用户名: 密码: 验证码:
几类非线性色散方程和波动方程的低正则性理论
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要涉及非线性色散波方程的基本理论:局部适定性,不适定性,整体适定性以及散射理论.这些理论是在初值的正则性低于通常的质量空间或能量空间的意义下建立的.
     本文分为七章,按照各类方程的研究成果划分.
     第一章为绪论,本章涉及本课题研究的背景和研究进展,以及所用的基本方法和基本引理.本章分为三节,第一节我们表述在本课题中所涉及的模型的背景和研究进展,其中涉及了对本课题所获的主要结论和主要创新之处的描述.第二,三节我们介绍本文所涉及的基本方法,其中重点介绍Bourgain的Fourier限制模方法和I方法.同时,在这两节当中,我们也将介绍一些预备性估计,如Strichartz估计,双线性Strichartz估计等.
     第二章主要研究Schr¨odinger-Korteweg-de Vries系统的局部适定性,整体适定性,和不适定性.首先,我们应用Bourgain的Fourier限制模方法建立该系统的局部适定性,这一结果改进了Bekiranov,Ogawa和Ponce(1997)以及Corcho和Linares (2007)等人的工作.并且我们获得了一些双线性估计的最佳指标.进一步,我们获得了该系统的不适定性结论.该结论表明我们之前所获得的局部适定性指标在某些区域上是最佳的.特别地,我们获得了共振系统的最佳下界指标(端点除外)L2(R)×H?43+(R),以及非共振系统的最佳下界指标H? 136+(R)×H?43+(R).最后,应用I方法,并结合一些特殊的多重线性估计(这一技术具有一定的一般性,首先由作者本人引入),我们建立了该系统的整体适定性.结论是:不论是共振还是非共振情形,该系统均在Hs(R)中,当s > 21时整体适定.该结果较大程度地改进了Pecher (2005)的工作.
     第三章主要研究带部分修正技术的I方法在几类色散方程中的应用.本章前半部分我们详细介绍我和我的合作者们发展的,在I方法框架下的部分修正技术。这一技术在应用中卓有成效,本章的第二节我们以带库仑位势的导数Schr¨odinger方程为例,介绍它在色散方程整体适定性中的应用。导数Schr¨odinger方程在Sobolev空间Hs(R)中,当s < 21时是不适定的,这一结论被人们所熟知.同时,著名团队Colliander,Keel,Sta?lani,Takaoka 和Tao (I-term) 在2002年获得了该方程当指标s > 21时的整体适定性.关于临界空间H21(R)的整体适定性问题一直公开.本章第二节,我们应用带部分修正技术的I方法对这个问题给出了肯定地回答.本章第三节,我们进一步运用这一技术研究周期和非周期情形的质量临界的Schr¨odinger方程,并获得了方程在Hs(R)(或Hs(T)),s > 25时的整体适定性.这一结果改进了Bourgain(菲尔兹奖获得者)和I-term的结论。
     第四章主要研究散焦情形的三维库仑位势的波动方法的整体适定性.本章中,我们证明:当初值属于Hs(R3)×Hs?1(R3),当s > 0.7时,方程的整体适定性.我们所获得的结果改进了Kenig,Ponce和Vega (2000),Gallagher和Planchon (2003),Bahouri和Chemin (2006)以及Roy(2009)的工作.这一改进主要来自于我们获得了一个更优的非线性光滑估计.
     第五章,我们研究了三维散焦形H12次临界的Hartree方程.运用I方法,几乎Morawetz估计等技术,我们获得了方程低于能量空间的整体适定性和散射性质.这一结论改进了Miao,Xu和Zhao(2009)的工作.
     第六章,我们研究Benjamin方程.这是一个不具有伸缩不变解的方程.基于I方法,这类方程的整体适定性主要有两个要素决定:第一,修正能量的误差估计;第二,局部生命跨度.在这一章中,我们证明了一种特殊的双线性估计(这一技术的思想来源于第二章Schr¨odinger-Korteweg-de Vries系统整体适定性的研究),从而延长局部生命跨度.最终我们证明了当初值属于Hs(R)中,当s > ?43时的整体适定性.
     第七章,我们从一类五阶KdV方程的特点出发,研究这类方程所含非线性项的双线性估计.首先,我们揭示了该非线性项,基于通常Bourgain空间的双线性估计并不理想(指标s < 14时,不成立).为了进一步的研究,我们构建了修正的Bourgain空间,并证明了基于这类修正的Bourgain空间的双线性估计,从而证明了这类五阶KdV方程的局体适定性.最后,我们证明一个不适定性结论,从而揭示我们所获得的局部适定性结论是最优的.
This doctoral dissertation is devoted to study some basic theories on the disper-sive equations, which is concerned with local well-posedness, global well-posedness, ill-posedness and scattering. It is made up of seven chapters.
     Chapter one is preface, which contains the introduction of the models studied in thisbook and the main methods used in this book. In Section 1, we starting with backgroundof the models, the previous works concerted with the models. Moreover, it contains thedescription of the main results obtained and the main innovations in this thesis. In Section2 and Section 3, we introduce the main methods used in this thesis, which are the“Fourierrestriction norm method”and the“I-method”. Moreover, we present some preliminaryestimates in this chapter, such as Strichartz estimates and bilinear Strichartz estimates.
     In Chapter two, we study the local well-posedness, ill-posedness and global well-posedness of the Cauchy problem of the Schr¨odinger-Korteweg-de Vries equations. First,we show the the local well-posedness of this system by Bourgain’s argument. We im-prove the previous works of Bekiranov, Ogawa, Ponce (1997) and Corcho, Linares (2007).Moreover, we obtain the best indices for which the bilinear estimates hold. Second, weprove the ill-posedness, which implies that they are sharp in some well-posedness thresh-olds. Particularly, we obtain the local well-posedness for the initial data belonging toH? 136+(R)×H?34+(R) in the resonant case and belonging to L2(R)×H?43+(R) in thenon-resonant case, it is almost the optimal except the endpoint. At last we establish theglobal well-posedness results in Hs(R)×Hs(R) when s > 12 no matter in the resonantcase or in the non-resonant case, which is achieved by I-method,with some special mul-tilinear estimates (this technique is rather general, and first developed by the author).This improves the result of Pecher (2005).
     In Chapter three, we first study the I-method with a further“partial refined”ar-gument which is introduced by My co-workers and I. Then we apply this argument tosome dispersive equations. As an example, we consider the Cauchy problem of the cubicnonlinear Schro¨dinger equation with derivative in Sobolev spaces Hs(R). This equationis known to ill-posedness for s < 21. In addition, Colliander, Keel, Sta?lani, Takaoka, Tao (I-term) (2002) obtained global well-posedness for s > 21 by I-method. While theproblem whether it is global well-posedness in the endpoint space H 21(R) remained open.In the second part of this Chapter, we study this open problem, and give the positiveanswer. In Section 3, as other applications of the“partial refined”argument, we studythe periodic and non-periodic mass-critical Schro¨dinger equation, we prove that in bothcase, the equations are globally well-posed in Hs(R) (or Hs(T)), for any s > 2/5, theresults improve the previous works of Bourgain’s and I-term’s.
     In chapter four, we study the global well-posedness for solutions to the defocusingcubic wave equation on three dimension. We show that the equation is globally well-posedin Hs(R3)×Hs?1(R3), for s > 0.7. The result obtained here improve the previous worksof Kenig, Ponce, Vega’s (2000), Gallagher, Planchon’s (2003), Bahouri, Chemin’s (2006)and Roy’s (2009). The improvement is mainly based on a better estimate on nonlinearterm.
     In chapter five, we study the global well-posedness and scattering for solutions to thedefocusing H 21-subcritical Hartree equation on three dimension. Our result improves theprevious one obtained by Miao, Xu and Zhao (2009). The main approaches are I-methodand the almost Morawetz estimates.
     In chapter six, we study the global well-posedness for solutions to the Benjaminequation and show that it is globally well-posed in Sobolev spaces Hs(R) for s > ?3/4.In this paper, we use some argument to obtain a good estimative for the lifetime of thelocal solution.
     In chapter seven, we first study a fifth-order KdV-type equation and study the bilinearestimate of nonlinear term of this equation. We find the bilinear estimate based on theusual Bourgain space behaves weak (indeed, it does not hold when the regularity index isbelow to 41). For this reason, we define a modified Bourgain space and obtain a bilinearestimate based on this. By this bilinear estimate, we give some better local result for thefifth-order KdV-type equation. At the end, by showing a ill-poseded result, we prove thatthe local result we obtained above is sharp.
引文
[1] Atiyah, M. F.; Bott, R.; Garding, L.. Lacunas for hyperbolic di?erential operators withconstant coe?cients I. Acta Math., 1970, 124: 109–189
    [2] Atiyah, M. F.; Bott, R.; Garding, L.. Garding, Lacunas for hyperbolic di?erential operatorswith constant coe?cients II. Acta Math., 1973, 131: 145–206
    [3] Avron J.; Herbst I.; and Simon B.. Separation of center of mass in homogeneous magneticfields. Ann. Phys., 1978, 114: 431–451
    [4] Avron J.; Herbst I.; and Simon B.. Schro¨odinger operators with magnetic fields, III. Atomsin homogeneous magnetic fields. Commun. Math. Phys., 1981, 79: 529–572
    [5] Bahouri, H.; and Chemin, J.-Y.. On GlobalWell-Posedness for Defocusing CubicWave Equa-tion. Int. Math. Research Notices, 2006: 1–12
    [6] Bambusi, D.; Delort, J. M.; Grebert, G.; and Szeftel, J.. Almost global existence forHamiltonian semi-linear Klein-Gordon equations with small Cauchy data on Zoll mani-folds. Comm. Pure Appl. Math., 2007, 60(11): 1665-1690
    [7] Bejenaru, I.; and Tao, T.. Sharp well-posedness and ill-posedness results for a quadraticnon-linear Schro¨dinger equation. J. Funct. Anal., 2006, 233: 228–259
    [8] Benjamin, B.. Internal waves of permanent form in ?uids of certain lattice subsets andapplications to nonlinear equaitons. J. Fluid. Mech. 1967, 29: 559–592
    [9] Benilov, E. S.; and Burtsev S. P.. To the integrability of the equations describing theLangmuir-wave-ion-acoustic-wave interaction. Phys. Let., 1983, 98A: 256–258
    [10] Biagioni, H.; and Linares, F.. Ill-posedness for the derivative Schr¨odinger and generalizedBenjamin-Ono equations. Trans. Amer. Math. Soc., 2001, 353(9): 3649–3659
    [11] Bekiranov, D.; Ogawa T.; and Ponce G.. Weak solvability and wellposedness of a coupledSchr¨odinger-Korteweg de Vries equation for capillary-gravity wave interactions. Proc. Amer.Math. Soc., 1997,125(10): 2907–2919
    [12] Bekiranov, D.; Ogawa T.; and Ponce G.. Interaction equations for short and long dispersivewaves. J. Funct. Anal., 1998, 158(2): 357–388
    [13] Bejenaru I.; and Tao T.. Sharp well-posedness and ill-posedness results for a quadraticnon-linear Schro¨dinger equation. J. Funct. Anal., 2006, 233: 228–259
    [14] Byers, P. J.. The initial value problem for a KdV-type equation and a related bilinearestimate, Dissertation, University of Notre Dame, (2003).
    [15] Bialinycki-Birula I.; and Mycielski J.. Nonlinear wave mechanics. Ann. Phys., 1976, 100:62–93
    [16] Bialinycki-Birula I.; and Mycielski J.. Wave equations with Logarithmic nonlinearities. Bull.Acad. Pol. Sc., 1975, 23: 461–466
    [17] Bourgain, J.. Fourier transform restriction phenomena for certain lattice subsets and ap-plications to nonlinear evolution equations. I. Schro¨dinger Equation. Geom. Funct. Anal.,1993, 3: 107–156
    [18] Bourgain, J.. Fourier transform restriction phenomena for certain lattice subsets and appli-cations to nonlinear evolution equations. II. the KdV-Equation. Geom. Funct. Anal., 1993,3: 209–262
    [19] Bourgain, J.. Periodic Korteweg-de Vries equation with measures as initial data. SelectaMath., 1997, 3: 115–159
    [20] Bourgain, J.. Refinements of Strichartz’inequality and applications to 2D-NLS with criticalnonlinearity. Int. Math. Research Notices, 1998, 1998(5): 253–283
    [21] Bourgain, J.. New global well-posedness results for nonlinear Schr¨odinger equations. AMSPublications, 1999.
    [22] Bourgain, J.. Remark on normal forms and the“I-method”for periodic NLS. J. Anal.Math., 2004, 94: 127–157
    [23] Cazenave, T.. Semilinear Schro¨dinger equation. CLN 10, eds. AMS, 2003.
    [24] Cazenave, T.; and Weissler, F. B.. The Cauchy problem for the critical nonlinearSchro¨dinger equation. Non. Anal. TMA., 1990, 14: 807-836
    [25] Chen, W.; and Xiao J.. A Sharp Bilinear Estimate for the Bourgain-type Space withApplication to the Benjamin Equation. Preprint. arXiv:0908.3429.
    [26] Christ,M.; Colliander J.; and Tao T.. Asymptotics, frequency modulation, and low regular-ity ill-posedness for canonical defocusing equations. Amer. J. Math., 2003, 125(6): 1235–1293
    [27] Christ,M.; Colliander J.; and Tao T.. Ill-posedness for nonlinear Schr¨odinger and waveequations. Prinpint. arXiv: 0311048
    [28] Coifman, R.; and Meyer, Y.. Commutateurs d’integrales singuli`eres et op′erateurs multi-lin′eaires. Ann. Inst. Fourier (Grenoble), 28, 1978.
    [29] Colliander, J.; Kenig C. E.; and Sta?lani G.. Local well-posedness for dispersion generalizedBenjamin-Ono equations. Di?. Int. Eqns., 2003, 16: 1441–1472
    [30] Colliander, J.; Keel M.; Sta?lani G.; Takaoka H.; and Tao, T.. Global well-posedness forthe KdV in Sobolev spaces of negative indices. Elect. J. Di?er. Eqns., 2001, 26: 1–7
    [31] Colliander, J.; Keel M.; Sta?lani G.; Takaoka H.; and Tao, T.. Global well-posedness resultfor Schro¨digner equations with derivative. SIAM J. Math. Anal., 2001, 33(2): 649–669
    [32] Colliander, J.; Keel, M.; Sta?lani, G.; Takaoka, H.; and Tao, T.. A refined global well-posedness result for Schro¨dinger equations with derivatives. SIAM J. Math. Anal., 2002,34: 64-86
    [33] Colliander, J.; Keel, M.; Sta?lani, G.; Takaoka, H.; and Tao, T.. Almost conservtion lawsand global rough solutions to a nonlinear Schr¨odinger equation. Math. Res. Lett., 2002, 9:1–24
    [34] Colliander, J.; Keel, M.; Sta?lani, G.; Takaoka, H.; and Tao, T.. Sharp global well-posedness for KdV and modified Kdv on R and T. J. Amer. Math. Soc., 2003, 16: 705–749
    [35] Colliander, J.; Keel, M.; Sta?lani, G.; Takaoka, H.; and Tao, T.. Multilinear estimates forperiodic KdV equations, and applications. J. Funct. Anal., 2004, 211: 173–218
    [36] Colliander, J.; Keel, M.; Sta?lani, G.; Takaoka, H.; and Tao, T.. Resonant decompositionsand the I-method for cubic nonlinear Schro¨dinger on R2. Discrete and Contin. Dyn. Syst.,2008, 21(3): 665–686
    [37] Colliander, J.; Keel, M.; Sta?lani, G.; Takaoka, H.; and Tao, T.. Global existence andscattering for rough solutions of a nonlinear Schro¨dinger equation on R3. Comm. PureAppl. Math., 2004, 21: 987–1014
    [38] Colliander, J.; Keel, M.; Sta?lani, G.; Takaoka, H.; and Tao, T.. Global well-posedness andscattering for the energy-critical nonlinear Schro¨dinger equation in R3. Annals of Math.,2008, 167: 767–865
    [39] Colliander, J.; Grillakis, M.; and Tzirakis, N.. Improved interaction Morawetz inequalitiesfor the cubic nonlinear Schr¨odinger equation on R2. Int. Math. Research Notices, 2007, 23:90–119
    [40] Combes J. M.; Schrader R.; and Seiler R.. Classical bounds and limits for energy distribu-tions of Hamilton operators in electromagnetic fields. Ann. Phys., 1978, 111: 1–18
    [41] Corcho A. J.; and Linares, F.. Well-posedness for the Schrodinger-Korteweg-de Vries sys-tem. Trans. Amer. Math. Soc., 2007, 359(9): 4089–4106
    [42] Courant, R.; and Hilbert, D.; Methods of Mathematical Physics, vol II. Interscience (Wiley)New York, 1962.
    [43] De Silva, D.; Pavlovic, N.; Sta?lani, G.; and Tzirakis, N.. Global well-posedness for theL2-critical nonlinear Schro¨dinger equation in higher dimensions. Comm. Pure Appl. Anal.,2007, 6(4): 1023-1041
    [44] De Silva, D.; Pavlovic, N.; Sta?lani, G.; and Tzirakis, N.. Global well-posedness for aperiodic nonlinear Schro¨dinger equation in 1D and 2D. Discrete and Contin. Dyn. Syst.,2007, 19(1): 37–65
    [45] De Silva, D.; Pavlovic, N.; Sta?lani, G.; and Tzirakis, N.. Global Well-Posedness andPolynomial Bounds for the Defocusing L2-Critical Nonlinear Schro¨dinger Equation in R.Comm. Partial Di?er. Eqns., 2008, 33(8): 1395–1429
    [46] Dodson, B.. Improved almost Morawetz estimates for the cubic nonlinear Schro¨dinger equa-tion. Prinpint. arXiv:0909.0757.
    [47] Dodson, B.. Global well-posedness and scattering for the defocusing , L2-critical, nonlinearSchro¨dinger equation when d≥3. Prinpint. arXiv:0912.2467.
    [48] Eboli O. J. P.; and Marques G. C.. Solitons as Newtonian particles. Phys. Rev. B., 1983,28: 689–696
    [49] Fang, D.; and Wang, Ch.. Some remarks on Strichartz estimates for homogeneous waveequation. Non. Anal., 2006, 65: 697–706
    [50] Farah, L. G.. Global rough solutions to the critical generalized KdV equation. Prinpint.arXiv: 0908.0344
    [51] FangY.; and Grillakis M.. On the global existence of rough solutions of the cubic defocusingSchr¨odinger equation in R2+1. J. Hyper. Di?er. Eqns., 2007, 4(2): 233–257
    [52] Fonseca, G.; Linares, F.; Ponce, G.. Global existence for the critical generalized KdVequation. Prom. Amer. Math. Soc.(electronic), 2003, 131(6): 1847–1855
    [53] Foschi, D.. Inhomogeneous Strichartz esitmates. J. Hyperbolic Di?er. Equ., 2005, 2: 1–24
    [54] Funakoshi M.; and Oikawa M.. The resonant interaction between a long internal gravitywave and a surface gravity wave packet. J. Phys. Soc. Japan, 1983, 52: 1982-1995
    [55] Ionescu A. D.; Kenig C. E.. Global well-posedness of the Benjamin-Ono equation in lowregularity spaces. J. Amer. Math. Soc., 2007, 20(3): 753-798.
    [56] Ionescu A. D.; Kenig C. E.; Tataru D.. Global well-posedness of KP-I initial-value problemin the energy space. Invent. Math., 2008, 173(2): 265–304
    [57] Gaididei, Yu. B.; Rasmussen, K. ?.; and Christiansen P. L.. Nonlinear excitations intwo-dimensional molecular structures with impurities. Phys. Rev. E, 52: 2951–2962
    [58] Gallagher, I.; and Planchon, F.. On global solutions to a defocusing semi-linear wave equa-tion. Revista Matem′atica Iberoamericana, 2003, 19(1): 161–177.
    [59] Ginibre J.. Le probl′eme de Cauchy pour des EDP semi-lin′eaires p′eriodiques en variablesd′espace (d’apr′es Bourgain). S′eminaire Bourbaki 1994/1995, Asterisque, 1996, Exp. 796,237: 163–187
    [60] Ginibre, J.; Tsutsumi, Y.; and Velo, G.. On the Cauchy Problem for the Zakharov system.J. Funct. Anal., 1997, 151: 384–436
    [61] Ginibre, J.; and Ozawa T.. Long range scattering for nonlinear Schro¨dinger and Hartreeequations in space dimension n≥2. Comm. Math. Phys., 1993, 151, 619-645
    [62] Ginibre, J.; and Velo, G.. The global Cauehy problem for the nonlinear Schro¨dinger equa-tion. Ann. Inst. H. Poincar′e Analyse non lin′eaire, 1985, 2: 309–327
    [63] Ginibre, J.; and Velo, G.. Scattering theory in the energy space for a class of Hartreeequations. Contemp. Math., 263, Amer. Math. Soc., Providence, RI, 2000.
    [64] Ginibre, J.; and Velo, G.. Long range scattering and modified wave operators for someHartree type equations. Rev. Math. Phys., 2000, 12: 361-429
    [65] Ginibre, J.; and Velo, G.. Long range scattering and modified wave operators for someHartree type equations II. Ann. Henri Poincar′e, 2000, 1: 753-800
    [66] Ginibre, J.; and Velo, G.. Long range scattering and modified wave operators for someHartree type equations. III: Gevrey spaces and low dimensions. J. Di?. Equat., 2001, 175:415-501
    [67] Ginibre, J.; and Velo, G.. Quadratic Morawetz inequalities and asymptotic completenessin the energy space for nonlinear Schr¨odinger and Hartree equations. Quart. Appl. Math.,2010
    [68] Gleeson, H.; Hammerton, P.; Papageorgiou, T.; and Vanden-Broeck, J.-M.. A new applica-tion of the Korteweg-de Vries Benjamin-Ono equation in interfacial electrohydrodynamics.Phys. Fluids, 2007, 19: 031703
    [69] Gogny D.; and Lions P.-L.. Hartree-Fock theory in nuclear physics. RAIRO, Mod′elisationMath. Anal. Num′er, 1986, 20: 571–637
    [70] Gru¨nrock ,A.. An Improved Local Well-posedness Result for the Modified KdV Equation.Int. Math. Research Notices, 2004, 2004: 3287–3308
    [71] Gru¨nrock, A.. Bi- and trilinear Schr¨odinger estimates in one space dimension with applica-tions to cubic NLS and DNLS. Int. Math. Research Notices, 2005, 2005: 2525–2558
    [72] Gru¨nrock, A.; and Herr, S.. Low regularity local well-posedness of the derivative nonlinearSchr¨odinger equation with periodic initial data. SIAM J. Math. Anal., 2008, 39: 1890-1920
    [73] Guo, B.; and Miao, C.. Well-posedness of the Cauchy problem for the coupled system ofthe Schro¨dinger-KdV equations. Acta Math. Sinica, Engl. Series, 1999, 15: 215–224
    [74] Guo, B.; and Huo, Z.. The well-posedness of the Korteweg-de Vries–Benjamin-Ono equaion.J. Math. Anal. Appl., 2004, 295: 444–458
    [75] Guo, Z.. Global well-posedness of Korteweg-de Vries equation in H?43(R) . J. Math. Pures.Appl., 2009, 91: 583–597
    [76] Guo, Z.; Wang, B.. Global well-posedness and inviscid limit for the Korteweg-de Vries-Burgers equation . J. Di?er. Eqns., 2009, 246: 3864–3901
    [77] Guo, Z.; Wang, Y.. On the well-posedness of the Schr¨odinger-Korteweg-de Vries system.arXiv:0911.3197
    [78] Hayashi, N.. The initial value problem for the derivative nonlinear Schro¨dinger equation inthe energy space. Nonlinear Anal., 1993, 20: 823–833
    [79] Hayashi, N.; and Ozawa, T.. On the derivative nonlinear Schro¨dinger equation. Phys. D.,1992, 55: 14–36
    [80] Hayashi, N.; and Ozawa, T.. Finite energy solution of nonlinear Schro¨dinger equations ofderivative type. SIAM J. Math. Anal., 1994, 25: 1488–1503
    [81] Hayashi, N.; and Tsutsumi Y.. Scattering theory for the Hartree equations. Ann. Inst. H.Poincar′e Phys. Theorique 61 (1987), 187-213.
    [82] Herr, S.. On the Cauchy problem for the Derivative nonlinear Schro¨dinger equation withperiodic boundary condition. Int. Math. Research Notices, 2006, 2006: 1–33
    [83] Hojo, H.; Ikezi, H.; Mima, K.; and Nishikawa, K.. Coupled nonlinear electron-plasma andionacoustic waves. Phys. Rev. Lett., 1974, 33: 148–151
    [84] Kakutani, T.; Kawahara, T.; and Sugimoto, N.. Nonlinear interaction between short andlong capillary-gravity waves. J. Phys. Soc. Japan, 1975, 39: 1379–1386
    [85] Kato T.. Perturbation theory for linear operators. Springer, New York, 1966.
    [86] Kato T.. On nonlinear Schro¨dinger equations. Ann. Inst. H. Poincar′e Physique Th′eorique,1987, 46: 113-129
    [87] Keel, M.; and Tao, T.. The endpoint Strichartz estimates. Amer. J. Math., 1998, 120:955–980
    [88] Kenig, C. E.; Ponce, G; and Vega, L.. Oscillatory integrals and regularity of dispersiveequations. Indiana Univ. Math. J., 1991, 40(1): 33–68
    [89] Kenig, C. E., Ponce, G., Vega, L.. The Cauchy problem for the Korteweg-de Vries equationin Sobolev spaces of negative indics. Duke Math. J., 1993, 71: 1–21
    [90] Kenig, C. E., Ponce, G., Vega, L.. Well-posedness and scattering results for the generalizedKorteweg-de Vries equation via the contraction principle. Comm. Pure Appl. Math., 1993,46(4): 527–620
    [91] Kenig, C. E., Ponce, G., Vega, L.. A bilinear estimate with applications to the KdV equa-tion. J. Amer. Math. Soc., 1996, 9(2): 573–603
    [92] Kenig, C. E., Ponce, G., Vega, L.. Global well-posedness for semi-linear wave equations.Comm. Partial Di?er. Eqns., 2000, 25: 1741–1752
    [93] Kenig, C. E., Ponce, G., Vega, L.. On the ill-poseness of some canonical dispersive equations.Duke Math. J., 2001, 106(3): 617–633
    [94] Killip, R.; Kwon, S.; Shao, S.; and Visan, M.. On the mass-critical generalized KdV equa-tion. Preprint. arXiv 0907.5412v1.
    [95] Killip, R.; Tao, T.; and Visan, M.. The cubic nonlinear Schr¨odinger equation in two dimen-sion with radial data. J. Eur. Math. Soc., 2009, 11: 1203–1258
    [96] Killip, R.; Visan, M.; and Zhang, X.. The mass-critical nonlinear Schro¨dinger equation withradial data in dimensions three and higher. Anal. PDE, 2008, 1(2): 229-266
    [97] Klainerman, S.; and Tataru, D.. On the optimal local regularity for Yang-Mills equationsin R4+1. J. Amer. Math. Soc., 1999, 12(1): 93–116
    [98] Kozono, H.; Ogawa, T.; and Tanisaka, H.. Well-posedness for the Benjamin equations. J.Korean Math. Soc., 2001, 38: 1205–1234
    [99] Lam J. F., Lippmann B. And Tappert F. Self trapped laser beams in plasma. Phys. Fluids,1977, 20: 1176–1179
    [100] Lebowitz J. L.; Rose H. A.; and Speer E. R.. Statistical mechanics of the nonlinearSchro¨dinger equation. J. Stat. Phys., 1988, 50: 657–687
    [101] Linares, F.. Global well-posedness of the initial value problem associated with the Ben-jamin equation. J. Di?er. Eqns., 1999, 152: 1425–1433
    [102] Li, D.; Miao, C.; and Zhang, X.. The focusing energy-critical Hartree equation. J. Di?er.Eqns., 2009, 246(3): 1139–1163
    [103] Li, Y.; and Wu Y.. On a quadratic nonlinear Schro¨dinger equation: sharp well-posednessand ill-posedness. Preprint. arXiv: 0910.4537
    [104] Li, Y.; and Wu Y.. Global well-posedness for the Benjamin equation in low regularity.Preprint. arXiv:0910.4533
    [105] Li, Y.; and Wu Y.. Global Attractor for Weakly Damped Forced KdV Equation in LowRegularity on T. Preprint. arXiv:0910.4652
    [106] Li, Y.; and Wu Y.. Global Attractor for Weakly Damped Forced KdV Equation in LowRegularity on R. Submitted.
    [107] Li, Y.; Wu Y.; and Xu G.. Low regularity global solutions for the focusing mass-criticalNLS in R. Submitted.
    [108] Li, Y.; Wu Y.; and Xu G.. Global well-posedness for periodic mass-critical nonlinearSchro¨dinger equation. Submitted.
    [109] Lieb E. H.; and Simon B.. The Hartree-Fock theory for coulomb systems. Commun. Math.Phys., 1974, 53: 185–194
    [110] Lindbald H.; and Sogge C.. On existence and scattering with minimal regularity for semi-linear wave equations. J. Func. Anal., 1995, 130: 357–426
    [111] C. Miao, Hm-modified wave operator for nonlinear Hartree equation in the space dimen-sions n≥2. Acta Mathematica Sinica, 13 (1997), 247–268.
    [112]苗长兴.调和分析及其在偏微分方程中的应用,现代数学基础丛书,科学出版社,2004.
    [113]苗长兴.非线性波动方程的现代分析方法,当代数学讲座丛书,科学出版社,2005.
    [114] Miao, C.; Shao S.; Wu Y.; and Xu G.. The low regularity global solutions for the criticalgeneralized KdV equation. Preprint. arXiv:.0908.0782.
    [115] Miao, C.; Shao S.; Wu Y.; and Xu G.. The low regularity global solutions for PeriodicGeneralized KdV Equation. Preprint.
    [116] Miao, C.; Xu, G.; and Zhao, L.. Global well-posedness and scattering for the energy-critical, defocusing Hartree equation for radial data. J. Funct. Anal., 2007, 253: 605–627
    [117] Miao, C.; Xu, G.; and Zhao, L.. The Cauchy problem of the Hartree equation. Dedicatedto Professor Li Daqian on the occasion of seventieth birthday. J. PDEs, 2006, 21: 22–44
    [118] Miao, C.; Xu, G.; and Zhao, L.. Global wellposedness, scattering and blowup for theenergy-critical, focusing Hartree equation in the radial case. Colloq. Math., 2009, 114: 213-236
    [119] Miao, C.; Xu, G.; and Zhao, L.. Global well-posedness and scattering for the mass-criticalHartree equation with radial data. J. Math. Pures Appl., 2009,91: 49–79
    [120] Miao, C.; Xu, G.; and Zhao, L.. Global well-posedness and scattering for the defocusingH12-subcritical Hartree equation in Rd. Ann. I. H. Poincare-AN, 2009, 26: 1831–1852
    [121] Nakanishi, K.. Energy scattering for Hartree equations. Math. Res. Lett., 1999, 6: 107–118
    [122] Nawa, H.; and Ozawa, T.. Nonlinear scattering with nonlocal interactions. Comm. Math.Phys., 1992, 146: 259–275
    [123] Mio, W.; Ogino, T.; Minami, K.; and Takeda, S.. Modified nonlinear Schr¨odinger forAlfv′en waves propagating along the magnetic field in cold plasma. J. Phys. Soc. Japan,1976, 41: 265–271
    [124] Mjolhus, E.. On the modulational instability of hydromagnetic waves parallel to the mag-netic field. J. Plasma. Physc., 1996, 16: 321–334
    [125] Molinet, L.; and Ribaud, F.. On the low regularity of the Korteweg-de Vries-Burgers.Internat. Math. Res. Notices, 2002, 37: 1979–2005
    [126] Morawetz, C.. Time decay for the nonlinear Klein-Gordon equation. Proc. Roy. Soc. A,1968, 306: 291–296
    [127] Morawetz, C.; and Strauss, W.. Decay and scattering of solutions of a nonlinear relativisticwave equation. Comm. Pure Appl. Math., 1972, 25: 1–31
    [128] Ozawa, T.. On the nonlinear Schro¨dinger equations of derivative type. Indiana Univ. Math.J., 1996, 45: 137–163
    [129] Pecher, H.. The Cauchy problem for a Schro¨dinger-Korteweg-de Vries system with roughdata. Di?. Int. Eqns., 2005, 18(10): 1147–1174
    [130] Pitaevskii, L. P.. Vortex lines in an imperfect Bose gas. Sov. Phys. JETP, 1961, 13:451–454
    [131] Roy, T.. Global well-posedness for the radial defocusing cubic wave equation on R3 andfor rough data. Elect. J. Di?er. Eqns., 2007, 166: 1–22
    [132] Roy, T.. Adapted linear-nonlinear decomposition and global well-posedness for solutionsto the defocusing cubic wave equation on R3. Discrete Contin. Dyn. Syst., 2009, 24(4):1307–1323
    [133] Reed M.; and Simon B.. Methods of modern mathematical physics, II. Academic Press,1975.
    [134] Satsuma, J.; and Yajima, N.. Soliton solutions in a diatomic lattice system. Progr. Theor.Phys., 1979, 62: 370–378
    [135] Simon B.. Functional integration and quantum physics. Academic Press, New York, 1979.
    [136] Schochet H.; and Weinstein M. I.. The nonlinear Schr¨odinger limit of the Zakharov equa-tions governing Langmuir turbulence. Commun. Math. Phys., 1986, 106: 569–580
    [137] Strichartz, R. S.. Restriction of Fourier Transform to Quadratic Surfaces and Decay ofSolutions of Wave Equations. Duke Math. J., 1977, 44: 705–774
    [138] Sterbenz, J.. Angular Regularity and Strichartz Estimates for theWave Equation. Int.Math. Research Notices, 2005, 2005(4): 187–231
    [139] Sulem, C.; and Sulem, P.-L.. The nonlinear Schr¨odinger equation. Applied Math. Sciences,Pringer-Verlag, 139, 1999.
    [140] Suydam B. R.. Self focusing of very powerful laser beams. IEEE J. Q.E., 1974, 10: 837–843
    [141] Takaoka, H.. Well-posedness for the one dimensional Schro¨dinger equation with the deriva-tive nonlinearity. Adv. Di?. Eq., 1999, 4: 561–680
    [142] Takaoka, H.. Global well-posedness for Schr¨odinger equations with derivative in a nonlinearterm and data in low-order Sobolev spaces. Electron. J. Di?. Eqns., 2001, 42: 1–23
    [143] Tao, T.. Nonlinear dispersive equations. Local and global analysis. CBMS 106, eds. AMS,2006.
    [144] Tao, T.. Two remarks on the generalised Korteweg-de Vries equation. Discrete Contin.Dyn. Syst., 2007, 18(1): 1–14
    [145] Tao, T.; Visan, M.; and Zhang, X.. Global well-posedness and scattering for the mass-critical nonlinear Schro¨dinger equation for radial data in high dimensions. Duke Math. J.,2007, 140(1): 165–202
    [146] Tsutsumi, M.. Well-posedness of the Cauchy problem for a coupled Schr¨odinger-KdVequation. Math. Sciences Appl., 1993, 2: 513–528
    [147] Tsutsumi, M.; and Fukuda, I.. On solutions of the derivative nonlinear Schro¨dinger equa-tion. existence and uniqueness theorem. Funkcial. Ekvac., 1980, 23: 259–277
    [148] Tsutsumi, M.; and Fukuda, I.. On solutions of the derivative nonlinear Schro¨dinger equa-tion II. Funkcial. Ekvac., 1981, 234: 85–94
    [149] Vilela, M. C.. Inhomogeneous Strichartz estimates for the Schro¨dinger equation. Trans.Amer. Math. Soc., 2007, 359: 2123–2136
    [150] Visan, M.. The defocusing energy-critical nonlinear Schro¨dinger equation in dimensionsfive and higher. PH.D Thesis, UCLA, 2006.
    [151] Wu, Y.. The Cauchy Problem of the Schr¨odinger-Korteweg-de Vries System. Di?. Int.Eqns., 2010, 18(5–6): 1147–1174
    [152] Weinstein, M. I.. Nonlinear Schro¨dinger equations and sharp interpolation estimates.Comm. Math. Phys., 1983, 87(4): 567–576
    [153] Yin Yin Su Win. Global well-posedness of the derivative nonlinear Schrodinger equationson T. Preprint.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700