用户名: 密码: 验证码:
大气酸沉降复杂性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文将大气酸沉降现象理解为开放、耗散的大气巨系统在人为污染胁迫下的复杂行为,以理论分析、实际监测数据分析和计算机模拟相结合,研究了大气酸沉降复杂性的表现形式及其数值特征与大气污染的关系;探讨了复杂性数值特征与现行常规统计参数的联系,从而建立了复杂性特征与统计特征之间的定量关系;并基于自组织临界性理论研究了大气酸沉降复杂性产生的机理,建立了具有简明物理意义并能反映酸沉降复杂性特征的元胞自动机模型。其主要结果如下:
     (1)降水中自由H+、NO3-与SO42-离子沉降序列的复杂度均处于白噪声信号与混沌信号复杂度之间,且更接近于混沌信号,说明酸沉降序列中同时存在确定性与随机性;与NO3-与SO42-离子相比,H+离子沉降序列的确定性较高;H+沉降序列的复杂度随年均H+沉降量增加而增加,二者呈对数线性关系;酸沉降量越大的地区,其酸沉降序列的复杂度越大,越接近于随机行为;酸沉降量越小的地区,其酸沉降序列的复杂度越小,越接近于混沌行为。
     (2)H+、NO3-及SO42-离子浓度或沉降量的概率分布呈“双幂律”分布,具有标度不变性;现行环境统计中按降水量加权平均计算降水pH值的方法,掩盖了这一事实并低估了降水酸度,认为用临界pH值来描述区域降水酸度特性更为合理;此外,酸雨或非酸雨持续时间、H+沉降量的标准差σ与平均值Xm、连续的降水事件之间酸沉降的变化率、降水量对降水酸度及沉降量的影响均呈幂律关系;建立的数学模型均反映了以上幂律关系。
     (3)H+沉降量序列波动类似于1/fβ噪声的自仿射分形过程,具有自相似性和长程相关性,且标度行为在1个月—5年的时间区间内均成立;NO3-和SO42-沉降量的变化趋势基本与H+一致,表明导致酸沉降的相关因子可能遵从相同的演化规则;酸沉降的长程相关性可能与长期气象过程及大气自组织临界性有关。
     (4)酸沉降量序列具有多重分形特征,由不同局域条件或由涨落引起的参量波动导致酸沉降标度行为的变化,其非匀称性和各向异性需要采用多重分形描述;酸沉降多重分形特性是由酸沉降演变过程中的长程相关性和幂律分布共同作用的结果;其多重分形谱f(α)-α曲线跨度具有随平均pH值的增加而增加、随平均沉降量增大而减小的趋势;年均pH值越小的地区,其酸沉降序列的f(α)-α曲线跨度越小,越接近于随机行为。
     (5)大气酸沉降系统具有混沌系统的基本特征,多种方法均证实并相互印证了大气酸沉降的混沌现象;酸沉降时间序列的变化同时具有确定性和随机性,且自由H+沉降量的确定性远大于NO3-和SO42-沉降量的确定性;随自由H+沉降量年均值的增加,其沉降量序列的关联维数随镶入维数的变化曲线越来越接近于随机白噪声,即饱和关联维数随沉降量年均值的增加而增加,或随pH年均值的降低而增加,其随机性增加,而确定性减小;并且饱和关联维数与沉降量年均值呈对数线性关系,与pH年均值呈线性关系。
     (6)认为自组织临界性是酸沉降形成与演化内在机制之一,其幂律分布、长程相关性、分形与多重分形以及混沌等特性,都是自组织临界性的具体外在表现形式;标度指数α、β、γ及临界尺度Xc、nc刻划了酸沉降自组织过程的宏观数值特征,并反映了大气环境特征对酸沉降复杂性特征的影响。
     (7)以酸沉降形成的主要物理、化学机制作为局部相互作用规则,建立了具有简明物理意义并能反映其复杂性特征的大气酸沉降元胞自动机模型(ACA);该模型基本重现了大气酸沉降复杂性的主要特征,特别是从机理上解释并重现了大气污染对大气酸沉降复杂性的影响;此外,ACA模型的基本思路与方法可能对于构建多组分、多变量复杂系统的元胞自动机具有一定参考意义。
Considered as the result of the complex behavior of the open and dissipative atmosphere systems under pollution pressure, the complexity of atmospheric acid deposition was researched in the present dissertation, with combined methods of theoretic analysis, actual data analysis and computational simulation. The research content involved the complex behaviors and the relationship between their numerical complexity characteristics and air pollution, the evolution mechanism and the cellular automata model simulating the complexity. The main results are shown as follows:
     (1) The complexity degrees of H+, NO3- and SO42- deposition series are ranged between that of white noise and chaotic signal, and is more close to that of chaotic signal, indicating that there exist concurrently certainty and randomness in the acid deposition time series. H+series exhibits more deterministic than NO3- and SO42- series, with their complexity degrees increasing linearly as the logarithms of annual mean acid depositions increasing. The higher the acid deposition is, the higher the complexity degree of the series is, with its evolution behavior more similar to random process. And the lower the acid deposition is, the lower the complexity degree of the series is, with its evolution behavior more similar to chaotic process.
     (2) The probability density of concentration and deposition of H+、NO3- and SO42- exhibits double power-law with scale invariance property, which was ignored by the current method for pH calculation in environmental statistics by weighting the pH values with rainfall. It's thus believed more reasonable to take the crossover pH, which represents the mostly occurred pH in rain, as the representative pH value for a given district. It's also found that the probabilities of duration of acid/nonacid rain, the standard deviation and mean value of H+ deposition, the variation rate of successive acid deposition, and the influence of rainfall on rain acidity, obey power-law, and a mathematic model was built up to simulate these power-law properties.
     (3) H+ deposition series is similar to 1/fβnoise of self-affine fractal with self-similarity and long-range dependence, and the scaling behavior of long-range dependence stands in 1 month to 5 years. NO3- and SO42- deposition display similar behavior as that of H+ deposition, indicating that the relevant factors involving in acid deposition might obey the same evolution rules as that of H+ deposition. The long-range dependence of acid deposition might be related to the long-range climatic process and self-organized criticality of atmosphere.
     (4) Acid deposition time series behave to be multifractal, which is the result of combined effect of both long-range persistence and power-law involved in the series, and the width of singular spectrum f(α)-αincrease as mean pH value increasing. The higher the acid deposition, the wider the singular spectrum f(α)-αcurve, with its evolution behavior closer to random process.
     (5) Acid deposition system was proved to have the basic properties of chaotic system by employing multiple methods. The correlation dimension of acid deposition series increases linearly as mean pH value increasing, and the H+ deposition exhibits much more deterministic than NO3- and SO42- deposition.
     (6) Self-organized criticality was believed as one of the main mechanisms inducing acid deposition and its evolution, and the power-law, long-rang persistence and the fractal/multifractal properties are the extrinsic manifests of self-organized criticality of atmosphere system. The scaling exponentsα、β、γand critical scale Xc、nc depict the macro numerical properties of self-organized critical behavior of acid deposition, and reflect the impact of atmospheric environmental characteristics on the complex properties of acid deposition.
     (7) With the main physical and chemical processes taken as the local reciprocity rules, a cellular automata model (ACA) was built up to simulate the complex behaviors of acid deposition, and the main complex properties of acid deposition were recurred by the model. The basic method setting up the ACA model might be of general value to build up cellular automata model for complex system with multiple components and variables.
引文
[1]Nigel G., Kadanoff L P. Simple lessons from complexity. Science,1999,284(2): 87-89
    [2]Peitgen H O, Jiirgens H, Saupe D. Chaos and fractals:new frontiers of science. Springer-Verlag,1992,1-984
    [3]Bak P. How Nature Works:The science of self-organized criticality. New York: Copernicus Press,1996,1-212
    [4]Mandelbrot, B B. The fractal geometry of nature. New York:W. H. Freeman Company,1982,1-468
    [5]Turcotte D L, Malamud B D, Guzzetti F, et al. Self-organization, the cascade model, and natural hazards. Proceedings of the National Academy of Sciences, 2002,99:2530-2537
    [6]Kauffman S A. The origins of order:self-organization and selection in evolution. Oxford University Press,1993,1-734
    [7]Wolfram S. A new kind of science. Wolfram Media, Inc.2002,465-469
    [8]成思危.复杂性科学探索.北京:民主与建设出版社,1999,166-188
    [9]钱学森,于景元,戴汝为.一个科学新领域——开放的复杂巨系统及其方法论.自然杂志,1990,13(1):3-10
    [10]Anderson P W. Is complexity physics?Is it science?What is it?. Physics Today, 1991,44(7):9-11
    [11]Bak P, Tang C. Earthquakes.as a self-organized critical phenomenon. Journal of Geophysical Research,1989,94:15635-7
    [12]Malamud, B D, Morein, G, Turcotte D L. Forest fires:an example of self-organized critical behavior. Science,1998,281(18):1840-1842
    [13]Marquet P A. Of predators, prey, and power laws. Science,2002,295:2229-2230
    [14]Nunes A L, Buldyrev S V, Havlin S. Power-law scaling for a system of interacting units with complex internal structure. Physics Review Letters,1998,80:1385-1388
    [15]Axtell R L. Zipf distribution of U.S. firm sizes. Science.2001,293:1818-1820
    [16]Canning D, Amaral L A N, Lee Y, et al. Scaling the volatility of GDP growth rates. Economics Letters,1998,60:335-341
    [17]Vinciguerra S. Power-law time distribution of large earthquakes. Physics Review Letters,2003,90(18):188501
    [18]Gopikrishnan P, Plerou V, Liu Y, et al. Scaling and correlation in financial time series. Physica A,2000,287:362-373
    [19]Ausloos M. Statistical physics in foreign exchange currency and stock markets. Physica A,2000,285:48-65
    [20]Gustafson D I, Carr K H, Green T R, et al. Fractal-based scaling and scale-invariant dispersion of peak concentrations of crop protection chemicals in rivers. Environment Scicence and Technology,2004,38(11):2995-3003
    [21]She Z S, Leveque E. Universal scaling laws in fully developed turbulence.Physics Review Letters,1994,72:336-339
    [22]Harte J, Kinzig A, Green J. Self-similarity in the distribution and abundance of species. Science,1999,284(9):334-336
    [23]Sole R V, Manrubia S C, Benton M, et al. Self-similarity of extinction statistics in the fossil record. Nature,1997,388:764-767
    [24]Hergarten S, Neugebauer H J. Self-organized criticality in a landslide model. Geophysics Research Letters,1998,25:801-804
    [25]Peng C K, Havlin S, Stanley H E, et al. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos,1995,5:82-87
    [26]Zhang Y, Smith J A. Space-time variability of rainfall and extreme flood response in the Menomonee River basin, Wisconsin, Journal of Hydrometeorology 2003, 4(3):506-517
    [27]Plotnick R E, Sepkoski J J. A multiplicative multifractal model for originations and extinctions. Paleobiology,2001,27(1):126-139
    [28]Huberman B A, Adamic L A. Growth dynamics of the World-Wide Web. Nature, 1999,401:131-131
    [29]Bak P, Tang C, Wiesenfeld K. Self-organized criticality:An explanation of 1/f noise. Physics Review Letters,1987,59(4):381-384
    [30]De Bartolo S G., Gabriele S, Gaudio R. Multifractal behaviour of river networks. Hydrology and Earth System Sciences,2000,4:105-112
    [31]Amaral L A N, Gopikrishnan P, Plerou V, et al. A model for the growth dynamics of economic organizations. Physica A,2001,299:127-136
    [32]Beben M, Orlowski A. Correlations in financial time series:established versus emerging markets. The European Physical Journal B,2001,20:527-530
    [33]Mantegna R N, Buldyrev S V, Goldberger A L, et al. On long-range power law correlations in DNA. Physics Review Letters,1994,73:3169-3172
    [34]Dimri V P, Ravi P M. Scaling of power spectrum of extinction events in the fossil record. Earth and Planetary Science Letters,2001,186:363-370
    [35]Ricotta C, Avena G C, Marchetti M. The flaming sandpile:self-organized criticality and wildfires. Ecological Modeling,1999,119:73-77
    [36]Ricotta C, Arianoutsou M, Diaz-Delgado R, et al. Self-organized criticality of wildfires ecologically revisited. Ecological Modeling,2001,141:307-311
    [37]Kirchner J W, Feng X, Neal C. Fractal stream chemistry and its implications for contaminant transport in catchments. Nature,2000,403:524-527
    [38]Pigolotti S, Flammini A, Marsili M, et al. Species lifetime distribution for simple models of ecologies. Proceedings of the National Academy of Sciences,2005, 102(44):15747-15751
    [39]Sivakumar B. Chaos theory in hydrology:important issues and interpretations. Journal of Hydrology.2000,227:1-20
    [40]Martin H G, Goldenfeld N. On the origin and robustness of power-law species-area relationships in ecology. Proceedings of the National Academy of Sciences,2006,103(27):10310-10315
    [41]燕爱玲.河川径流时间序列的分形特征研究.[西安理工大学博士学位论文].西安:西安理工大学,2007
    [42]吴金克.基于多重分形与混沌理论的金融市场研究.[天津大学博士学位论文]天津:天津大学,2005
    [43]吴晓军.复杂性理论及其在城市系统研究中的应用.[西北工业大学博士学位论文].西安:西北工业大学,2005
    [44]房艳刚.城市地理空问系统的复杂性研究.[东北师范大学博士学位论文]吉林:东北师范大学,2006
    [45]金吾伦,郭元林.复杂性科学及其演变.复杂系统与复杂性科学,2004,1:1-5
    [46]徐敏.基于复杂性理论的河湖环境系统模型研究.[湖南大学博士学位论文].长沙:湖南大学.2007
    [47]黄饴蓉.中国股市分形结构的理论研究与实证分析.[厦门大学博士学位论文].厦门:厦门大学.2004
    [48]高召宁.自组织临界性、分形及灾变理论研究.[西南交通大学博士学位论文].成都:西南交通大学.2008
    [49]何越磊.沙堆模型复杂性现象及自组织临界性系统研究.[西南交通大学博士学位论文].成都:西南交通大学.2005
    [50]孔宪娟.基于元胞自动机的交通流建模及其特性分析研究.[北京交通大学博士学位论文].北京:北京交通大学.2007
    [51]Lynch J A, Bowersox V C, Grimm J W. Acid rain reduced in Eastern United States. Environment Science Technology,2000,34:940-949
    [52]Ito M, Mitchell M J, Driscoll C T. Spatial patterns of precipitation quantity and chemistry and air temperature in the Adirondack region of New York. Atmospheric Environment,2002,36:1051-1062
    [53]Civerolo K, Rao S T. Space-time analysis of precipitation weighted sulfate concentrations over the eastern US. Atmospheric Environment.2001,35(32): 5657-5661
    [54]Civerolo K L, Brankov E, Rao S T, et al. Assessing the impact of the acid deposition control program.Atmospheric Environment,2001,35(24):4135-4148
    [55]National Atmospheric Deposition Program (NRSP-3)/National Trends Network, 2002. NADP Program Office, Illinois State Water Survey,2204 Griffith Drive, Champaign, IL 61820
    [56]The UK National Air Quality Information Archive,2004, www.airquality.co.uk/ archive/index.php
    [57]Ecological Society of America.2000. Acid deposition:The ecological response. www.esa.org/aciddep.htm
    [58].Hedin L O, Likens G. E. Atmospheric dust and acid rain. Scientific American, 1996,275:88-92
    [59]Krajick K. Long-range data show lingering effects from acid rain. Science, 2001,292:195-196
    [60]Sirois A. Temporal variation of sulphate and nitrate concentrations in precipitation in Eastern North America:1979-1990. Atmospheric Environment,1993,27A: 945-963
    [61]Zhao X, Zeng G M, Huang G H, et al. Scale of influence of rainfall on rain acidity. Transactions of Nonferrous Metals Society of China,2004,14(1):168-171
    [62]Luo L; Qin B; Yang L; Total inputs of phosphorus and nitrogen by wet deposition into Lake Taihu, China Hydrobiologia,2007,581:63-70
    [63]Butler T J, Likens G E. Weekly and daily precipitation chemistry network comparisons in the Eastern U.S. NADP/NTN vs MAP3S/AIRMoN, Atmosphere Environment,1998,32(21):3749-3765
    [64]Likens G. E; Driscoll C T; Buso D C. Long-term effects of acid rain:response and recovery of a forest ecosystem. Science,1996,272:244-246
    [65]Nadim F, Stapcinskaite S, Trahiotis M M, et al. The effect of precipitation amount and atmospheric concentrations on wet deposition fluxes of oxidized and reduced nitrogen species in Connecticut, Water, Air, and Soil Pollution,2003,143: 315-335
    [66]Celle-Jeanton H, Travi Y, Loye-Pilot M D, et al. Rainwater chemistry at a Mediterranean inland station (Avignon, France):Local contribution versus long-range supply. Atmospheric Research,2009,91(1):118-126
    [67]Sirois A. Temporal variation of sulphate and nitrate concentrations in precipitation in Eastern North America:1979-1990. Atmospheric Environment,1993,27A: 945-963
    [68]Wang W, Wang T. On acid rain formation in China. Atmosphere Environment, 1996,30:4090-4093
    [69]李柱国.浙江省降水酸度和化学特征分析,中国环境科学,1999,19(5):436-440
    [70]王文兴.中国酸雨成因研究.中国环境科学,1994,14(5):323-329
    [71]王文兴,张苑华,石泉.影响我国降水酸性因素的研究.中国环境科学,1993,13(6):401-407
    [72]王玮,王文兴,全浩.我国酸性降水来源探讨.中国环境科学,1995,15(2):89-93
    [73]Zhao X, Yan X, Xiong Z, et al. Spatial and temporal variation of inorganic nitrogen wet deposition to the Yangtze River Delta region, China. Water, Air, and Soil Pollution,2009,203:277-289
    [74]Wang T J; Hu Z Y; Xie M, et al. Atmospheric sulfur deposition onto different ecosystems over China. Environmental Geochemistry and Health,2004, 26:169-177
    [75]Zhu J, Liu Z. Long-range persistence of acid deposition. Atmospheric Environment,2003,37(19):2605-2613
    [76]Zhu J, Fang J. A complexity view of acid deposition. Chinese Physics Letters, 2003,20(6):817-820
    [77]Zhu J, Liu Z. Power-law distribution of acid deposition. International Journal of Environment and Pollution,2003,19(1):11-21
    [78]Zhu J, Zeng G. Self-organized critical behavior of acid deposition, Water, air and soil pollution.2005,162:295-313
    [79]Zhu J, Zeng G. Scaling and correlation of atmospheric acid deposition evolutions. Stochastic Environmental Research & Risk Assessment,2006,21(2):143-149
    [80]高会旺,黄美元,管玉平等.大气中硫污染物的干沉降模式.环境科学,1997,18(6):1-4
    [81]Li J,Tang H. Model for predicting the acidity of precipitation in China. China Environmental Science,1998,18:8-11
    [82]Shen J.. A tool model for predicting atmospheric chemical kinetics with sensitivity analysis. Journal of Environmental Sciences,2001,13(1):79-86
    [83]Driejana, Lee, D S, Kingdon R D, et al. Modelling acidic deposition in the United Kingdom at a scale of 5 Km by 5 Km, Water, Air, and Soil Pollution,2001,130: 319-324
    [84]Han B, Kim J, Cho S. A numerical simulation of acid deposition in East Asia, Water, Air, and Soil Pollution,2001,130:487-492
    [85]Tost H, Jockel P, Kerkweg A, et al. Global cloud and precipitation chemistry and wet deposition:tropospheric model simulations with ECHAM5/MESSyl. Atmosphere Chemistry Physics Discussion,2007,7:785-848
    [86]李金惠,汤鸿霄.中国降水酸度预测模型.中国环境科学,1998,18(1):8-11
    [87]张远航,张行军,李金龙等.层状云降水中化学过程的数值模拟.环境科学研究,2005,8(1):21-26
    [88]程新金,黄美元,安峻岭等.大气污染物SOx输送方程的尺度分析.气象学报,2002,60(4):468-476
    [89]王体健,李宗恺,南方.区域酸性沉降的数值研究.Ⅰ.模式.大气科学,1996,20(5):606-614
    [90]张远航,李金龙,唐孝炎.一个液相化学反应机理的建立和应用.环境科学学报,1993,13(4):460-472
    [91]张远航等.层状云降水中化学过程的数值模拟,环境科学研究,1995,8(1):21-25
    [92]Hao J M, Duan L, Zhou X L, et al. Application of a LRT model to acid rain control in China. Environmental Science & Technology,2001,35(17):3407-3415
    [93]Dentener F. Nitrogen and sulfur deposition on regional and global scales:a multi-model evaluation. Global Biogeochemical. Cycles,2006,20:788-794
    [94]Kim J H, Cho SY. A numerical simulation of present and future acid deposition in North East Asia using a comprehensive acid deposition model. Atmospheric Environment,2003,37:3375-3383
    [95]Olendrzynski K, Berge E, Bartnicki J. EMEP Eulerian acid deposition model and its applications. European Journal of Operational Research,2000,122:426-439
    [96]Zhao,D. Assessing effects of acid deposition in southwestern China using the MAGIC model. Water Air Soil Pollution,1991,60:83-97
    [97]Kessler C J; Porter T H; Firth D; et al. Factor analysis of trends in Texas acidic deposition. Atmospheric Environment,1992,26A.1137-1146
    [98]Mura M C, Fuselli S, Miguel J A G, et al. Stochastic approach to study the atmospheric pollutants in the urban area of Rome. The Science of the Total Environment,1995,171:151-154
    [99]毛节泰.广东、广西地区酸沉降统计模式的研究.环境科学学报,1992,12(1):28-35
    [100]Peters O, Hertlein C, Christensen K. A complexity view of rainfall. Physical Review Letters,2002,88:018701
    [101]Olsson J, Niemczynowicz J, Berndtsson R. Fractal analysis of high-resolution rainfall time series. Journal of Geophysics Research,1993,98(D12):23265-23274
    [102]D'Odorico P, Rodriguez-Iturbe I. Space-time self-organization of mesoscale rainfall and soil moisture. Advances in Water Resources,2000,23:349-357
    [103]Matsoukas C, Islam S, Rodriguez-Iturbe I. Detrended fluctuation analysis of rainfall and streamflow time series. Journal of geophysical research,2000,105: 29165-29172
    [104]Pelletier J D, Turcotte D L. Long-range persistence in climatological and hydrological time series:analysis, modeling and application to drought hazard assessment. Journal of Hydrology,1997,203,198-208
    [105]Svensson C, Olsson J, Berndtsson R. Multifractal properties of daily rainfall in two different climates. Water Resource Research,1996,32:2463-2472
    [106]Rodriguez-Iturbe I, D'Odorico P, Rinaldo A. A possible self-organizing dynamics for land-atmosphere interaction. Journal of Geophysical Research,1998, 108(D18):23071-23077
    [107]Paolo D, Ignacio R. Space-time self-organization of mesoscale rainfall and soil moisture. Advances in Water Resources,2000,23:349-357
    [108]Rybczynski M,Wodarczyk Z, Wilk G. Self-organized criticality in atmospheric cascades. Nuclear Physics B-Proceedings Supplements,2001,97:81-84
    [109]Joshi R R, Selvam A M. Identification of self-organized criticality in atmospheric low frequency variability. Fractals,1999,7(4):421-425
    [110]Bove R, Pelino V, Leonibus L D. Complexity in rainfall phenomena. Communications in Nonlinear Science and Numerical Simulation,2006, 11(6):678-684
    [111]Fraedrich K, Blender R. Scaling of Atmosphere and ocean temperature correlations in observations and climate models. Physics Review Letters,2003, 90(10):108501
    [112]Yano J, Blender R, Zhang C, et al.1/f noise and pulse-like events in the tropical atmospheric surface variabilities Quarterly Journal of the Royal Meteorological Society,2004,130:1697-1721
    [113]She Z S, Leveque E. Universal scaling laws in fully developed turbulence. Physics Review Letters,1994,72:336-339
    [114]Koscielny-Bunde E, Bunde A, Havlin S, et al. Indication of a universal persistence law governing atmospheric variabilit. Physical Review Letters,1998, 81(3):729-732
    [115]Stehlik J, Sabotce N. Deterministic chaos in runoff series. Journal of Hydrology and Hydrodynamics,1999,47(4):271-287
    [116]Sivakumar B, Liong S Y, Liaw C Y, Phoon K K. Singapore rainfall behavior: chaotic? Journal of Hydrologic Engineering,l999,4(1):38-48
    [117]Sivakumar B, Sorooshian S, Gupta H V, et al. A chaotic approach to rainfall disaggregation. Water Resources Research,2001,37(1):61-72
    [118]Sivakumar B. Rainfall dynamics at different temporal scales:A chaotic perspective. Hydrology and Earth System Sciences,2001,5(4):645-651
    [119]Jayawardena A W, Lai F. Analysis and prediction of chaos in rainfall and stream flow time series. Journal of Hydrology, Amsterdam,1994,153(1-4):23-52
    [120]Eichner J F, Koscielny-Bunde E, Bunde A, et al. Power-law persistence in the atmosphere:A detailed study of long temperature records. Physics Review E, 2003,68:046133-5
    [121]Over T M, Gupta V. A space-time theory of mesoscale rainfall using random cascades. Journal of Geophysics Research,1996,101:26319-26331
    [122]Guntner A, Olsson J, Calver A, et al. Cascade-based disaggregation of continuous rainfall time series:the influence of climate. Hydrology and Earth System Sciences,2001,5(2):145-164
    [123]Rybczynski M, Wodarczyk Z,Wilk G. Self-organized criticality in atmospheric cascades. Nuclear Physics B-Proceedings Supplements,2001,97:81-92
    [124]Andrade R F S, Pinho S T R, Fraga S C, et al. New toppling dynamics for the self-organized critical rainfall model. Physica A,2002,314:405-410
    [125]Kantelhardt J W, Rybskia D, Zschiegner S A, et al. Multifractality of river runoff and precipitation:comparison of fluctuation analysis and wavelet methods. Physica A,2003,330:240-245
    [126]仪垂祥,伍荣生.一个自组织气候模型.大气科学,1994,18(2):129-140
    [127]胡非,洪钟祥,雷孝恩.大气边界层与大气环境研究进展.大气科学,2003,26(4):712-728
    [128]Vjushin D, Govindan R B, Brenner S, et al. Lack of scaling in global climate models. Journal of Physics:Condensed matter,2002,14:2275-2282
    [129]Pinho S T R, Andrade R F S. An Abelian model for rainfall. Physica A,1998, 255:483-495
    [130]Aegerter C M. A sandpile model for the distribution of rainfall?, Physica A, 2003,319:1-10
    [131]Klemm O, Lange H. Trends of air pollution in the Fichtelgebirge Mountains, Bavaria. Environment Science and Pollution Research,1999,6:193-199
    [132]Windsor H L, Toumi R. Scaling and persistence of UK pollution. Atmospheric Environment,2001,35:4545-4556
    [133]Lu W Z, Wang X K. Evolving trend and self-similarity of ozone pollution in central Hong Kong ambient during 1984-2002. Science of the Total Environment 2006,357:160-168
    [134]Hatano Y, Hatano N. Fractal fluctuation of aerosol concentration near Chernobyl. Atmospheric Environment,1997,31(15):2297-2303
    [135]Vyushin D I, Fioletov V E, Shepherd T G. Impact of long-range correlations on trend detection in total ozone. Journal of Geographysical Research, 2007,112:1-18
    [136]Varotsos C, Ondov J, Efstathiou M. Scaling properties of air pollution in Athens, Greece and Baltimore, Maryland. Atmospheric Environment,2005,39: 4041-4047
    [137]Lee C K. Multifractal Characteristics in air pollutant concentration time series. Water, Air, and Soil Pollution,2002,135:389-409
    [138]Lee C K, Ho D S, Yu C C, et al. Simple multifractal cascade model for air pollutant concentration (APC) time series. Environmetrics 2002,13:1-15
    [139]Shi K, Liu C Q. Self-organized criticality of air pollution. Atmospheric Environment,2009,43(21):3301-3304
    [140]Shi K, Liu C Q, Ai N S, et al. Using three methods to investigate time-scaling properties in air pollution indexes time series. Nonlinear Analysis:Real World Applications,2008,9:693-707
    [141]Pincus S M. Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Science,1991,15,88(6):2297-2301
    [142]Lempel A, Ziv J. On the complexity of finite sequences. IEEE Transactions on Information Theory,1976,22:75-81
    [143]Kuusela T A, Jartti T T, Tahvanainen K U O, et al. Nonlinear methods of biosignal analysis in assessing terbutaline-induced heart rate and blood pressure changes, American Journal of Physiology-Heart Circulatory Physiology,2002, 282:773-781
    [144]Gu F, Shen E, Meng X, et al. Higher order complexity of time series. International Journal of Bifurcation and Chaos,2004,14 (8):2979-2990
    [145]Ray A. Symbolic dynamic analysis of complex systems for anomaly detection. Signal Processing,2004,84:1115-1130
    [146]刘峰涛,贺国光.基于近似熵和统计复杂度的交通流复杂性测度.中国公路学报,2007,20(4):108-112
    [147]尹义星,许有鹏,陈莹.基于复杂性测度的中国洪灾受灾面积变化研究.地理科学,2008,28(2):241-246
    [148]金宁德,董芳,赵舒.气液两相流电导波动信号复杂性测度分析及其流型表征.物理学报,2007,56(2):720-729
    [149]郝祖龙,郝雷,常太华等.电站锅炉炉膛压力信号的复杂性测度分析.现代电力,2007,24(1):55-57
    [150]孟欣,沈恩华,顾凡及等.脑电图复杂度分析中的粗粒化问题Ⅰ.过分粗粒化和三种复杂度的比较.生物物理学报,2000,16(4):707-710
    [151]Keitt T H, Stanley H E. Dynamics of North American breeding bird populations. Nature,1998,393:257-260
    [152]Kantelhardt J W, Koscielny-Bunde E, Rego H H A, et al. Detecting long-range correlations with detrended fluctuation analysis. Physica A,2001,295:441-454
    [153]Hurst H E. Long-term storage capacity of reservoirs. Transactions of the American Society of Civil Engineering,1951,116:770-799
    [154]金以文,鲁世杰.分形几何原理及其应用.杭州:浙江大学出版社1998,156-170
    [155]Pilgram B, Kaplan D T. A comparison of estimators for 1/f noise. Physica D, 1997,114:108-122
    [156]Hausdorff J M, Peng C K. Multiscaled randomness:a possible source of 1/f noise in biology. Physical Review E,1996,54:2154-2157
    [157]严绍瑾,彭永清,张运刚.一维气温时间序列的多重分形研究.热带气象学报,1996,12(3):207-211
    [158]Kavasseri R G, Nagarajan R. A multifractal description of wind speed records. Chaos, Solitons and Fractals,2005,24:165-173
    [159]Langousis A, Veneziano D, Furcolo P, et al. Multifractal rainfall extremes: Theoretical analysis and practical estimation. Chaos, Solitons and Fractals,2009, 33(3):1182-1194
    [160]Telesca L, Lapenna V, Macchiato M. Investigating linear & nonlinear behaviors in time dynamics of observational seismic sequences. Chaos Solitons & Fractals,2004,20:195-203
    [161]陈士华,陆君安.混沌动力学初步.武汉:武汉水利电力大学出版社.1999,95-110
    [162]Abarbanel H D I. Analysis of observed chaotic data. Springer-Verlag,1997,1-284
    [163]Takens F. Detecting nonlinearities in stationary time series. International Journal of Bifurcation and Chaos,1993.3(2):241-256
    [164]黄国如,芮孝芳.流域降雨径流时间序列的混沌识别及其预测研究进展.水科学进展,2004,15(12):255-260
    [165]张佃中.非线性时间序列互信息与Lempel-Ziv复杂度的相关性研究.物理学报,2007,56(6):3152-3157
    [166]Kennel M B. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Physical Review A,1992,45(6):3403-3411
    [167]Cao L Y. Practical method for determining the minimun embedding dimesion of a scalar time seriese. Physical D,1997,100(122):43-50
    [168]朱莉,吴建华,胡广书.基于Cao算法的心率变异信号分析.航天医学与医学工程,2009,22(2):30-134
    [169]Eckmann J P, Kamphorst S O, Ruelle D. Recurrence plots of dynamical dystems. Europhysics Letters,1987,4:973-977
    [170]Zbilut J P, Webber C L J. Embeddings and delays as derived from quantification of recurrence plots. Physics Letters A,1992,171:199-203
    [171]钟季康,宋志怀,郝为强.RQA在肌电分析中的应用.生物物理学报,2002,18(2):241-245
    [172]於崇文.固体地球系统的复杂性与自组织临界性.地学前缘1998,5(3):159-187
    [173]Dhar D. The Abelian sandpile and related models. Physica A,1999,263:4-25
    [174]Rigo J L O, Barbosa V C. Two-dimensional cellular automata and the analysis of correlated time series. Pattern Recognition Letters,2006,27(12):1353-1360
    [175]Stanley H E, Amaral L A N, Gopikrishnan P, et al. Scale invariance and universality:organizing principles in complex systems. Physica A,2000, 281:60-68

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700