用户名: 密码: 验证码:
几种复杂流体的物性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“软物质(Soft matter)"这个词,是由诺贝尔奖获得者、法国物理学家德热纳(P. G. de Gennes)于1991年明确提出来。之前“软物质”也叫“复杂流体”软物质(Soft matter)或称软凝聚态物质(Soft condensed matter)是由固、液、气集团或大分子等为基本组元组成,是处于理想流体和固体之间的复杂体系。其结构单元(building blocks)间相互作用弱(约为kT),热涨落和熵主导其运动和变化。这类物质与普通固体、液体和气体很不相同。流体热涨落和固态的约束共存导致了软物质的新行为,体现了软物质组成、结构和相互作用的复杂性及其特殊性。
     21世纪被认为是生命科学的世纪,从物质划代角度来看,这也是软物质的世纪。如果没有软物质,生命也不复存在。任何生物结构(包括DNA、蛋白质和生物膜)都是建筑在软物质的基础上。软物质的许多奇特的行为、丰富物理内涵和广泛应用背景,引起越来越多物理学家的兴趣,成为具挑战性和迫切性的重要研究方向,成为凝聚态物理研究的重要前沿领域。我们主要研究铁磁流体、逆铁磁流体和电流变液等几种复杂流体的结构、性质和应用。之后我们介绍了特异材料和软光学特异材料的概念和一些应用。
     第二章,在外加直流磁场作用下,我们用有限元数值模拟方法展示了铁磁流体中光学负折射现象。该铁磁流体是由四氧化三铁颗粒外面包裹银壳层分散在水中形成的。在外加直流磁场的情况下,颗粒会聚集成链状,随着磁场的增大链会聚集成柱状结构。磁场可控的全角和宽频光学负折射来源于磁场诱导的链/柱状结构,在当前研究体系中传播的横磁波(TM)的等频率曲线是双曲线,根据边界条件,我们可以确定能流是负折射。软光学特异材料的提出,使得我们多了一个自由度(外场)来调节材料的结构,因此材料的光学性质会随着外场的变化而变化。此外,我们还介绍了多频可见光波段隐身斗篷的理论基础。基于变换光学和特异材料,我们可以设计一些光学器件,几乎任意地调控电磁波。但在实际应用中,材料吸收会相对比较大,实验中可以用一些增益材料来尽量减少吸收。另一挑战是拓宽高频下的工作频率。
     第三章,我们研究了逆铁磁流体的基态和磁泳现象。利用偶极-多极相互作用模型,我们发现逆铁磁流体的基态为体心正方晶格。了解体系的基态,有利于我们进一步研究体系的基本性质。在外加非均匀磁场作用下,考虑到结构转变和颗粒之间的相互作用,我们利用Ewald-Kornfeld公式和Maxwell-Garnett有效媒质理论求出作用在非磁性颗粒上的磁泳力。研究结果表明,非磁性颗粒的磁泳力受到逆铁磁流体具体的晶格结构、非磁性颗粒的体积分数、几何形状以及外磁场的频率等因素的调控。磁泳现象广泛应用于选矿和分离生物细胞中。我们的研究结果对磁泳现象的实际应用有着一定的指导意义。
     第四章,考虑到多极相互作用,我们利用三种方法研究了在电场作用下三颗粒系统的动力学行为,其中两个颗粒对称地固定于第三个自由颗粒的两侧。研究发现,第三个自由颗粒横向被拉开并释放,它会沿垂直于两固定颗粒的球心连线振荡。当横向振幅很小时,颗粒的运动是简谐运动。简谐运动的周期受颗粒的介电常数、密度、半径、颗粒间的距离和外电场调控。我们的研究结果有助于理解在外场作用下复杂流体中颗粒链间的相互作用的微观机理。
"Soft matter" was named firstly by P. G. de Gennes, the winner of Nobel Prize in 1991, and physical scientist in France. "Soft matter" is also called "Complex fluid" "Soft matter" or "Soft condensed matter" is a kind of complex system between the ideal fluid and solid. Generally, soft matter is composed of group (solid, liquid, gas) or the large-molecule. The interaction between building blocks is week (about KT), so the thermal fluctuation and entropy control the motion of the system. This kind of materials is much different from solid, liquid and gas. Thermal fluctuation of fluid and the constraint of solid cause the new behavior in soft matter, which exhibits the complexity and particularity of composition, structure and interaction of soft matter.
     The 21st century is considered as the century of life sciences, from the point of view of matter division, this is also the century of soft matter. If there is no soft matter, life can not exist. Any biological structure (including DNA, proteins and biomembrane) are built on the basis of soft matter. For the peculiar behavior, rich physical connotation, and various applications, soft matter attracts more and more attention of physicists, and has become an important research direction with challenge and urgency, and an important research frontier in condensed matter physics. We mainly investigate the structures, properties, and applications of some complex fluids, such as ferrofluids, inverse ferrofluids, and electrorheological fluids. Then, we introduce the concept and some applicatios of metamaterials and soft metamaterials.
     In Chapter 2, we numerically demonstrate optical negative refraction by using finite element simulations in ferrofluids containing isotropic Fe3O4 nanoparticles, each hav-ing an isotropic Ag shell suspended in water, in the presence of an external dc magnetic field H. Under external magnetic field, the particles will form chains, as the magnetic increases, the chains will form columns. The all-angle broadband optical negative re-fraction with magnetocontrollability arises from H-induced chains or columns. They result in hyperbolic equifrequency contour for transverse magnetic waves propagating in the system. From the boundary conditions, we found that the refraction of energy is negative. The proposed concept of soft optical matamaterials add us an external free-dom (external fields) to control the structure of the materials, so the optical properties of the materials will change as the external field change. Besides, we introduce the theory about multifrequecy optical cloak. On the basis of transformation optics and metamaterials, we can design some optical devises, which can arbitrarily manipulate electromagnetic field. In real applications, the absorption of the materials is big. We can use the gain materials to compensate for loss. Another challenge is to extend the working band at high frequencies.
     In Chapter 3, we investigate the ground state and magnetophoresis of inverse fer-rofluids. We found that the ground state of inverse ferrofluids is body-centered tetrag-onal (bct) lattices by using the dipole-multipole interaction model. Understanding the ground state of the system, we can further investigate the basic properties of the sys-tem. On the basis of the Ewald-Kornfeld formulation and the Maxwell-Garnett theory, we theoretically investigate the magnetophoretic force exerting on the nonmagnetic particles in inverse ferrofluids due to the presence of a nonuniform magnetic field, by taking into account the structural transition and long-range interaction. We numerically demonstrate that the force can be adjusted by choosing appropriate lattices, volume fractions, geometric shapes, and conductivities of the nonmagnetic particles, as well as frequencies of external magnetic fields. Magnetophoresis has been widely used in mill run and separation of biological cells. Our results have some significance in practical application of magnetophoresis.
     In Chapter 4, taking into account the multipole interaction, we utilize three methods to investigate the dynamic behavior of a chain of three microparticles in an electric field, two of which are fixed and symmetrically located in the two opposite sides of the third free microparticle. We reveal that, if the free microparticle is laterally dragged and released, it can oscillate perpendicular to the line joining the centers of the two fixed microparticles, being in simple harmonic oscillation with a fixed period for small oscillation amplitudes. The period of the harmonic oscillation can be controlled by the permittivity, density, radius, the distance of the particles, as well as the external electric field. Our results help us to understand the mechanism of the interaction of the particle chains in complex fluids under external fields.
引文
[1]P. G. de Gennes, Rev. Mod. Phys.64,645 (1992).
    [2]马红孺,陆坤权,物理29,516(2000).
    [3]陆坤权,刘寄星,软物质物理学导论(北京大学出版社,2006).
    [4]P. G. de Gennes, J. Badoz, Fragile Objects:Soft Matter, Hard Science, and the Thrill of Discovery, Copernicus, (New York:Springer-verlag,1996).
    [5]马余强,物理学进展22,73(2002).
    [6]B. M. Berkovsky, V. F. Medvedev, and M. S. Krakov, Magnetic Fluids, Engi-neering Applications (Oxford University Press, Oxford,1993).
    [7]C. Alexiou, W. Arnold, P. Hulin, R. Klein, A. Schmidt, C. Bergemann, and F. G. Parak, Magnetohydrodynamics 37,3 (2001).
    [8]R. E. Rosensweig, Ferrohydrodynamics (Cambridge Univ. Press, Cambridge, 1985).
    [9]王毛兰,胡春华,罗新,化学通报67,w62(2004).
    [10]翁兴园,磁性材料及器件29,35(1998).
    [11]J. B. Hayter and R. Pynn, Phys. Rev. Lett.49,1103 (1982).
    [12]R. W. Chantrell, A. Bradbury, J. Popplewell, and S. W. Charles, J. Appl. Phys. 53,2742 (1982).
    [13]S. Hess, B. J. Hayter, and R. Pynn, Mol. Phys.53,1527 (1984).
    [14]J. J. Weis and D. Levesque, Phys. Rev. Lett.71,2729 (1993).
    [15]M. A. Osipov, P. I. C. Teixeira, and M. M. TelodaGama, Phys. Rev. E 54,2597 (1996).
    [16]J. M. Tavares, J. J. Weis, and M. M. Telo da Gama, Phys. Rev. E 59,4388 (1999).
    [17]P. J. Camp and G. N. Patey, Phys. Rev. E 62,5403 (2000).
    [18]T. Tlusty and S. Safran, Science 290,1328 (2000).
    [19]H. Morimoto and T. Maekawa, J. Phys. A 33,247 (2000).
    [20]V. F. Puntes, K. M. Krishnan, and A. P. Alivisatos, Science 291,2115 (2001).
    [21]F. Gazeau, E. Dubois, J.-C. Bacri, F. Boue, A. Cebers, and R. Perzynski, Phys. Rev. E 65,031403 (2002).
    [22]A. Y. Zubarev and L. Y. Iskakova, Phys. Rev. E 65,061406 (2002).
    [23]L. Y. Iskakova and A. Y. Zubarev, Phys. Rev. E 66,041405 (2002).
    [24]Z. Wang, C. Holm, and H. W. Miiller, Phys. Rev. E 66,021405 (2002).
    [25]Z. Wang and C. Holm, Phys. Rev. E 68,041401 (2003).
    [26]K. Butter, P. H. H. Bomans, P. M. Frederik, G. J. Vroege, and A. P. Philipse, Nat. Mater.2,88 (2003).
    [27]G. Meriguet, M. Jardat, and P. Turq, J. Chem. Phys.121,6078 (2004).
    [28]Y. Lalatonne, J. Richardi, and M. P. Pileni, Nat. Mater.3,121 (2004).
    [29]K. Butter, P. H. H. Bomans, P. M. Frederik, G. J. Vroege, and A. P. Philipse, Nat. Mater.2,88 (2003).
    [30]J. P. Huang, Z. W. Wang, and C. Holm, Phys. Rev. E 71,061203 (2005).
    [31]M. Klokkenburg, B. H. Erne, J. D. Meeldijk, A. Wiedenmann, A. V. Petukhov, R. P. A. Dullens, and A. P. Philipse, Phys. Rev. Lett.97,185702 (2006).
    [32]M. Klokkenburg, B. H. Erne, A. Wiedenmann, A. V. Petukhov, and A. P. Philipse, Phys. Rev. E 75,051408 (2007).
    [33]Z. W. Wang, C. Holm, and H. W. Muller, Phys. Rev. E 66,021405 (2002).
    [34]R. A. Trasca and S. H. L. Klapp, J. Chem. Phys.129,084702 (2008).
    [35]M. J. Stevens and G. S. Grest, Phys. Rev. Lett.72,3686 (1994).
    [36]M. J. Stevens and G. S. Grest, Phys. Rev. E 51,5962 (1995).
    [37]M. J. Stevens and G. S. Grest, Phys. Rev. E 51,5976 (1995).
    [38]A. Y. Zubarev and A. O. Ivanov, Phys. Rev. E 55,7192 (1997).
    [39]P. J. Camp, J. C. Shelley, and G. N. Patey, Phys. Rev. Lett.84,115 (2000).
    [40]C. Rablau, P. Vaishnava, C. Sudakar, R. Tackett, G. Lawes, and R. Naik, Phys Rev E,78,051502 (2008).
    [41]S. S. Nair, J. Thomas, C. S. Suchand Sandeep, M. R. Anantharaman, and R. Philip, Appl Phys Lett,92,171908 (2008).
    [42]R. Richter and I. V. Barashenkov, Phys. Rev. Lett.94,184503 (2005).
    [43]C. Z. Fan and J. P. Huang, Appl. Phys. Lett.89,141906 (2006).
    [44]C. Z. Fan, G. Wang, and J. P. Huang, J. Appl. Phys.103,094107 (2008).
    [45]M. Yoon, P. Borrmann, and D. Tomanek, J. Phys.:Condens. Matter 19,086210 (2007).
    [46]李德才,磁性液体理论及应用,(科学出版社,北京,2003).
    [47]N. A. Brusentsov, L. V. Nikitin, T. N. Brusentsova, A. A. Kuznetsov, F. S. Bay-burtskiy, L. I. Shumakov, and N. Y. Jurchenko, J. Magn. Magn. Mate.252,378 (2002).
    [48]A. S. Lubbel et al., Cancer Research 56,4694 (1996).
    [49]A. S. Lubbel et al., Cancer Research 56,4686 (1996).
    [50]J. Xu, J. Z. Ma, and W. M. Chen, J. Clin. Stomatol.20,638 (2004).
    [51]A. S. Lubbe, C. Alexiou, and C. Bergemann, Journal of Surgical Research 95, 200(2001).
    [52]Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, J. Phys. D:Appl. Phys. 36, R167 (2003).
    [53]J. B. Hayter, R. Pynn, S. Charles, A. T. Skjeltorp, J. Trewhella, G. Stubbs, and P. Timmins, Phys. Rev. Lett.62,1667 (1989).
    [54]J. Cernak and G. Helgesen, Phys. Rev. E 78,061401 (2008).
    [55]J. Cernak, G. Helgesen, and A. T. Skjeltorp, Phys. Rev. E 70,031504 (2004).
    [56]E. Feinstein and M. Prentiss, J. Appl. Phys.99,064910 (2006).
    [57]B. J. de Gans, C. Blom, A. P. Philipse, and J. Mellema, Phys. Rev. E 60,4518 (1999).
    [58]R. Tao and J. M. Sun, Phys. Rev. Lett.67,398 (1991).
    [59]L. Zhou, W. J. Wen, and P. Sheng, Phys. Rev. Lett.81,1509 (1998).
    [60]Y. C. Jian, Y. Gao, J. P. Huang, and R. Tao, J. Phys. Chem. B 112,715 (2008).
    [61]W. J. Wen, X. X. Huang, P. Sheng, Soft Matter 4,200 (2008).
    [62]M. Parthasarathy, D. J. Klingenberg, Mater. Sci. Eng. R17,57 (1996).
    [63]R. Tao, J. M. Sun, Phys. Rev. Lett.67,398 (1991).
    [64]M. Whittle, W. A. Bullough, Nature 358 373, (1992).
    [65]H. R. Ma, W. J. Wen, W. Y. Tam, P. Sheng, Phys. Rev. Lett.77,2499 (1996).
    [66]L. Lobry, E. Lemaire, J. Electrost.47,61 (1999).
    [67]T. Hao, Advanced Materials 13,1847 (2001).
    [68]F. Carrique, F. J. Arroyo, A. V. Delgado, Journal of Colloid and Interface Science 243,351 (2001).
    [69]R. Tao, Y. C. Lan, Phys. Rev. E 72,041508 (2005).
    [70]K. Q. Lu, R. Shen, X. Z. Wang, G. Sun, W. J. Wen, J. X. Liu, Chin. Phys.15, 2476 (2006).
    [71]X. Q. Gong, J. B. Wu, X. X. Huang, et al, Nanotechnology 19,165602 (2006).
    [72]M. L. Kinsinger, B. Sun, N. L. Abbott, D. M. Lynn, Advanced Materials 19, 4208 (2007).
    [73]T. Belza, V. Pavlinek, P. Saha, M. J. Benes, D. Horak, O. Quadrat, Physica A 385,1 (2007).
    [74]Y. Ma, Y. L. Jia, Y. L. Shang, F. H. Liao, J. R. Li, S. H. Zhang, O. Zhang, Journal of Applied Polymer Science 105,2427 (2007).
    [75]E. K. Zholkovskij, J. H. Masliyah, V. N. Shilov, S. Bhattachalgee, Advances In Colloid And Interface Science 134,279 (2007).
    [76]K. Negita, Y. Misono, T. Yamaguchi, J. Shinagawa, Journal of Colloid and In-terface Science 321,452 (2008).
    [77]G. S. Roberts, R. Sanchez, R. Kemp, T. Wood, P. Bartlett, Langmuir 24,6530 (2008).
    [78]J. Y. Hong, E. Kwon, J. Jang, Soft Matter 5,951 (2009).
    [79]M. Stenicka, V. Pavlinek, P. Saha, N. V. Blinova, J. Stejskal, O. Quadrat, Colloid and Polymer Science 287,403(2009).
    [80]Y. C. Cheng, X. H. Liu, J. J. Guo, F. H. Liu, Z. X. Li, G. H. Xu, P. Cui, Nan-otechnology 20,055604 (2009).
    [81]Q. L. Cheng, V. Pavlinek, Y. He, C. Z. Li, P. Saha, Colloid and Polymer Science 287,435 (2009).
    [82]S. Sarikaya, M. Yavuz, H. Yilmaz, H. I. Unal, B. Sari, Polymer Composites 30, 583 (2009).
    [83]W. Wen, X. Huang, S. Yang, K. Lu, P. Sheng, Nat. Mater.2,727 (2003).
    [84]P. Tan, W. J. Tian, X. F. Wu, J. Y. Huang, L. W. Zhou, and J. P. Huang, J. Phys. Chem. B 113,9092 (2009).
    [85]V. G. Veselago, Sov. Phys. Usp.10,509 (1968).
    [86]S. A. Ramakrishna, Rep. Prog. Phys.68,449 (2005).
    [87]C. M. Soukoulis, M. Kafesaki, E. N. Economou, Adv. Mater.18,1941 (2006).
    [88]W. J. Padilla, D. N. Basov, and D. R. Smith, Materialstoday 9,28 (2006).
    [89]R. A. Shelby, D. R. Smith, S. Schultz, Science 292,77 (2001).
    [90]M.C. K. Wiltshire, J.B.Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, J. V. Hajnal, Science 291,849 (2001).
    [91]D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett.84,4184 (2000).
    [92]http://www.nanotechnology.bilkent.edu.tr/millimeter-wave-scale.htm.
    [93]T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, Science 303,1494 (2004).
    [94]S. Linden, C. Enkrich, M.Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, Science 306,1351(2004).
    [95]C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, Phys. Rev. Lett.95,203901 (2005).
    [96]Y. Gao, J. P. Huang, Y. M. Liu, L. Gao, K. W. Yu, and X. Zhang, Phys. Rev. Lett. 104,034501 (2010).
    [97]A. B. Golovin and O. D. Lavrentovich, Appl. Phys. Lett.95,254104 (2009).
    [98]J. B. Pendry, D. Schurig, and D. R. Smith, Science 312,1780 (2006).
    [99]D. Schurig, J. B. Pendry, and D. R. Smith, Opt. Express 14,9794 (2006).
    [100]D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314,977 (2006).
    [101]V. M. Shalaev, Science 322,384 (2008).
    [102]Y. Lai, J. Ng, H.Y. Chen, D.Z. Han, J.J. Xiao, Z. Q. Zhang, and C. T. Chan, Phys. Rev. Lett.102,253902 (2009).
    [103]C. M. Soukoulis, S. Linden, and M.Wegener, Science 315,47 (2007).
    [104]J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, Nature 455,376 (2008).
    [105]H. J. Lezec, J. A. Dionne, and H. A. Atwater, Science 316,430 (2007).
    [106]D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, Science 305,788 (2004).
    [107]A. V. Kildishev, V. M. Shalaev, Opt. Lett.33,43 (2008).
    [108]H. Y. Chen, C. T. Chan, P. Sheng, Nature Materials 9,387 (2010).
    [109]G. A. Zheng, X. Heng, and C. H. Yang, New J. Phys.11,033010 (2009).
    [110]Y Lai, H.Y Chen, Z. Q. Zhang, and C. T. Chan, Phys. Rev. Lett.102,093901 (2009).
    [111]J. Ng, H.Y. Chen, and C. T. Chan, Opt. Lett.34,644 (2009).
    [112]H. Y. Chen, X. H. Zhang, X. D. Luo, H. R. Ma, and C. T. Chan, New J. Phys. 10,113016(2008).
    [113]T. Yang, H.Y. Chen, X. D. Luo, and H. R. Ma, Opt. Express 16,18545 (2008).
    [114]M. Yan, W. Yan, and M. Qiu, Phys. Rev. B 78,125113 (2008).
    [115]M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, Phys. Rev. Lett.100,063903 (2008).
    [116]M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, Photon. Nanostr. Fundam. Appl.6,87 (2008).
    [117]J. Li and J. B. Pendry, Phys. Rev. Lett.101,203901 (2008).
    [118]T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, M. Wegener, Science 328,337 (2010).
    [119]W. X. Jiang, J. Y. Chin, Z. Li, Q. Cheng, R. P. Liu, and T. J. Cui, Phys. Rev. E 77,066607 (2008).
    [120]Y. Huang, Y. Feng, and T. Jiang, Opt. Express 15,11133 (2007).
    [121]B. Zhang, H. Chen, B. I. Wu, Y. Luo, L. Ran, and J. A. Kong, Phys. Rev. B 76, 121101 (R) (2007).
    [122]H. Chen, B. I. Wu, B. Zhang, and J. A. Kong, Phys. Rev. Lett.99,063903 (2007).
    [123]A. V. Kildishev, E. E. Narimanov, Opt. Lett.32,3432 (2007).
    [124]U. Leonhardt and T. G. Philbin, New J. Phys.8,247 (2006).
    [125]M. Schmiele, V. S. Varma, C. Rockstuhl, and F. Lederer, Phys. Rev. A 81, 033837 (2010).
    [126]X. F. Zang and C. Jiang, Opt. Express 18,10168 (2010).
    [1]V. G. Veselago, Sov. Phys. Usp.10,509 (1968).
    [2]R. A. Shelby, D. R. Smith, S. Schultz, Science,292,77 (2001).
    [3]J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. Stacy, and X. Zhang, Science 321,930 (2008).
    [4]D. R. Smith, P. Kolinko, and D. Schurig, J. Opt. Soc. Am. B 21,1032 (2004).
    [5]A. Fang, T. Koschny, and Costas M. Soukoulis, Phys. Rev. B 79,245127 (2009).
    [6]D. R. Smith and D. Schurig, Phys. Rev. Lett.90,077405 (2003).
    [7]V. A. Podolskiy and E. E. Narimanov, Phys. Rev. B 71,201101(R) (2005).
    [8]M. Notomi, Phys. Rev. B 62,10696 (2000).
    [9]E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, Nature 423,604 (2003).
    [10]H. Shin and S. H. Fan, Phys. Rev. Lett.96,073907 (2006).
    [11]H. J. Lezec, J. A. Dionne, and H. A. Atwater, Science 316,430 (2007).
    [12]J. B. Pendry, Science 306,1353 (2004).
    [13]A. Pimenov, A. Loidl, P. Przyslupski, and B. Dabrowski, Phys. Rev. Lett.95, 247009 (2005).
    [14]J. B. Pendry, Phys. Rev. Lett.85,3966 (2000).
    [15]J. P. Huang and K. W. Yu, Phys. Rep.431,87 (2006).
    [16]W. J. Padilla, D. N. Basov, and D. R. Smith, Materialstoday 9,28 (2006).
    [17]C. Y. Luo, Steven G. Johnson, J. D. Joannopoulos, and J. B. Pendry, Phys. Rev. B,65,201104 (R) (2002).
    [18]Y. M. Liu, G. Bartal, and X. Zhang, Opt. Express 16,15439 (2008).
    [19]S. Odenbach, Magnetoviscous Effects in Ferrofluids (Springer, Berlin,2002).
    [20]K. Butter, P. H. H. Bomans, P. M. Frederik, G. J. Vroege, and A. P. Philipse, Nat. Mater.2,88 (2003).
    [21]M. Klokkenburg, B. H. Erne, J. D. Meeldijk, A. Wiedenmann, A. V. Petukhov, R. P. A. Dullens, and A. P. Philipse, Phys. Rev. Lett.97,185702 (2006).
    [22]M. Klokkenburg, B. H. Erne, A. Wiedenmann, A. V. Petukhov, and A. P. Philipse, Phys. Rev. E 75,051408 (2007).
    [23]Z. W. Wang, C. Holm, and H. W. Muller, Phys. Rev. E 66,021405 (2002).
    [24]R. A. Trasca and S. H. L. Klapp, J. Chem. Phys.129,084702 (2008).
    [25]If the chains have different n, a volume average may be adopted for Eq. (2.11) instead.
    [26]P. Sheng, Introduction to Wave Scattering, Localization, and Mesoscopic Phe-nomena (Academic Press, New York,1995).
    [27]D. J. Bergman, Phys. Rep.43,377 (1978).
    [28]D. J. Bergman and D. Stroud, Solid State Phys.46,147 (1992).
    [29]T. B. Jones, Electromechanics of Particles (Cambridge University Press, Cam-bridge,1995).
    [30]L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continu-ous Media,2nd ed. (Pergamon, New York,1984).
    [31]C. Z. Fan and J. P. Huang, Appl. Phys. Lett.89,141906 (2006).
    [32]In general, the shape factors are mathematically the same as depolarization or demagnetization factors for spheroids. From physical point of view, according to Eq. (2.11) alone, the shape factors can be seen to denote depolarization factors only. On the other hand, since the shape factors are to be determined by n and thus H, they can also be seen as demagnetization factors.
    [33]Y. Gao, J. P. Huang, Y. M. Liu, L. Gao, K. W. Yu, and X. Zhang, Phys. Rev. Lett. 104,034501 (2010).
    [34]A. Schlegel, S. F. Alvarado, and P. Wachter, J. Phys. C:Solid State Phys.12, 1157(1979).
    [35]P. B. Johnson and R. W. Christy, Phys. Rev. B 6,4370 (1972).
    [36]J. D. Jackson, Classical Electrodynamics,3rd edition (John Wiley & Sons, Inc., 2001).
    [37]W. T. Lu and S. Sridhar, Opt. Express 13,10673 (2005).
    [38]W. T. Lu and S. Sridhar, Phys. Rev. B 77,233101 (2008).
    [39]P. A. Belov, Microwave Opt. Tech. Lett.37,259 (2003).
    [40]D. R. Smith, J. B. Pendry, M. C. K. Wiltshire, Science,305,788 (2004).
    [41]Preliminary results done by J. Z. Hu, Y. Gao, and J. P. Huang.
    [42]J. B. Pendry, D. Schurig, and D. R. Smith, Science 312,1780 (2006).
    [43]U. Leonhardt, Science 312,1777 (2006).
    [44]D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314,977 (2006).
    [45]S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, Phys. Rev. E 74,036621 (2006).
    [46]W. S. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, Nat. Photonics 1, 224 (2007).
    [47]A. Alu and N. Engheta, Phys. Rev. Lett.100,113901 (2008).
    [48]G. W. Milton and N. A. Nicorovici, Proc. R. Soc. London, Ser. A 462,3027 (2006).
    [49]H. Y. Chen and C. T. Chan, Appl. Phys. Lett.91,183518 (2007).
    [50]S. A. Cummer and D. Schurig, New J. Phys.9,45 (2007).
    [51]M. Farhat, S. Enoch, S. Guenneau, and A. B. Movchan, Phys. Rev. Lett.101, 134501 (2008).
    [52]C. W. Qiu, L. Hu, B. L. Zhang, B. I. Wu, S. G. Johnson, J. D. Joannopoulos, Opt. Express 17,13467(2009).
    [53]H. Y. Chen and C. T. Chan, J. Phys. D:Appl. Phys.43,113001 (2010).
    [54]T. Y. Chen, C. N. Weng, and J. S. Chen, Appl. Phys. Lett.93,114103 (2008).
    [55]A. Greenleaf, M. Lassas, and G. Uhlmann, Physiol. Meas.24,413 (2003).
    [56]C. Z. Fan, Y. Gao, and J. P. Huang, Appl. Phys. Lett.92,251907 (2008).
    [57]S. Zhang, D. A. Genov, C. Sun, and X. Zhang, Phys. Rev. Lett.100,123002 (2008).
    [58]J. J. Zhang, J. T. Huangfu, Y. Luo, H. S. Chen, J. A. Kong, and B. I. Wu, Phys. Rev. B 77,035116 (2008).
    [59]H. Y. Chen, Z. X. Liang, P. J. Yao, X. Y. Jiang, H. R. Ma, and C. T. Chan, Phys. Rev. B 76,241104(R) (2007).
    [60]D. X. Wang, H. S. Chen, L. X. Ran, J. T. Huangfu, J. A. Kong, and B. L. Wu, Appl. Phys. Lett.93,043515 (2008).
    [61]U. Leonhardt and T. Tyc, Science 323,110 (2009).
    [62]D. Schurig, J. B. Pendry, and D. R. Smith, Opt. Express 14,9794 (2006).
    [63]G. W. Milton, M. Briane, and J. R. Willis, New J. Phys.8,248 (2006).
    [64]E. J. Post, Formal structure of electromagnetics (Wiley, New York,1962).
    [65]H. Y. Chen, C. T. Chan, P. Sheng, Nature Materials 9,387 (2010).
    [66]Y. Gao, J. P. Huang, and K. W. Y, J. Appl. Phys.105,124505 (2009).
    [67]L. L. Leung, The Design of Cloaking Metamaterial via Spectra Representaion Theory, MPhil Thesis, Chinese University of Hong Kong (2008).
    [68]W. T. Doyle and I. S. Jacobs, J. Appl. Phys.71,3926 (1992).
    [69]S. Ju and Z. Y. Li, Phys. Lett. A 353,194 (2006).
    [70]X. F. Zhou and L. Gao, J. Appl. Phys.100,024913 (2006).
    [71]E. B. Wei, G. Q. Gu, and K. W. Yu, Int. J. Mod. Phys. B 22,507 (2008).
    [72]A. K. Popov, and V. M. Shalaev, Opt. Lett.31,2169 (2006).
    [73]M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, Opt. Express 16 1385 (2008).
    [74]A. Fang, Th. Koschny, M. Wegener, and C. M. Soukoulis, Phys. Rev. B 79, 241104(R) (2009).
    [1]G. Meriguet, F. Cousin, E. Dubois, F. Boue, A. Cebers, B. Farago, and R. Perzyn-ski, J. Phys. Chem. B 110,4378 (2006).
    [2]R. E. Rosenweig, Ferrohydrodynamics (Cambridge University Press, Cam-bridge,1985).
    [3]J. P. Huang, J. Phys. Chem. B 108,13901 (2004).
    [4]C. Scherer and A. M. Figueiredo Neto, Braz. J. Phys.35 718 (2005).
    [5]A. T. Skjeltorp, Phys. Rev. Lett 51,2306 (1983).
    [6]J. B. Hayter, R. Pynn, S. Charles, A. T. Skjeltorp, J. Trewhella, G. Stubbs, and P. Timmins, Phys. Rev. Lett.62,1667 (1989).
    [7]J. Cernak and G. Helgesen, Phys. Rev. E 78,061401 (2008).
    [8]J. Cernak, G. Helgesen, and A. T. Skjeltorp, Phys. Rev. E 70,031504 (2004).
    [9]J. Ugelstad, P. Stenstad, L. Kilaas, W. S. Prestvik, R. Herje, A. Berge, and E. Homes, Blood Purif.11,349 (1993).
    [10]J. B. Hayter, R. Pynn, S. Charles, A. T. Skjeltorp, J. Trewhella, G. Stubbs, and P. Timmins, Phys. Rev. Lett.62,1667 (1989).
    [11]A. Koenig, P. Hebraud, C. Gosse, R. Dreyfus, J. Baudry, E. Bertrand, and J. Bibette, Phys. Rev. Lett.95,128301 (2005).
    [12]E. Feinstein and M. Prentiss, J. Appl. Phys.99,064910 (2006).
    [13]B. J. de Gans, C. Blom, A. P. Philipse, and J. Mellema, Phys. Rev. E 60,4518 (1999).
    [14]R. Tao and J. M. Sun, Phys. Rev. Lett.67,398 (1991).
    [15]L. Zhou, W. J. Wen, and P. Sheng, Phys. Rev. Lett.81,1509 (1998).
    [16]Y. C. Jian, Y. Gao, J. P. Huang, and R. Tao, J. Phys. Chem. B 112,715 (2008).
    [17]C. K. Lo and K. W. Yu, Phys. Rev. E 64,031501 (2001).
    [18]T. B. Jones, Electromechanics of Particles (Cambridge University Press, New York,1995), Chap. Ⅲ.
    [19]Y. Sahoo, A. Goodarzi, M. T. Swihart, T. Y. Ohulchanskyy, N. Kaur, E. P. Furlani, and P. N. Prasad, J. Phys. Chem. B 109,3879 (2005).
    [20]S. Odenbach, Magnetoviscous Effects in Ferrofluids (Springer, Berlin,2002).
    [21]M. Zborowski, G. R. Ostera, L. R. Moore, S. Milliron, J. J. Chalmers, and A. N. Schechter, Biophys. J.84,2638 (2003).
    [22]D. J. Bergman, Phys. Rep.43,377 (1978).
    [23]J. P. Huang, Chem. Phys. Lett.390,380 (2004).
    [24]J. Cernak, G. Helgesen, and A. T. Skjeltorp, Phys. Rev. E 70,031504 (2004).
    [25]H. A. Pohl, Dielectrophoresis (Cambridge University Press, Cambridge,1978).
    [26]J. P. Huang, Phys. Rev. E 70,041403 (2004).
    [27]P. P. Ewald, Ann. Phys. (Leipzig) 64,253 (1921); H. Kornfeld, Z. Phys.22,27 (1924).
    [28]J. P. Huang and K. W. Yu, Appl. Phys. Lett.87,071103 (2005).
    [29]J. C. M. Garnett, Philos. Trans. R. Soc. London, Ser. A 203,385 (1904); 205, 237 (1906).
    [30]J. P. Huang, Y. C. Jian, C. Z. Fan, K. W. Yu, J. Phys. Chem. C 112,621 (2008).
    [31]J. P. Huang and K. W. Yu, Phys. Rep.431,87 (2006).
    [32]J. P. Huang, J. T. K. Wan, C. K. Lo, and K. W. Yu, Phys. Rev. E 64,061505 (2001).
    [33]L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continu-ous Media,2nd ed. (Pergamon, New York,1984).
    [34]W. T. Doyle and I. S. Jacobs, J. Appl. Phys.71,3926 (1992).
    [35]Y. Gao, Y. C. Jian, L. F. Zhang, and J. P. Huang, J. Phys. Chem. C 111,10785 (2007).
    [36]K. W. Yu and J. T. K. Wan, Comput. Phys. Commun.129,177 (2000).
    [37]J. P. Huang, M. Karttunen, K. W. Yu, and L. Dong, Phys. Rev. E 67,021403 (2003).
    [1]J. T. K. Wan, K. W. Yu, and G. Q. Gu, Phys. Rev. E 64,061501 (2001).
    [2]R. Tao and Y. C. Lan, Phys. Rev. E 72,041508 (2005).
    [3]E. M. Furst and J. P. Pantina, Phys. Rev. E 75,050402(R) (2007).
    [4]E. M. Furst and A. P. Gast, Phys. Rev. E 61,6732 (2000).
    [5]W. J. Tian, M. K. Liu, and J. P. Huang, Phys. Rev. E 75,021401 (2007).
    [6]H. Ma, W. Wen, W. Y. Tam, and P. Sheng, Phys. Rev. Lett.77,2499 (1996).
    [7]L. Poladian, Phys. Rev. B 44,2092 (1991).
    [8]K. W. Yu and J. T. K. Wan, Comput. Phys. Commun.129,177 (2000).
    [9]Y. Gao, W. J. Tian, W. Wang, and J. P. Huang, Appl. Phys. Lett.92,122902 (2008).
    [10]M. Shen, J. G. Cao, H. T. Xue, J. P. Huang, and L. W. Zhou, Chem. Phys. Lett. 423,165 (2006).
    [11]G. Q. Gu, K. W. Yu, and P. M. Hui, J. Chem. Phys.116,10989 (2002).
    [12]W. J. Tian, J. P. Huang, and K. W. Yu, J. Appl. Phys.105,102044 (2009).
    [13]K. Kim, D. Stroud, X. T. Li, and David J. Bergman, Phys. Rev. E 71,031503 (2005).
    [14]J. D. Jackson, Classical Electrodynamics,3rd edition (John Wiley & Sons, Inc., New York,2001).
    [15]Y. Ju, J. P. Huang, J. Phys. Chem. B 112,7865 (2008).
    [16]Z. Jiang, Z. Shen, and K. Lu, J. Electrostatics 53,53 (2001).
    [17]Z. Jiang, J. Electrostatics 58,247 (2003).
    [18]L. Poladian, Q. J. Mech. Appl. Math.41,395 (1988).
    [19]J. T. K. Wan, K. W. Yu, and G. Q. Gu, Phys. Rev. E 62,6846 (2000).
    [20]W. Wen, X. Huang, S. Yang, K. Lu, and P. Sheng, Nature Materials 2,727 (2003).
    [1]G. Q. Gu, K. W. Yu, and P. M. Hui, J. Chem. Phys.116,10989 (2002).
    [2]W. J. Tian, J. P. Huang, and K. W. Yu, J. Appl. Phys.105,102044 (2009).
    [3]K. Kim, D. Stroud, X. T. Li, and David J. Bergman, Phys. Rev. E 71,031503 (2005).
    [4]K. W. Yu, Jones T. K. Wan, Comput. Phys. Commun.129,177 (2000).
    [5]Y. Ju, J. P. Huang, J. Phys. Chem. B 112,7865 (2008).
    [6]Z. Jiang, J. Electrost.58,247 (2003).
    [7]Z. Jiang, Z. Shen, K. Lu, J. Electrost.53,53 (2001).
    [8]L. Poladian, Phys. Rev. B 44,2092 (1991).
    [9]J. D. Jackson, Classical Electrodynamics,3rd, (John Wiley & Sons, New York, 2001).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700