(7):949-970.
    61. 姜清辉,丰定祥.三维非连续变形分析方法中的锚杆模拟[J].岩土力学,2001,22(2):176-178.
    62. Vocgele M. Fairhurst C and Cundall P.A. Analysis of tunnel support loads using a loarge displacemet distinct block model [C]. In storage in excavated rock caverns, Bergman M.(ed.) Oxford:Pergamon,1978:247-252.
    63. 王泳嘉,邢纪波.离散单元法及其在岩土力学中的应用[M].辽宁:东北工学院出版社,1991.
    64. 卢耀宗,杨文武.莲花山大跨度连拱隧道施工方法研究[J].中国公路学报.2001,14(2):75-77
    65. 雷远见,王水林.基于离散元的强度折减法分析岩质边坡稳定性[J].岩土力学,2006,27(10):1693-1698
    66. Wawersik WR, Brace WF. Post-failure behavior of a granite and diabase[J]. Rock Mech 1971, 3:61-85.
    67. 吴玉山,林卓英.单轴压缩下岩石破坏后区力学特性的试验研究[J].岩土工程学报,1987,9:22-30.
    68. 葛修润,周百海,刘明贵.对岩石峰值后区特性的新见解[J].中国矿业,1992,.2:57-60.
    69. 陶履彬,夏才初,陆益鸣.三峡工程花岗岩卸荷全过程特性的试验研究[J].同济大学学报,1998,26(3):330-334.
    70. 尤明庆,华安增.岩石试样的三轴卸围压试验[J].岩石力学与工程学报,1998,17(1):24-29.
    71. 李宏哲,夏才初,闰子舰等.锦屏水电站大理岩在高应力条件下的卸荷力学特性研究[J].岩石力学与工程学报,2007 26(10):2104-2109.
    72. 吕颖慧,刘泉声,胡云华.基于花岗岩卸荷试验的损伤变形特征及其强度准则[J].岩石力学与工程学报,2009,28(10):2096-2103.
    73. 高玉春,徐进,何鹏.大理岩加卸载力学特性的研究[J].岩石力学与工程学报,2005,24(3):456-460.
    74. 殷有泉,黄杰藩.房山大理岩本构性质的实验研究[J].岩石力学与工程学报,1993,12(3),240-248.
    75. Gerogiannopoulos, N.G., and Brown E.T. The critical state concept applied to rock. Int. J. of Rock Mechanics and Mining Sciences& Geomechanical Abstracts,1978,15:1-10.
    76. Elliot, G.M., and Brown, E.T.,1986. Further development of a plasticity approach to yield in porous rock. Int. J. of Rock Mechanics and Mining Sciences& Geomechanical Abstracts,23(2): 151-156.
    77. Maier, G., and Hueckel, T.,1979. Non-associated and coupled flow rules of elasto-plasticity for rock like materials. Int. J. of Rock Mechanics and Mining Science& Geornechanical Abstracts,16: 77-92.
    78. Michelis, P., and Brown, E.T.,1985. A yield equation for rock. Canadian Geotechnical Journal,23: 9-17.
    79. Cook, N. G. W.. The failure of rock. Transvaal and Orange Free State Chamber of Mines[J], 1965,389-403.
    80. Kemeny, J., and Cook, N.G.W. Effective Moduli, non-linear deformation and strength of a cracked elastic solid[J]. Int. J. of Rock Mechanics and Mining Sciences& Geomechanical Abstracts,1986, 23(2):107-118.
    81. DEY T N, WANG C Y.Some mechanisms of microcrack growth and interaction in compressive rock failure[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1981,18(3):199-209.
    82. C.D.Martin. The strength of massive Lac du Bonnet granite openings[D], The United States: University of Manitoba around underground,1993.
    83. 靖洪文.深部巷道大松动圈围岩位移分析及应用[M].徐州:中国矿业大学出版社,2001.
    84. 李炼,徐钺,李启光.花岗岩板渐进破坏过程的微观研究[J].岩石力学与工程学报,2002,21(7):940-947.
    85. 刘维国,单钰铭,傅荣华.岩石扩容过程中的体积应变与超声横波速度[J].成都理工大学学报,2006,33(4):360-364.
    86. Scholz CH. Microfracturing and the inelastic deformation of rock in compression[J]. J Geophys Res,1968;73:1417-1432.
    87. Schock RN, Heard HC, Stephens DR. Stress-strain behaviour of a granodiorite and two graywackes on compression to 20 kilobars[J]. J Geophys Res,1973;78:5922-5941.
    88. Eberhardt E, Sread D, Stimpson B. Quantifying progressive pre-peak brittle fracture damage in rock during uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences,1999,36:361-380.
    89. Chang SH, Seto M, Lee CI. Damage and fracture characteristics of Kimachi sandstone in uniaxial compression[J]. Geosystems Engineering,2001,4(1):18-26.
    90. Chang SH, Lee CI. Estimation of cracking and damage mechanisms in rock under triaxial compression by moment tensor analysis of acoustic emission[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(7):1069-1086.
    91. H. Alkan, Y. Cinar, G. Pusch. Rock salt dilatancy boundary from combined acoustic emission and triaxial compression tests[J]. nternational Journal of Rock Mechanics& Mining Sciences,2007, 44:108-119.
    92. Pestman BJ, Van Munster JG. An acoustic emission study of damage development and stress-memory effects in sandstone[J]. International Journal of Rock Mechanics and Mining Sciences,1996;33(6):585-593.
    93. Villaescusa E, Seto M, Baird G. Stress measurements from oriented core[J]. International Journal of Rock Mechanics and Mining Sciences,2002,39:603-615.
    94. 黄书岭.高应力下脆性岩石的力学模型与工程应用研究[D].中科院武汉岩土力学研究所,2008.
    95. 胡云华.高应力下花岗岩力学特性试验及本构模型研究[D].中科院武汉岩土力学研究所,2008.
    96. 孟召平,彭苏萍,凌标灿.不同侧压下沉积岩石变形与强度特征[J].煤炭学报,2000,25(1):15-18.
    97. Spiers C.J., Peach C.J., Brzesowsky R.H., Sehutjens P.M.T.M., Liezenberg J.L., and Zwart H.J. Long-Term Rheological and Transport Properties of Dry and Wet Salt Rocks, EUR 11848, prepared for Commission of the European Communities, by University of Uuv, eht, Utrecht, The Netherlands,1988..
    98. 胡海浪,李建林,王小虎.卸荷岩体力学特性研究现状及其发展[J].灾害与防治工程,2006,5(1):13-18.
    99. 邓钦,李建林,张志刚.卸荷岩体力学的研究与发展[J].黑龙江水专学报,2006,33(2):27-29.
    100. #12
    101. 蒋明镜,沈珠江.考虑剪胀的线性软化柱形扩张问题[J].岩石力学与工程学报,1997,16(6):550-557.
    102. 方德平.岩石应变软化的有限元计算[J].华侨大学学报(自然科学版),1991,12(2):177-181.
    103. 方德平,汪浩.考虑岩石脆—塑过渡性的地下洞室受力分[J].地下空问,1991,11(1):15-22.
    104. 钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,1996.
    105. 庄茁,Ted Belytschko,廖荣锦,W K Liu,默然,B Moran.连续体和结构的非线性有限元[M].北京:清华大学出版社,2002.
    106. de Borst, R. Nonlinear analysis of frictional materials[D]. Technische Universiteit Delft, The Netherlands,1986.
    107. Hill R. The mathematical theory of plasticity[M]. Oxford:Clarendon Press,1950.
    108. Duncan Fama ME, Trueman R, Craig MS. Two and three dimensional elastoplastic analysis for coal pillar design and its application to highwall-mining[J]. International Journal of Rock Mechanics Sciences and Geomechanics Abstracts,1995; 32(3):215-225.
    109. 苏国韶,冯夏庭,江权,陈国庆.高地应力下地下工程稳定性分析与优化的局部能量释放率新指标研究[J].岩石力学与工程学报,2006,25(12):2453-2460.
    110. 江权,冯夏庭,陈国庆.考虑高地应力下围岩劣化的硬岩本构模型研究[J].岩石力学与工程学报,2008,27(1):144-152.
    111. UDEC(Universal Distinct Element Code)user's manual[M], Version 4.0[M]. Itasca Consulting Group.Inc,2005.
    112. 王明洋,戚承志,钱七虎.深部岩体块系介质变形与运动特性研究[J].岩石力学与工程学报,2005,24(16):2825-2830.
    113. 陈宗基,康文法.岩石的封闭应力、蠕变和扩容及本构方程[J].岩石力学与工程学报,1991,10(4):299-312.
    114. 陈宗基.地下巷道长期稳定性的力学问题[J].岩石力学与工程学报,1982,1(1):1-20.
    115. 刘道清.岩体结构网络分析技术[M].成都:西南交通大学出版社,1995.
    116. Emsley, S.J., Olsson,O., Stanfors, R., Stenberg, L., Cosma, C., and Tunbridge, L. Intergrated characterization of a rock volume at the Aspo HRL utilized for an EDZ experimen[J]. In Proceedings of EUROCK'96 Prediction and Performance in Rock Mechanics and Rock Engineering, Vol.2, Torino, Italy, A.A.Balkema, Rotterdam,1996,1329-1336.
    117. 董芳庭等.围岩松动圈巷道支护理论应用技术[M].北京:煤炭工业出版社,2001.
    118. L. Jing, J.A. Hudson. Numerical methods in rock mechanics[J]. International Journal of Rock Mechanics& Mining Sciences,2002,39:409-427.
    119. 靖洪文,李元海,许国安,陈坤福.深埋巷道破裂围岩位移分析[J].中国矿业大学学报,2006,35(5):565-570.
    120. Monsen, K. and N. Barton. A numerical study of cryogenic storage in underground excavations with emphasis on the rock joint response[J]. International Journal of Rock Mechanics& Mining Sciences,2001.38(7):p.1035-1045.
    121. Shen, B. and N. Barton. Disturbed zone around tunnels in jointed rock masses[J]. International Journal of Rock Mechanics and Mining Sciences,1997.34(1):117-125.
    122. David Saiang, Erling Nordlund. Numerical Analyses of the Influence of Blast-Induced Damaged Rock Around Shallow Tunnels in Brittle Rock[J]. Rock Mech Rock Eng,2009,42(3):421-448.
    123. 冯夏庭.智能岩石力学导论[M].北京:科学出版社,2000.
    124. 陈征宙,胡伏生,方磊,Salah Bishir.岩体节理网络模拟技术研究[J].岩土工程学报,1998,20(1):22-25
    125. 马宇,赵阳升,段康廉.岩体裂隙网络的二维分形仿真[J].太原理工大学学报,1999,30(5):479-482.
    126. 黄勇,周志芳.岩体渗流模拟的二维随机裂隙网络模型[J].河海大学学报,2004,32(1):91-94.
    127. 方涛,柴军瑞,胡海浪,徐文彬.Monte Carlo方法在岩体裂隙结构面模拟中的应用[J].露天采矿技术,2007,1:7-13.
    128. 沈满德,余圣甫,王宁.蒙特卡罗法模拟晶粒生长过程中的Voronoi模型[J].机械工程材料,2006,30(3):11-13.
    129. 张克实.多晶体变形、应力的不均匀性及宏观响应[J].力学学报,2004,36(6):714-723.
    130. Espinosa H D, Zavaitieri P D. A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials, parth theory and numerical implementation[J]. Mechanics ofMaterials,2003,35(36):333-364.
    131. Plesha M.E. and Aifantis, E.C. "On the Modeling of Rocks with Microstructure", Proceedings of the 20th U.S. Symposium on rock mechanics (Austin, Texas, June 1979). New York:American society of civil engineers,1979.
    132. Damjanac, B., M. Board, M. Lin, D. Kicker and J. Leem. Mechanical degradation of em-placement drifts at Yucca Mountain-A modeling case study. Part Ⅱ:Lithophysal rock[J]. Int. J. of Rock Mech.& Min. Sci,2007,44:368-399.
    133. 宁宇,徐卫亚,郑文棠等.柱状节理岩体随机模拟及其表征单元体尺度研究[J].岩石力学与工程学报,2008,27(6):1202-1208.
    134. 朱道建,杨林德,蔡永昌.柱状节理岩体各向异性特性及尺寸效应研究[J].岩石力学与工程学报,2009,28(7):1405-14148.
    135. PFC2D user's manual[M]. Itasca Consulting Group.Inc,2002.
    136. Hoek, E., Brown, E.T.. Underground Excavation in Rock.[M]. The Institution of Mining and Metallurgy, London.:1980.
    137. Yoshinaka, R., Osada, M., Park, H., Sasaki, T.& Sasaki, K. Practical determination of mechanical design parameters of intact rock considering scale effect[J]. Engineering Geology,2008,96: 173-186.
    138. 章光,朱维申. 参数敏感性分析与试验方案优化[J].岩土力学,1993,14(1):51-58.
    139. 尤春安.锚固系统应力传递机理理论及应用研究[D].泰安:山东科技大学,2004.
    140. 曹伍富.深部软岩巷道围岩控制关键技术研究[D].北京:中国矿业大学,2005.
    141. 孙晓明,何满潮,杨晓杰.深部软岩巷道锚网索耦合支护非线性设计方法研究[J].岩土力学,2006,27(7):1061-1065.
    142. 孙晓明,杨军,曹伍富.深部回采巷道锚网索耦合支护时空作用规律研究[J].岩石力学与工程学报,2007,26(5):895-900.
    143. 黄成光,于敦荣.公路隧道施工[M].北京:人民交通出版社,2001.
    144. St. John, C. M., and D. E. Van Dillen. "Rockbolts:A New Numerical Representation and Its Application in Tunnel Design," Rock Mechanics-Theory-Experiment-Practice (Proceedings of the 24th U.S. Symposium on Rock Mechanics, Texas A&M University, June,1983), pp. 13-26.New York:Association of Engineering Geologists,1983.
    145. 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员.GB/T 4697-2008矿山巷道支护用热轧U型钢国家标准[S].北京:中国标准出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700