用户名: 密码: 验证码:
Mg-Zn-Al-X合金的组织、性能及其蠕变行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于Mg-Zn系开发低成本、综合性能优良的镁合金材料应用于汽车甚至航空航天用耐热结构件中(使用温度<200℃),可以克服稀土镁合金高成本的局限性,对于拓宽镁合金的应用具有重要意义。本文以Mg-6Zn(mass%)合金为基体,在优化Al含量的基础上,系统地研究了Sn低合金化和Sn/Ca复合合金化对Mg-6Zn-2Al铸态组织与性能的影响规律,考察了铸态合金的固溶时效特性和性能特征,探索了Sn/Ca合金化镁合金的加工成形性能、析出相特征和力学性能特点,并探讨了铸态含Sn合金的蠕变特性和Sn的作用机理。本文的目的在于探索一类Sn和Ca复合强化的耐热镁合金材料,为低成本高性能镁合金的研制提供详细的实验数据和理论依据。主要研究内容和结果如下:
     (1)研究了Al含量(2,4和6mass%)对Mg-6Zn铸态合金组织与性能的影响,得出Mg-6Zn-2A1合金综合力学性能优良,耐腐蚀性能优于铸态AZ91和ZA85合金,且在150℃和200℃长时间热暴露过程中表现出较高的组织稳定性,是三元合金中一个较佳的成分配比。
     (2)系统地研究了Sn含量(0.5,1,2和3mass%)对Mg-6Zn-2Al铸态合金组织与性能的影响。结果表明,铸态含Sn合金主要由α-Mg、MgZn和Mg2Sn相组成,其中Mg2Sn相以从液相直接结晶出的粗大颗粒和固态析出的短棒状颗粒存在。Sn具有细化合金中MgZn离异共晶化合物和抑制其生成的作用。上述合金在150℃长时间热暴露过程中组织稳定性良好,而在200℃热暴露后期因Mg2Sn颗粒的聚集长大而硬度有所下降。加入Sn可以降低合金基体的自腐蚀电位、抑制腐蚀反应阴极过程和促进阳极过程,对耐蚀性影响不显著。
     加入Sn到Mg-6Zn-2Al合金中可以显著提高室温和高温强度并改善抗压缩蠕变性能。室温下,其屈服强度随着Sn含量的增加而明显提高,0.5mass%Sn时抗拉强度和伸长率最高;150℃下,0.5mass%Sn时抗拉强度和屈服强度最高。铸态含Sn合金室温和高温断裂方式为混合型断裂。随着Sn含量增加,其室温断裂倾向于解理断裂,高温断裂倾向于准解理断裂。含Sn合金的稳态压缩蠕变速率(175℃/50MPa)比基体低10%-30%不等,而3mass%Sn合金的稳态压缩蠕变速率(190℃/50MPa)则低56%。
     (3)系统地研究了少量Ca(0.2mass%)对Mg-6Zn-2Al-3Sn铸态合金组织与性能的影响。结果表明,少量Ca可以提高其在200℃长时间热暴露过程中的组织稳定性,改善耐蚀性,提高室温、高温强度和抗压缩蠕变性能。加Ca合金的稳态压缩蠕变速率(160-190℃/50-70MPa)比不加Ca的低7%-18%不等且耐蚀性优于铸态AZ91合金,是多元合金成分设计的依据。
     (4)系统地研究了铸态合金的固溶时效特性与组织性能特征。结果表明,加入Sn和Sn/Ca导致合金中MgZn共晶化合物在345℃保温28h后固溶不完全;Sn可以抑制GP区的形成与溶解,Ca则促进GP区的形成与溶解和p1’相的析出。时效处理可以提高铸态含Sn合金的室温和高温屈服强度,增加稳态蠕变速率的应力敏感性,而对抗蠕变性能的影响不一致。高Sn合金的室温、高温屈服强度和抗压缩蠕变性能优于低Sn合金。
     时效态含Sn合金中析出相以长棒状βl’相和短棒状Mg2Sn相为主,存在Mg2Sn颗粒聚集和多数Mg2Sn相依附βl'相形核与长大的现象;加Ca合金中还存在若干块状的βl'相。Ca改变了时效态Mg-6Zn-2Al-3Sn合金中βl'相的形貌、降低了长棒状pl'相的纵横比并抑制了Mg2Sn相的聚集,从而提高室温、高温屈服强度并改善抗压缩蠕变性能且不影响塑性。
     (5)系统地研究了Sn/Ca合金化镁合金的加工成形性能、析出相特征和力学性能特点。研究表明,Mg-6Zn-2Al-3Sn-0.2Ca合金经挤压(330℃挤压、挤压比25:1)加工后具有细小的等轴晶组织,各向异性程度低,综合力学性能优良(抗拉强度387MPa,伸长率9%)。变形过程中,Mg2Sn质点是动态再结晶形核的择优位置;按T5处理时基体中析出大量的纳米相(p1’相和Mg2Sn相);T6态合金中也存在大量的纳米相。T5态合金中长棒状pl’相析出密度高且细小,导致其强度和伸长率高于T6态。
     挤压态和热处理态合金的抗蠕变性能低于铸态。然而,挤压合金的室温拉伸性能与商业用变形镁合金相当,抗蠕变性能显著改善,其稳态蠕变速率(175℃/50-70MPa)在10-7s-1数量级,比文献报道的性能优良的Mg-2at.%Sn-1 at.%Zn-0.1 at.%Mn和Mg-4Al-2Sr-0.3Mn挤压合金的数据还低。这一结论为不含稀土的变形镁合金抗蠕变性能的改善提供了可能性。
     (6)探讨了铸态含Sn合金的蠕变特性和Sn的作用机理。研究表明,加入3mass%Sn到Mg-6Zn-2Al铸态合金中可以显著提高抗拉伸蠕变性能且在高温、高应力下的效果更显著,其作用机制是降低镁的自扩散系数、细化MgZn离异共晶化合物和引入Mg2Sn相质点。添加Sn导致合金基体的蠕变激活能提高,蠕变应力指数下降。前者可归因于Sn具有较高的空位结合能,后者则与MgZn离异共晶化合物的细化有关。两种合金在实验条件下的蠕变过程主要受位错攀移控制;MgZn离异共晶化合物开裂是两种合金在较高温度、较高应力条件下抗蠕变性能下降的主要原因。
Developing magnesium alloys with low cost, the excellent combination of mechanical properties and good corrosion resistance on the Mg-Zn system for the creep-resistant structural components (served at not higher than 200℃) in the fields of automobile and airspace industries can overcome the limitation of high cost associated with the alloys containing RE and is of great significance to expand the applications of magnesium alloys. Effects of Sn and the combined Sn and Ca addition on microstructural stability, mechanical properties, creep resistance, corrosion resistance and etc. of the as-cast Mg-6Zn-2Al alloy are systematically investigated on the basis of the optimization of the Al content in the Mg-6Zn system. The solutionizing and aging characteristics of the Mg-6Zn-2Al based alloys as well as mechanical properties of the as-aged alloys are examined. The hot-working aibility, the distribution of precipitates and mechanical properties of the alloy containing Sn and Ca are explored. In addition, the creep behaviors of the as-cast Mg-6Zn-2Al based alloys and the applying mechanism of Sn are also studied. The aim is to explore a kind of novel creep-resistant magnesium alloy containing Sn and Ca and thus to offer the detailed experimental data and theoretical guidance for the development of low-cost high-performance magnesium alloys. The research results are given below:
     (1)The Mg-6Zn-2Al alloy exhibits good combination of mechanical properties, better corrosion resistance than AZ91 and ZA85 and good microstructural stability during long-term thermal exposure to 150℃and 200℃among the as-cast Mg-6Zn-xAl(x=2,4,6) alloys, which can be selected for further alloying.
     (2)The as-cast Mg-6Zn-2Al-ySn(y=0.5,1,2,3) alloys are mainly composed of three phases i.e.α-Mg, MgZn and Mg2Sn. Coarse Mg2Sn particles from the solidification of the Sn-rich liquid and short-rod like precipitates from solid decompostion are observed. The Sn addition plays a role in refining the MgZn divorced eutectics and suppressing its formation. These alloys exhibit excellent microstructural stability during the long-term thermal exposure to 150℃, while they show a decrease in the overall hardness with a prolonged time during thermal exposure to 200℃, resulting from the aggregation and coarsening of Mg2Sn.The Sn addition reduces the corrosion potential, decreases the cathodic corrosion process and enhances the anodic process, but has no obvious influence on the corrosion resistance.
     The Sn addition contributes to an obvious improvement on the ambient and elevated-temperatures strength and has a beneficial influence on the compressive creep resistance. The yield strength of these alloys increases with the Sn content at ambient temperature and the alloy with 0.5mass%Sn has the highest tensile strength and elongation, while the alloy with 0.5mass%Sn has the highest tensile strength and yield strength at 150℃. Quasi-cleavage fracture is the dominant fracture mode of these alloys tested at ambient temperature and 150℃. Cleavage and quasi-cleavage fracture are preferential at ambient temperature and 150℃respectively with the increment of Sn. The steady compressive creep rates (175℃/50MPa) of the alloys containing Sn are lower than that of the base alloy from 10% to 30%, while that (190℃/50MPa) of the alloy with 3mass%Sn is 56% lower.
     (3)Trace Ca addition (0.2mass%Ca) can enhance microstructual stability of the Mg-6Zn-2Al-3Sn alloy during the long-term thermal exposure to 200℃. It also results in a great improvement on corrosion resistance, the ambient and elevated-temperature strength and compressive creep resistance. The alloy with Ca has the steady compressive creep rates (160-190℃/50-70MPa) lower than that free of Ca from 7% to 18% and exhibits better corrosion resistance than AZ91, which can be selected as the composition design to prepare a kind of low-cost creep-resistant magnesium alloy.
     (4)The Sn and the Sn/Ca addition lead to the incomplete dissolution of the MgZn eutectics in the Mg-6Zn-2Al alloy even after holding at 345℃for 28h. The formation and the dissolution of GP zones are surpressed by the Sn addition, while they are enhanced by trace Ca. The formation ofβ1' is also enhanced by the latter. Aging contributes to higher yield strength, but leads to higher creep stress sensitivity. In addition, it has no similar influence on creep resistance. The alloy with a higher Sn content exhibits higher ambient and elevated-temperature yield strength and creep resistance.
     The long-rod likeβ1' and the short-rod like Mg2Sn precipitates are dominant in the as-aged Mg-6Zn-2Al-3Sn alloy, while the additional blockyβ1' precipitates are involved in the alloy with trace Ca. Trace Ca plays the role in modifying the morphology ofβ1', reducing the aspect ratio of the long-rod likeβ' and surpressing Mg2Sn aggregation, contributing to the improvement in the ambient and elevated-temperature yield strength and compressive creep resistance of the as-aged Mg-6Zn-2Al-3Sn alloy and has no obvious effect on the plasticity.
     (6)The as-extruded Mg-6Zn-2Al-3Sn-0.2Ca alloy (extruded at 330℃and with the extrusion ratio of 25) has fine equiaxed grains, lower anisotropy and good combination of mechanical properties, with the ultimate strength and the elongation of 387MPa and 9% respectively. Mg2Sn particles act as the nucleation sites of dynamic recrystallization during hot extrusion. A massive nano-scale precipitates (β1' and Mg2Sn) are formed in the T5 state, while a massive nano-scale precipitates are also observed in the T6 state. The alloy in the T5 state has higher strength and elogation than the T6 state, ascrbie to its finerβ1' precipitates with higher density.
     The wrought alloys exhibit inferior creep resistance to the as-cast. However, the as-extruded alloy has comparative ambient tensile properties to commercial wrought magnesium alloys and higher creep resistance, whose steady creep rates (175℃/50-70MPa) are at the range of 10-7s-1 and lower than those of the as-extruded Mg-2at.%Sn-1at.%Zn-0.1at.%Mn and Mg-4Al-2Sr-0.3Mn creep-resistant alloys reported in the literatures, showing the possibility for the development of creep-resistant wrought magnesium alloys without RE.
     (7)The addition of 3mass%Sn has an obvious improvement on the tensile creep resistance of the as-cast Mg-6Zn-2Al alloy and this effect is more evident at higher temperatures and under bigger stresses, resulting from the lowered diffusion coefficient of magnesium lattice, the refinement of the MgZn eutectics and the formation of Mg2Sn particles. The Sn addition contributes to the higher creep activation energy and the lower creep stress exponent. Dislocation climb is dominant in the creep processes of both alloys, while cracking of the MgZn eutectics is the main cause for the reduced creep resistance at higher temperatures and under bigger stresses.
引文
[1]Mordike B L, Ebert T. Magnesium properties-applications-potential. Materials Science and Engineering A,2001, A302:36-45
    [2]Polmear I J. Magnesium alloys and applications. Materials Science and Technology,1994,10:1-16
    [3]Zhang Z, Couture A. An investigation on the properties of Mg-Zn-Al alloy. Scripta Materialia,1998,39:45-53
    [4]Cole G. Magnesium:the unfriendly metal with the friendly future. Sinomag Die Casting Magnesium Seminar. Beijing:2002:22-24
    [5]Aghion E, Bronfin B, Buch F Von, et al. Newly developed magnesium alloys for powertrain applications. JOM,2003, (11):30-33
    [6]Kassner M E, Perez-Prado M T. Five-power-law creep in single phase metals and alloys. Progress in Materials Science,2001,45:1-102
    [7]Von Buch F, Mordike B L. High-temperature properties of magnesium alloys. Materials Science Forum,2004:106-129
    [8]Terence G L. Identifying creep mechanisms at low stresses. Materials Science and Engineering A,2000,283(1-2):266-273
    [9]Regev M, Aghion E, Rosen A. Creep studies of AZ91D pressure die casting. Materials Science and Engineering A,1997,234-236:123-126
    [10]麦克林D著,杨顺华译.金属中的晶粒间界.北京:科学出版社,1965,208-211
    [11]Regev M, Aghion E, Rosen A. Creep studies of coarse-grained AZ91D magnesium castings. Materials Science and Engineering A,1998,252(1):6-16
    [12]Mihriban O, Pekguleryuz. Creep resistant magnesium alloys for powertrain applications. Advanced Engineering Materials,2003,5(12):866-878
    [13]Kainer K U. Magnesium alloys and technology. Weinheim:Wiley-Vch Verlag Gmbh & Co. kGaA,2003,106-129
    [14]Vogel M, Kraft O, Arzt E. Creep behavior of magnesium die-cast alloy ZA85. Scripta Materialia,2003,48(8):985-990
    [15]Boehlert C J, Knittel K. The microstructure, tensile properties and creep behavior of Mg-Zn alloys containing 0-4.4 wt.% Zn. Materials Science and Engineering A,2006,417:315-321
    [16]沙桂英,徐永波,韩恩厚.铸造Mg-RE合金的显微结构及其蠕变行为.金属学报,2003,17(6):603-608
    [17]Dargusch M S, Dunlop G L, Pettersen K. in Mordike B L, Kainer K U(eds). Magnesium alloys and their applications. Frankfurt: Werkstoff-Informationsgesellschaft mbH,1998,276-282
    [18]Dargusch M S, Bowles A L, Pettersen K, et al. The effect of silicon content on the microstructure and creep behavior in die-cast magnesium AS alloy. Metallurgical and Materials Transactions A,2004,35(6):1905-1909
    [19]Moreno I P, Nandy A T K, Jones J W, et al. Microstructural stability and creep of rare-earth containing magnesium alloys. Scripta Materialia,2003,48: 1029-1034
    [20]Luo A A, Michael P, Balogh, et al. Creep and microstructure of magnesium-aluminum-calcium based alloy. Metallurgical and Materials Transactions A,2002,33(3):566-574
    [21]Mordike B L, Stulikoval, Smola B. Mechanisms of creep deformation in Mg-Sc-based alloys. Metallurgical and Materials Transactions A,2005,36(7): 1729-1736
    [22]闫润琪,张延杰,邓炬,等.耐热镁合金的研究现状与发展方向.稀有金属材料与工程,2004,33(6):561-565
    [23]Suzuki M, Sato H, Maruyama K, et al. Creep deformation behavior and dislocation substructures of Mg-Y binary alloys. Materials Science and Engineering A,2001,319-321:751-755
    [24]Ping D H, Hono K, Nie J F. Atom probe characterization of plate-like precipitates in a Mg-RE-Zn-Zr casting alloy. Scripta Materialia,2003,48: 1016-1022
    [25]Pekguleryuz M O, Adedesian M M. Magnesium alloying, some potentials for alloy devlopment. Light Metal,1992,42(12):679-686
    [26]Apps P J, Karimzadeh H, King J F, et al. Precipitation reactions in magnesium-rare earth alloys containing yttrium, gadolinium or dysprosium. Scripta Materialia,2003,48:1023-1028
    [27]Zhang M X, Kelly P M. Morphology and crystallography of Mg24Y5 precipitate in Mg-Y alloy. Scripta Materialia,2003,48:379-384
    [28]Mordike B L. Creep-resistant magnesium alloys. Materials Science and Engineering A,2002,324:103-112
    [29]Nie J F. Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys. Scripta Materialia,2003,48:1009-1015
    [30]Sanchez C, Nussbaum G, Azavant P, et al. Elevated temperature behaviour of rapidly solidified magnesium alloys containing rare earths. Materials Science and Engineering A,1996,221:48-57
    [31]Singh A, Watanabe M, Kato A, et al. Microstrucure and strength of quasicrystal containing extruded Mg-Zn-Y alloys for elevated temperature applications. Materials Science and Engineering A,2004,385:382-396
    [32]Singh A, Somekawa H, Mukai T. Compressive strength and yield asymmetry in extruded Mg-Zn-Ho alloys containing quasicrystal phase. Scripta Materialia, 2007,56:935-938
    [33]Hehmann F, Jones H. In:Rapid solidification processing of magnesium alloys: recent development and future avenues. Srivatsan T S, Sudarshan T S (eds). Rapid Solidification Technology. An Engineering Guides. USA:Pennsylvania, 1993,441-449
    [34]Xu D K, Liu L, Xu Y B, et al. The effect of precipitates on the mechanical properties of ZK60-Y alloy. Materials Science and Engineering A,2006,420: 322-332
    [35]Boehlert C J. The tensile and creep behavior of Mg-Zn alloys with and without Y and Zr as ternary element. Journal of Materials Science,2007,42:3675-3684
    [36]Wu W, Wang Y, Zeng X, et al. Effect of neodymium on mechanical behavior of Mg-Zn-Zr magnesium alloy. Journal of Materials Science Letters,2003,22: 445-447
    [37]Song Y L, Liu Y H, Yu S R, et al. Effect of neodymium on microstructure and corrosion resistance of AZ91 magnesium alloy. Journal of Materials Science, 2007,42:4435-4444
    [38]黄晓峰,付彭怀,卢晨,等.Nd对AM50合金力学性能和高温性能的影响.材料研究学报,2004,18(6):593-596
    [39]Khomamizadeh F, Nami B, Khoshkhooei S. Effect of rare-earth element additions on high-temperature mechanical properties of AZ91 magnesium alloy. Metallurgical and Materials Transactions A,2005,36:3489-3494
    [40]Smola B, Stulikova I, Pelcova J, et al. Significance of stable and metastable phases in high temperature creep resistant magnesium-rare earth based alloys. Journal of Alloys and Compounds,2004,378:196-201
    [41]袁广银,刘满平,王渠东,等.Mg-Al-Zn-Si合金的显微组织细化.金属学报,2002,38(10):1105-1108
    [42]Yuan G Y, Liu M P, Ding W J, et al. Microstructure and mechanical properties of Mg-Zn-Si-based alloys. Materials Science and Engineering A,2003,357: 314-320
    [43]黄晓峰,王渠东,卢晨,等.Si对AM50合金力学性能和高温蠕变性能的影响.材料研究学报,2004,18(6):630-634
    [44]Evangelista E, Spigarelli S, Cabibbo M, et al. Analysis of the effect of Si content on the creep response of an Mg-5Al-Mn alloy. Materials Science and Engineering A,2005,410-411:62-66
    [45]Luo A A, Pekguleryuz M O. Review cast magnesium alloys for elevated temperature applications. Journal of Materials Science,1994,29:5259-5271
    [46]Kim J J, Kim D H, Shin K S, et al. Modification of Mg2Si morphology in squeeze cast Mg-Al-Zn-Si alloys by Ca or P addition. Scripta Materialia,1999, 41:333-340
    [47]Yuan G Y, Liu Y Z, Wang Q D, et al. Microstrucure refinement of Mg-Al-Zn-Si alloys. Materials Letter,2002,56:53-58
    [48]张春香,关绍康,石广新,等.Mg-8Zn-4Al-1Si-0.3Mn-xAlP合金的显微组织和力学性能.中国有色金属学报,2004,14:1353-1359
    [49]Jiang Q C, Wang H Y, Wang Y, et al. Modification of Mg2Si in Mg-Si alloys with yttrium. Materials Science and Engineering A,2005,392:130-135
    [50]Wang H Y, Jiang Q C, Ma B X, et al. Modification of Mg2Si in Mg-Si alloy by K2TiF6, KBF4 and K2TiF6+KBF4. Journal of Alloys and Compounds,2005,387: 105-108
    [51]孙扬善,翁坤忠,袁广银.Sn对镁合金显微组织和力学性能的影响.中国有色金属学报,1999,9(1):55-60
    [52]Bamberger M. Phase formation in Mg-Sn-Zn alloys - thermodynamic calculations vs experimental verification. Journal of Materials Science,2006, 41:2821-2829
    [53]Liu H M, Chen Y G, Tang Y B, et al. Tensile and indentation creep behavior of Mg-5%Sn and Mg-5%Sn-2%Di alloys. Materials Science and Engineering A, 2007,464(1-2):124-128
    [54]Kang D H, Park S S, Oh Y S, et al. Effect of nano-particles on the creep resistance of Mg-Sn based alloys. Materials Science and Engineering A,2007, 449-451:318-321
    [55]Kang D H, Park S S, Kim N J. Development of creep resistant die-cast Mg-Sn-Al-Si alloy. Materials Science and Engineering A,2005,413-414: 555-560
    [56]樊昱,吴国华,高洪涛,等.Ca对镁合金组织、力学性能和腐蚀性能的影响.中国有色金属学报,2005,15(2):210-215
    [57]Pekguleryuz M O, Baril E. Creep resistant magnesium diecasting alloys based on alkaline earth elements. Materials Transaction,2001,42(7):1258-1267
    [58]Vogel M, Kraft O, Arzt E. Effect of calcium additions on the creep behavior of magnesium die-cast alloy ZA85. Metallurgical and Materials Transactions A, 2005,36:1713-1719
    [59]Mordike B L. Development of highly creep resistant magnesium alloys. Journal of Materials Processing Technology,2001,117(3):391-394
    [60]Bai J, Sun Y S, Xue F, et al. Effect of extrusion on microstructures, and mechanical and creep properties of Mg-Al-Sr and Mg-Al-Sr-Ca alloys. Scripta Materialia,2006,55:1163-1166
    [61]Ninomiya R, Ojiro T, Kubota K. Improved heat resistance of Mg-Al alloys by the Ca additions. Acta Metallurgy Materiallia,1995,43(2):669-674
    [62]Pekgularyuz M, Renand J. Creep resistance in Mg-Al-Ca casting alloys. USA: The Minerals, Metals & Materials Society,2000,279-284
    [63]Ozturk K, Zhong Y, Luo A A, et al. Creep resistant Mg-Al-Ca alloys: computational thermodynamics and experimental investigation. JOM,2003,55: 40-44
    [64]Polmear I J. Recent developments in light alloys. Materials Transaction,1996, 37:12-31
    [65]John J B, Henry H. Die castability assessment of magnesium alloys for high temperature applications:part 1 of 2. SAE Transactions,2000,109(5):574-581
    [66]Pekguleryuz M. in:Kainer K U(eds). Magnesium alloys and their applications. Weinheim:Wiley-VCH,2003,65-85
    [67]Tang B, Li S S, Wang S X, et al. Effect of Ca/Sr composite addition into AZ91D alloy on hot-crack mechanism. Scripta Materialia,2005,53:1076-1082
    [68]Yuan G Y, Wang Q D, Ding W J. High temperature deformation behavior of permanent casting AZ91 alloy with and without Sb addition. Journal of Materials Science,2002,37(1):126-132
    [69]Yuan G Y, Sun Y S, Zhang W M. Improvement of tensile strength and creep resistance of Mg-9A1 based alloy with antimony addition. Journal of Materials Science Letters,1999,18:2055-2057
    [70]Yuan G Y, Wang Q D, Ding W J. Effects of bismuth and antimony additions on the microstructure and mechanical properties of AZ91 magnesium alloy. Materials Science and Engineering A,2001,31(1-2):38-44
    [71]Balasubramani N, Srinivasan A, Pillai U T S, et al. Effect of antimony addition on the microstructure and mechanical properties of ZA84 magnesium alloy. Journal of Alloys and Compounds,2008,455(1-2):168-173
    [72]刘子利,陈照峰,刘希琴,等.Sb合金化对AE42合金耐热性能的影响.材料研究学报,2006,26(2):186-190
    [73]袁广银,刘满平,朱燕萍,等.Te合金化对AZ91铸造镁合金组织和性能的影响.中国有色金属学报,2002,12:76-79
    [74]Regev M, Bamberger M, Rosen A. Creep studies of AZ91D castings, in: Mordike B L, Kainer K U(eds). Magnesium alloys and their application. Germany:Wolfsburg,1998,283-288
    [75]Zhu S M, Mordike B L, Nie J F. Creep properties of a Mg-Al-Ca alloy produced by different casting technologies. Materials Science and Engineering A,2008, 483-484:583-586
    [76]Koren Z, Rosenson H, Gutman E M, et al. Development of semisolid casting for AZ91 and AM50 magnesium alloys. Journal of Light Metals,2002,2:81-87
    [77]Czerwinski F, Zielinska-Lipiec A. The microstructure evolution during semisolid molding of a creep-resistant Mg-5Al-2Sr alloy. Acta Materialia,2005, 53:3433-3444
    [78]Michael M, Hugh B. ASM specialty handbook magnesium and magnesium alloys. Ohio:ASM International,1999,66-77
    [79]Spigarelli S, Cabibbo M, Evangelista E, et al. Analysis of the creep behaviour of a thixoformed AZ91D magnesium alloy. Materials Science and Engineering A,2000,289:172-181
    [80]唐伟,韩恩厚,徐永波,等.Al和Ca对变形镁合金性能的影响.材料研究学报,2005,19(5):471-477
    [81]Zhou H T, Zeng X Q, Liu L F, et al. Effect of cerium on microstructures and mechanical properties of AZ61 wrought magnesium alloy. Journal of Materials Science,2004,39(23):7061-7066
    [82]Zhang Y, Zeng X Q, Liu L F, et al. Effects of yttrium on microstructure and mechanical properties of hot-extruded Mg-Zn-Y-Zr alloys. Materials Science and Engineering A,2004,373(1-2):320-327
    [83]Mohri T, Mabuchi M, Saito N, et al. Microstructure and mechanical properties of a Mg-4Y-3RE alloy processed by thermo-mechanical treatment. Materials Science and Engineering A,1998,257:286-294
    [84]沙桂英,韩恩厚,于涛,等.Mg-Y-Nd合金的蠕变行为及其显微机制.金属学报,2003,39(10):1025-1030
    [85]Evangelista E, Gariboldi E, Lohne O, et al. High-temperature behaviour of as die-cast and heat treated Mg-Al-Si AS21X magnesium alloy. Materials Science and Engineering A,2004,386-389:41-45
    [86]闵学刚.几种合金元素对改善AZ91合金显微组织和力学性能的作用的研究:[东南大学博士学位论文].南京:东南大学,2002,126-128
    [87]Huang Y D, Dieringa H, Hort N, et al. Effects of segregation of primary alloying elements on the creep response in magnesium alloys. Scripta Materialia, 2008,58:894-897
    [88]Dargusch M, Hisa M, Caceres C H, et al. In:Lorimer G W, editor. Proc Third Int Magnesium Conf. The Institue of Materials,1997,108
    [89]Zeng X Q, Zou H H, Zhai C Q, et al. Research on dynamic precipitation of pre-solution treated Mg-5wt.%Zn-2wt.%Al(-2wt.%Y) alloy during creep. Materials Science and Engineering A,2006,424:40-46
    [90]Anyanwu I A, Kamado S, Kojima Y. Creep properties of Mg-Gd-Y-Zr alloys. Materials Transaction,2001,42(7):1212-1218
    [91]肖晓玲,罗承萍,聂建峰,等.AZ91 Mg-Al合金中β-(Mg17A12)析出相的形态及其晶体学特征.金属学报,2001,37(1):1-7
    [92]HuangY D, Dieringa H, Hort N, et al. Evolution of microstructure and hardness of AE42 alloy after heat treatments. Journal of Alloys and Compounds,2008, 463:238-245
    [93]Humble P. Towards a cheap creep resistant magnesium alloy. Materials Forum, 1997,21:45-56
    [94]Hollrigl R F, Just E. Magnesium in the Volkswagen. Light Metal Age,1980,8: 22-29
    [95]Hirai K, Somekawa H, Takigawa Y. Effects of Ca and Sr addition on mechanical properties of a cast AZ91 magnesium alloy at room and elevated temperature. Materials Science and Engineering A,2005,403:276-280
    [96]Powell B R, Rezhets V, Luo A A, et al. Creep-resistant magnesium alloy die casting. US Patent.6264763,1999
    [97]Buch F V, Schumann S, Friedrich H, et al. in:Kaplan H I(eds). Magnesium technology. Warrendale:The Minerals, Metals and Materials Society,2002, 61-67
    [98]Buch F V. New die casting alloy MRI153 for powertrain applications. Magnesium technology,2002,61-65
    [99]Koike S, Washizu K, Tanaka S, et al. PA society of automotive engineers. SAE Technical Paper,2000-01-1117
    [100]Luo A A. Recent magnesium alloy development for elevated temperature applications. International Materials Reviews,2004,49(1):13-30
    [101]Luo A A. Recent magnesium alloy development for automotive powertrain application. Materials Science Forum,2003,419-422:56-66
    [102]King J F. Development of magnesium diecasting alloys. in Mordike B L, Kainer K U(eds), Magnesium alloys and their application. Germany:Wolfsburg, 1998,36-47
    [103]张诗昌,段汉桥,蔡起舟,等.主要合金元素对镁合金组织和性能的影响.铸造,2001,50(6):310-315
    [104]Bettles C J, Gibson M A, Venkatesan K. Enhanced age-hardening behavior in Mg-4wt.%Zn micro-alloyed with Ca. Scripta Materialia,2004,51:193-197
    [105]Gao X, Zhu S M, Muddle B C, et al. Precipitation-hardened Mg-Ca-Zn alloys with superior creep resistance. Scripta Materialia,2005,53:1321-1326
    [106]Buch F von, Mordike B L, Pisch A, et al. Properties of Mg-Mn-Sc alloys. Materials Science and Engineering A,1999,263:1-7
    [107]Bowles L, Blawert C, Hort N, et al. Microstructural investigations of the Mg-Sn and Mg-Sn-Al alloy systems, in:Magnesium technology. The Mineral, Metals & Materials Society,2004,306-310
    [108]吕宜振.Mg-Al-Zn合金的组织、性能、变形和断裂行为研究:[上海交通大学博士学位论文].上海:上海交通大学,2001,33-88
    [109]刘宏伟.铝锌比以及稀土和钇对镁铝锌合金组织与性能的影响:[华南理工大学博士学位论文].广州:华南理工大学,2003,19-61
    [110]Zhang J, Guo Z X, Pan F S, et al. Effect of composition on the microstructure and mechanical properties of Mg-Zn-Al alloys. Materials Science and Engineering A,2007,456:43-51
    [111]赵玮霖,杨明波,潘复生,等.合金元素对Mg-Zn-Al(ZA)系耐热镁合金组织及性能的影响.材料导报,2007,21(7):70-72
    [112]Wei L Y. The intergranular microstructure of cast Mg-Zn and Mg-Zn-RE alloy. Metallurgical and Materials Transactions, (8):1946-1952
    [113]上海交通大学《金相分析》编写组.金相分析.北京:国防工业出版社,1982,38-39
    [114]Anyanwu L A, Kamado S, Honda T, et al. Heat resistance of Mg-Zn-Al-Ca alloy casting. Materials Science Forum,2000,350-351:73-78
    [115]Zhang Z, Tremblay R, Dube D, et al. Solidification microstructure of ZA102, ZA104 and ZA106 magnesium alloys and its effect on creep deformation. Canadian Metallurgical Quarterly,2000,39(4):503-512
    [116]Zhang J, Li Z S, Guo Z X, et al. Solidification microstructural constituent and its crystallographic morphology of permanent-mould-cast Mg-Zn-Al alloys. Transactions of Nonferrous Metals Society of China,2006,16(2):452-458
    [117]Peng L L, Yang F Q, Nie J F, et al. Impression creep of a Mg-8Zn-4Al-0.5Ca alloy. Materials Science and Engineering A,2005,410-411:42-47
    [118]张春香,关绍康,陈海军.硅对Mg-8Zn-4Al-0.3Mn合金显微组织和性能的影响.机械工程材料,2004,28(9):19-22
    [119]王迎新,关绍康,王建强.RE对Mg-8Zn-4Al-0.3Mn合金组织的影响.中国有色金属学报,2003,13(3):616-621
    [120]Zou H H, Zeng X Q, Zhai C Q, et al. The effects of yttrium element on microstructure and mechanical properties of Mg-5wt%Zn-2wt%Al alloy. Materials Science and Engineering A,2005,402(1-2):142-148
    [121]Zou H H, Zeng X Q, Zhai C Q, et al. Effects of Nd on the microstructure of ZA52 alloy. Materials Science and Engineering A,2005,392:229-234
    [122]Liang H, Chen S L, Chang Y A. A thermodynamic description of the Al-Mg-Zn system. Metallurgical Materials and Transactions A,1997,28: 1725-1734
    [123]Emley E F. Principles of magnesium technology. London:Pergamon Press, 1966,969-970
    [124]王业双,马春江,朱燕萍,等.Zn对Mg-9Al合金凝固行为的影响.特种铸造及有色合金,2002,(5):8-10
    [125]Anyanwu I A, Gokan Y, Nozawa S, et al. Development of new die-castable Mg-Zn-Al-Ca-RE alloys for high temperature applications. Materials Transaction,2003,44(4):562-570
    [126]Chaudhury P K, Rack H J, Mikucki B A. Effect of double-aging on mechanical properties of Mg-6Zn reinforced with SiC particulates. Journal of Materials Science,1991,26(9):2343-2347
    [127]Regev M, Bamberger M, Rosen A. Creep studies of AZ91D castings, in: Mordike B L, Kainer K U(eds). Magnesium alloys and their application, Germany:Wolfsburg,1998,283-288
    [128]诺维柯夫.金属热处理理论.北京:机械工业出版社,1987,316-321
    [129]陈振华.耐热镁合金.北京:化学工业出版社,2007,431-459
    [130]Shigenori H, Shigeru O, Norio F. Nucleation and growth of discontinuous precipitation cells in Mg-Al alloys. Light Metals,1999,49(1):24-29
    [131]Song G L, Bowles A L, StJohn D H, Corrosion resistance of aged die cast magnesium alloy AZ91D. Materials Science and Engineering A,2004,366: 74-86
    [132]Fan Y, Wu G H, Zhai C Q. Influence of cerium on the microstructure, mechanical properties and corrosion resistance of magnesium alloy. Materials Science and Engineering A,2006,433:208-215
    [133]Ambat R, Aung N N, Zhou W. Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy. Corrosion Science,2000,42: 1433-1455
    [134]Udhayan R, Bhatt D P. On the corrosion behaviors of magnesium and its alloys using electrochemical techniques. Journal of Power Sources,1996,63: 103-107
    [135]Martin J, Dominique T, Nathalie L. The influence of microstructure on the corrosion behaviour of AZ91D studied by scanning Kelvin probe force microscopy and scanning Kelvin probe. Corrosion Science,2006,48: 1193-1208
    [136]朱祖芳.有色合金的耐腐蚀性及其应用.北京:化学工业出版社,1995,89-97
    [137]陈振华.镁合金.北京:化学工业出版社,2004,428-429
    [138]Hikmet A, Sadri S. The effect of DC magnetron sputtering A1N coatings on the corrosion behaviour of magnesium alloys. Surface & Coatings Technology, 2005,197:193-200
    [139]长崎诚三,平林真著,刘安生译.二元合金状态图集.北京:冶金工业出版社,2004,202-204
    [140]Cohen S, Goren-Muginstein G R, Avraham S, et al. Phase formation, precipitation and strengthening mechanisms in Mg-Zn-Sn and Mg-Zn-Sn-Ca alloys. Magnesium Technology,2004,301-305
    [141]Nave M D, Dahle A K, John D H St, in:Howard Kaplan I(eds), Proceedings of the Magnesium Technology 2000, Tennessee,2000,243-250
    [142]Xiao W L, Jia S S, Wang J L, et al. The influence of mischmetal and tin on the microstructure and mechanical properties of Mg-6Zn-5Al-based alloys. Acta Materialia,2008,56:934-941
    [143]Yang M B, Pan F S, Cheng R J, et al. Comparison about effects of Sb, Sn and Sr on as-cast microstructure and mechanical properties of AZ61-0.7Si magnesium alloy. Materials Science and Engineering A,2008,489(1-2): 413-418
    [144]Yang M B, Pang F S. Effects of Sn addition on as-cast microstructure, mechanical properties and casting fluidity of ZA84 magnesium alloy. Materials & Design,2010,31(1):68-75
    [145]Hume Rothery W, Raynor G V. On the nature of intermetallic compounds of the type Mg2Sn. Philos Mag,1938,25:335-339
    [146]Gorny A, Bamberger M, Katsman A. High temperature phase stabilized microstructure in Mg-Zn-Sn alloys with Y and Sb additions. Journal of Materials Science,2007,42:10014-10022
    [147]Harosh S, Miller L, Levi G, et al. Microstructure and properties of Mg-5.6%Sn-4.4%Zn-2.1%Al alloy. Journal of Materials Science,2007,42: 9983-9989
    [148]Chen J H, Chen Z H, Yan H G, et al. Effects of Sn addition on microstructure and mechanical properties of Mg-Zn-Al alloys. Journal of Alloys and Compounds,2008,461(1-2):209-215
    [149]Chen J H, Chen Z H, Yan H G, et al. Microstructural characterization and mechanical properties of a Mg-6Zn-3Sn-2Al alloy. Journal of Alloys and Compounds,2009,467:1-7
    [150]Singh A, Tsai A P. Structural characteristics of β1 precipitates in Mg-Zn-based alloys. Scripta Materialia,2007,57:941-944
    [151]Rosalbino F, Angelini E, De Negri S, et al. Effect of erbium addition on the corrosion behavior of Mg-Al alloys. Intermetallics,2005,13:55-60
    [152]Zhou X H, Huang Y W, Wei Z L, et al. Improvement of corrosion resistance of AZ91D magnesium alloy by holmium addition. Corrosion Science,2006,48: 4223-4233
    [153]Srinivasan A, Ningshen S, Kamachi Mudali U, et al. Influence of Si and Sb additions on the corrosion behavior of AZ91 magnesium alloy. Intermetallics, 2007,15:1511-1517
    [154]张汉茹,郝远,徐卫军,等.NaCl溶液中AZ91D的腐蚀性能-RE与Sb及Si对AZ91D合金在NaCl溶液中腐蚀速率的影响.铸造设备研究,2004,(1):28-30
    [155]Li Y, Lin J, Lon F C. Characterization of corrosion production of formed on a rapidly solidified Mg-based EA55RS alloy. Journal of Materials Science,1996, 40(6):4016-4023
    [156]Song G L. Effect of tin modification on corrosion of AM70 magnesium alloy. 2009,51(9):2063-2070
    [157]Chen J H, Chen Z H, Yan H G, et al. Effects of Sn and Ca additions on microstructure, mechanical properties and corrosion resistance of the as-cast Mg-Zn-Al-based alloy. Materials and Corrosion,2008,59(12):934-941
    [158]Chen J H, Chen Z H, Yan H G, et al. The effect of thermal exposure on the microstructure and hardness of as-cast Mg-Zn-Al alloys with Sn addition. International Journal of Materials Research,2008,99(9):979-984
    [159]Mark E, David S J. Grain refinement of aluminum alloys. Metallurgical and Materials Transactions A,1999,30(6):1613-1633
    [160]Yousuke T, Norio K, Tetsuichi M. Grain refining mechanism and structure of Mg-Zr alloy. Journal of Japan Institute of Light Metal,1998,48:185-189
    [161]Sasaki T T, Ohishi K, Ohkubo T, et al. Enhanced age hardening response by the addition of Zn in Mg-Sn alloys. Scripta Materialia,2006,55:251-254
    [162]Ben-Hamu G, Eliezer D, Shin K S. The role of Si and Ca on new wrought Mg-Zn-Mn based alloy. Materials Science and Engineering A,2007,447:35-43
    [163]宋光铃.镁合金腐蚀与防护.北京:化学工业出版社,2006,168-169
    [164]高原.高温合金的物理冶金基础.北京:中国科技文化出版社,2006
    [165]关德林.晶体的高温塑性变形.大连:大连理工大学出版社,1989,88-231
    [166]Mendis C J, Ohishi K, Hono K. Enhanced age-hardening behavior in a Mg-2.4at.%Zn alloy by trace additions of Ag and Ca. Scripta Materialia,2007, 57:485-488
    [167]Ohishi K, Hono K, Shin K S. Effect of pre-aging and Al addition on age-hardening and microstructure in Mg-6wt%Zn alloys. Materials Science and Engineering A,2008,496(1-2):425-433
    [168]Buha J. Characterisation of precipitates in an aged Mg-Zn-Ti alloy. Journal of Alloys and Compounds, doi:10.1016/j.jailcom.2008.05.019
    [169]Buha J. Grain refinement and improved age hardening of Mg-Zn alloy by a trace amount of V. Acta Materialia,2008,56(14):3533-3542
    [170]Buha J. The effect of Ba on the microstructure and age hardening of an Mg-Zn alloy. Materials Science and Engineering A,2008,492(1-2):70-79
    [171]Mendis C L, Beetles C J, Gibson M A, et al. An enhanced age hardening response in Mg-Sn based alloys containing Zn. Materials Science and Engineering A,2006,435-436:163-171
    [172]Gorny A, Goren-Muginstein G R, Katsman A, et al. The influence of Y addition on precipitation sequence in a Mg-Zn-Sn alloy. Magnesium Technology, 2006,v2006:386-392
    [173]Hutchinson C R, Nie J F. The precipitation processes and strengthening mechanisms in a Mg-Al-(Zn) AZ91 alloy. Metallurgical and Materials Transactions A,2005,36(8):2093-2015
    [174]麻彦龙,左汝林,汤爱涛,等.ZK60镁合金铸态显微组织分析.重庆大学学报,2004,27(8):52-55
    [175]Takashi T, Kojima Y, Takanishi K. Study of precipitates in an aged Mg-3.6wt%Zn alloy by X-ray diffractionmetry. Journal of Japan Institute of Light Metals,1973,23(8):376-382
    [176]Hall E O. Journal of the Institute Metals,1968,96:21-27
    [177]Murakami Y, Kawano O, Tamaura H. Kyoto University, Memories of the faculty of engineering,1962,23:93
    [178]Buha J. Reduced temperature (22-100 ℃) ageing of an Mg-Zn alloy. Materials Science and Engineering A,2008,492(1-2):11-19
    [179]Gouthama, Kishore. Electron microscopic studies on the effect of Sn addition on the ageing characteristics of the Al-0.7%Mg2Si alloy. Bull. Mater. Sci.,1983,5(1):61-70
    [180]魏芳,赵中魁,周铁涛,等.Li对Al-Zn-Mg-Cu系合金GP区转变动力学的影响.中国有色金属学报,2003,13(3):876-880
    [181]葛列里克S S著,仝建民译.金属和合金的再结晶.北京:机械工业出版社,1985,369-404
    [182]Gum Y. The interfacial reaction and microstructure in a ZK60-based hybrid composite. Journal of Materials Science,2000,35:2499-2505
    [183]Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Materials Transactions,2005, 46(12):2816-2829
    [184]Wei S H, Chen Y G, Tang Y B, et al. Compressive creep behavior of as-cast and aging-treated Mg-5wt%Sn alloy. Materials Science and Engineering A, 2008,492:20-23
    [185]邹宏辉,曾小勤,翟春泉,等.动态析出对Mg-5Zn-2Al(2Y)合金蠕变行为 的影响.金属学报,2006,42(1):41-48
    [186]Boheln J, Nurnberg M R, Senn J W, et al. The texture and anisotropy of magnesium-zinc-rare earth alloy sheets. Acta Materialia,2007,55(6): 2101-2112
    [187]Ion S E, Humphreys F J, White S H. Dynamic recrystallization and the development of microstructure during the high temperature deformation of magnesium. Acta Materiallia,1982,30:1909-1919
    [188]毛卫民,赵新兵.金属的再结晶与晶粒长大.北京:冶金工业出版社,1994,47-48
    [189]Hroyuki W, Hirosuke T, Toshi M. Grain size control of commercial wrought Mg-Al-Zn alloys utilizing dynamic recrystallization. Material Transactions, 2001,42(7):1200-1205
    [190]Humphreys F J. The nucleation of recrystallization at second phase particles in deformed aluminium. Acta Materiallia,1977,25(11):1323-1344
    [191]Clark J B. Transmission electron microscopy study of age hardening in a Mg-5wt%Zn alloy. Acta Metallurgica,1965,12(30):1281-1289
    [192]Rashkova B, Prantl W, Gorgl R, et al. Precipitation processes in a Mg-Zn-Sn alloy studied by TEM and SAXS. Materials Science and Engineering A,2008, 494(1-2):158-165
    [193]Sasaki T T, Ju J D, Hono K, et al. Heat-treatable Mg-Sn-Zn wrought alloy. Scripta Materialia,2009,61:80-83
    [194]Nes E, Holmedal B, Evangelista E, et al. Modelling grain boundary strengthening in ultra-fine grained aluminum alloys. Materials Science and Engineering A,2005,410-411:178-182
    [195]Han B Q, Dunand D C. Microstructure and mechanical properties of magnesium containing high volume fractions of yttria dispersoids. Materials Science and Engineering A,2000,277:296-304
    [196]Mabuchi M, Higashi K. Strengthening mechanisms of Mg-Si alloys. Acta Materialia,1996,44(11):4611-4618
    [197]郭廷玮,李安定,徐介平.金属材料的高温强度理论·设计.北京:科学出版社,1983,51
    [198]Porter D A, Easterling K E. Phase Transformation in metals and alloys. Oxford:AldenPress,1981,274
    [199]Zheng K Y, Zeng X Q, Dong J, et al. Effect of initial temper on the creep behavior of a Mg-Gd-Nd-Zr alloy. Materials Science and Engineering A,2008, 492(1-2):185-190
    [200]Su X, Gharghouri M A, Mahi S. Tensile-compressive creep asymmetry of recent die cast magnesium alloys. Advanced Engineering Materials,2007,9(9): 806-812
    [201]田素贵,杨景红,于兴福,等.AZ31镁合金蠕变初期的变形特征.金属学报,2005,41(4):375-379
    [202]Bai J, Sun Y S, Xue F, et al. Microstructure and tensile creep behavior of Mg-4Al based magnesium alloys with alkaline-earth elements Sr and Ca additions. Materials Science and Engineering A,2006,419:181-188
    [203]洪鹤,田素贵,胡壮麒,等.AZ31镁合金高温蠕变特征及组织演化.沈阳工业大学学报,2003,25(1):23-25
    [204]Guo J H, Chen L Q, Xu Y B, et al. Investigation of compressive creep behavior of AZ91D magnesium alloy. Materials Science and Engineering A, 2007,443:66-70
    [205]Kim H K, Kim W J. Creep behavior of AZ31 magnesium alloy in low temperature range between 423 K and 473 K. Journal of Materials Science, 2007,42(15):6171-6176
    [206]Regev M, Rosen A, Bamberger M. Qualitative model for creep of AZ91D magnesium alloy. Metallurgical and Materials Transactions A,2001,32: 1335-1345
    [207]Cahn R W, Hassen P. Powder metallurgy. New York:North Holland Publishing,1983,1309-1340
    [208]Edelin G, Poirier J P. Etude de la montee des dislocations au moyen d'experiences de fluage par montee dans le magnesium. Philo Mag,1973,28: 1203-1211
    [209]Millick K, Cadek J, Rys P. High temperature creep mechanisms in magnesium. Acta Metallurgy,1970,18:1071-1082

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700