用户名: 密码: 验证码:
室温单分子的动力学和光谱特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在最近二十多年来,单分子光谱的研究由于在量子信息、光化学、生物学以及纳米材料科学等领域中的广泛应用引起了人们的极大兴趣。在一个典型的系综实验中,单分子系统的不同动力学特性被大量平均,其结果是相关参数的平均值。通常采用的系综测量中的许多理论内容和模型不能够描述单分子光谱。单分子是一个能够用来研究量子动力学效应的简单体系,单分子光谱不含有任何系综平均,能够产生非常精细的动力学性质的信息。
     在应用单分子光谱研究单分子系统的动力学过程中,发现了许多新颖的实验现象,包括单分子谱线的随机变化、荧光间断现象、单分子斯塔克效应、光子聚束和反聚束现象等。室温下工作的单分子系统由于对光子的收集效率较高,对应光子强度统计呈亚泊松强度分布特性,而且具有便于实际应用的优势得到了关注。
     研究室温单分子量子动力学特性,并进行可靠的观测和控制是进一步应用单分子于量子信息领域的先决条件。本论文主要针对室温条件下掺杂于聚合体薄膜中的单个染料分子的荧光探测进行了理论分析和实验研究;分析了单分子时间分辨光子计数光谱的最佳信号噪声比;基于单事件光子统计以及Mandel's Q-参数分析给出了一种快速有效的单分子判别方法;根据测量得到的室温下PMMA薄膜中Cy5染料荧光分子的光子计数光谱分析了单个Cy5分子的激发态寿命和三重态的驰豫时间。使用化学结构对称扁平、发光效率高以及存活时间长的SR荧光分子作为探测对象,进一步研究了单分子的动力学特性。
     本论文工作的创新点:
     1.基于标准的HBT测量方式以及单事件光子统计,通过对实际单分子信号源和理想双分子信号源的荧光统计特性的分析,给出单分子系统的判别方法。依据(?),仅需要几百毫秒的测量时间以及大约探测10~4个荧光光子就可以快速判断光子源是否为单分子系统,对所提出判据的合理性、有效性进行了分析。
     2.通过光子计数光谱在不同信号背景比下的最佳信号噪声比分析,讨论单分子荧光背景信号分别为时间均匀分布和指数特性分布时同步取样时间门的选取。测量了室温下PMMA薄膜中Cy5荧光分子的时间分辨光子计数光谱,分析得到单个Cy5荧光分子的激发态寿命间于1.6 ns到2.0 ns之间,对三重态的布居时间进行了分析。研究了单分子光漂白时间和光子产率对激发强度的依赖特性。
     3.通过测量两个正交偏振探测通道的荧光光子关联强度所得到的偏振度值标定单分子偶极再取向的变化。对室温下聚合体薄膜表面的单个SR荧光分子的偶极取向进行测量及跟踪,测量单分子偶极再取向行为,发现偶极再取向具有在多个偏振态之间的量子化跳跃特性,且分子的转动关联时间τ_R在55 ms附近出现的概率最大。
     4.以SR荧光分子作为探针分子,分别测量聚合体薄膜表面、薄膜内部以及超冷液体的动力学特性。探测发现薄膜表面的荧光分子表现出快速的转动行为,反映了聚合体薄膜表面活跃的动力学特性。镶嵌在薄膜内部的荧光分子受到环境的束缚,自由度低,主要表现出单分子三重态的影响,测量得到三重态驰豫时间约0.2 ms。液体中的荧光分子具有多重自由度,表现出明显的扩散行为,SR荧光分子在Glycerol溶液中的扩散特征时间是1.1 s。
In about 20 years, single-molecule spectroscopy has evolved from a specialized variety of optical spectroscopy into a versatile tool used to address a broad range of questions in physics, chemistry, biology, and materials science. In a typical ensemble experiment, many molecules are probed at the same time and therefore such a measurement can only yield the average behavior of the molecular dynamics. A single molecule is a simple system which can be used to research the quantum dynamics. The study of single molecules completely eliminates ensemble averaging, and therefore offers the most refined dynamics information about the molecules and surroundings.
     In optically detection experiments, a variety of phenomena not seen in ensembles have been discovered in single-molecule spectroscopy including dynamic spectral shifts, discrete jumps in fluorescence intensity due to intersystem crossing, single-molecule Stark effects, and photon bunching and anti-bunching. At room temperature single molecules experiment has higher fluorescence collection efficiency, and the photon counting distribution exhibits a sub-Poissonian photon statistics behavior. The single molecules optically detection experiments and applications are more simple and actual at room temperature.
     One important presupposition of single-molecule application in quantum information fields is to investigate, measure and control the single molecules quantum dynamics. The main contents of this thesis are theoretically analysis and experimental study of single dye molecules fluorescence detection. Signal-to-noise ratio of time-resolved spectroscopy of a single molecule is analysed by using time-gated techniques. Based on single-molecule photobleaching phenomenon, we present a fast and robust method to recognize single molecules by using single events photon statictics and Mandel's Q-parameter. With single molecular time-resolved photon counting spectroscopy, we measure the fluorescence lifetime and on/off-state lifetime of single Cy5 molecules adulterated in PMMA films. And the single-molecule dynamics are researched by using of flat SR molecules.
     The innovations of this paper:
     1. By use of Hanbury-Brown-Twiss method and the single events photon statictics, it is shown that the Q-parameter of an assumed ideal double-molecule fluorescence with the same average photon number as that of the sample fluorescence can act as the criterion for single-molecule recognition. When , only need hundreds ms measurement time and about 10~4 fluorescence photons to recognize a single molecules system. The influence of signal-to-background ratio and the error estimates for photon statistics are also presented.
     2. Based on optimal signal-to-noise ratio analysis of photon counting spectroscopy with different signal-to-background ratio, it is found that optimal signal-to-noise ratio can be obtained by choosing an appropriate gate time with a certain optical background. Using single molecular time-resolved photon counting spectroscopy, we measure the fluorescence lifetime and triplet state lifetime of single Cy5 molecules in PMMA polymer film. And the influence of excited intensity on single molecules photobleaching and photon yield is measured experimentally.
     3. The reorientational information of the in-plane component of the molecular absorption dipole moment can be obtained based on polarization measurements for emission fluorescence. The dipole orientational jumps of single dye molecules adsorbed onto polymer films are presented and the rotation correlation time is about 55 ms mostly.
     4. Single SR molecules fluorescence is detected in polymer film, on polymer surface and in supercooled liquid respectively. It is found that the single molecules on polymer surface have vivid reorientation dynamics at room temperature, which indicates the dynamic characteristic of polymer surface. The molecules in polymer are immobile and just showing the effects of intersystem crossing with the triplet state lifetime of 0.2 ms. And a clear diffusing behavior is observed for single molecules in liquid with diffusing time of 1.1 s for SR fluorescence molecules in Glyserol.
引文
[1]. S. Weiss. Fluorescence spectroscopy of single biomolecules. Science, 1999, Vol.283, 1676-1683
    [2]. X. S. Xie, and J. K. Trautman. Optical studies of single molecules at room temperature. Ann. Rev. Phys. Chem., 1998, Vol. 49,441-480
    [3]. M. V. Mostovoy and J. Knoester. Statistics of Optical Spectra from Single-Ring Aggregates and Its Application to LH2. J. Phys. Chem. B, 2000, Vol. 104, 12355-12364
    [4]. S. E. Dempster, S. Jang, and R. J. Silbey. Single molecule spectroscopy of disordered circular aggregates: A perturbation analysis. J. Chem. Phys., 2001, Vol.114,10015
    [5]. M. Orrit. Single-molecule spectroscopy: The road ahead. J. Chem. Phys., 2002, Vol. 117,10938-10946
    [6]. H. Yang, and X. S. Xie. Statistical Approaches for Probing Single-Molecule Dynamics Photon-by-Photon. Chem. Phys., 2002, Vol. 284, 423-437
    [7]. F. Kulzer and M. Orrit. Single-molecule Optics. Ann. Rev. Phys. Chem., 2004, Vol. 55,585-611
    [8]. K. K. Rebane and L. A. Rebane. Persistent spectral hole burning: science and applications. Springer-Verlag: New York, 1998, Chaper 2
    [9]. W. E. Moerner, and L. Kador. Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett., 1989, Vol. 62, 2535-2538
    [10]. M.Orrit and J. Bernard. Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys. Rev. Lett., 1990, Vol. 65, 2716-2719
    [11]. A. B. Myers, P. Tchenio, M. Z. Zgierski, and W. E. Moerner. Vibronic Spectroscopy of Individual Molecules in Solids. J. Phys. Chem., 1994, Vol. 98 (41),10377-10390
    [12]. L. Fleury, Ph. Tamarat, B. Lounis, J. Bernard and M. Orrit. Fluorescence spectra of single pentacene molecules in p-terphenyl at 1.7 K. Chem. Phys. Letters, 1995, Vol.236, 87-95
    [13]. E. B. Shera, N. K. Seitzinger, L. M. Davis, R. A. Keller, and S. A. Soper. Detection of single fluorescent molecules. Chem. Phys. Lett., 1990, Vol. 174, 553-557
    [14]. S. Nie, and R. N. Zare. Optical detection of single molecules. Annu Rev Biophys Biomol. Struct., 1997, Vol. 26, 567-596
    [15]. W. E. Moerner and L. Kador. Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys. Rev. Lett., 1991, Vol. 66, 1376
    [16]. S. A. Soper, L. M. Davis, and E. B. Shera. Detection and identification of single molecules in solution. J. Opt. Soc. Am., 1992, Vol. B 9,1761-1769
    [17]. E. Betzig, and R. J. Chichester. Single molecules observed by near-field scanning optical microscopy. Science, 1993, Vol. 262, 1422- 1425
    [18]. J. K.Trautmann, J. J.Macklin, L. E. Brus, and E. Betzig, Near-field spectroscopy of single molecules at room temperature. Nature, 1994, Vol. 369, 40-42
    [19]. X. S. Xie, and R. C. Dunn. Probing single molecule dynamics. Science. 1994, Vol.265, 361-364
    [20]. S. Nie, D. T. Chiu, and R. N. Zare. Probing individual molecules with confocal fluorescence microscopy. Science, 1994, Vol. 266,1018-1021
    [21]. T. Funatsu, Y. Hanada, M. Tokunaga, K. Saito, and T. Yanagida. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature (London), 1995, Vol. 374, 555-559
    [22]. B. Lounis, W. E. Moerner. Single photons on demand from a single molecule at room temperature. Nature, 2000, Vol. 407, No. 6803,491-493
    [23]. L. Fleury, and J.-M.Segura. Nonclassical photon statistics in single-molecule fluorescence at room temperature .Phys. Rev. Lett., 2000, Vol. 84, No. 6, 1148-1151
    [24]. F. Treussart, R. Alleaume, L. T. Xiao, J. -M. Courty, and J. F. Roch. Direct measurement of the photo statistics of a triggered single photon source, Phys. Rev.Lett., 2002, Vol. 89, No. 9, 093601
    [25]. F. Treussart, A. Clouqueur, C. Grossman and J. F. Roch. Photon antibunching in the fluorescence of a single dye molecule embedded in a thin polymer film. Opt.Lett., 2001, Vol. 26, No. 19,1504-1506
    [26]. K. Ritchie, X.-Y. Shan, J. Kondo, K. Iwasawa, T. Fujiwara, A. Kusumi. Detection of non-Brownian diffusion in the cell membrane in single molecule tracking.Biophys. J, 2005, Vol. 88, 2266-2277
    [27]. K. Karrai, X. Lorenz, and L. Novotny. Enhanced reflectivity contrast in confocal solid immersion lens microscopy. Appl. Phys. Lett., 2000, Vol. 77, 3459-3461
    [28]. D. W. Pohl, W. Denk, and M. Lanz. Optical stethoscopy: Image recording with resolution λ/20. Appl. Phys. Lett., 1984, Vol. 44, 651-653
    [29]. E. Betzig and J. K. Trautman. Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science, 1992, Vol. 257,189-195
    [30]. E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Kratschmer. Near-field scanning optical microscopy (NSOM): Development and biophysical applications.Biophys. J., 1986, Vol. 49, 268-279
    [31]. A. Lewis, M. Isaacson, A. Harootunian, and A. Muray. Development of a 500A resolution light microscope. Ultramicroscopy, 1984, Vol. 13, 227-231
    [32]. L. Novotny and D. W. Pohl. Light propagation in scanning near-field optical microscopy. Eds. Norwell, MA: Kluwer, 1995, NATO ASI Series, 21-23.
    [33]. G. J. Brakenhoff, H.T.M. van de Voort, E. A. van Spronsen, W.A. Linnemans, and N. Nanninga. Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy. Nature, 1985, Vol. 317, 748-749
    [34]. R. Rigler, U. Mets, J. Widengren, and P. Kask. Fluorescence correlation spectroscopy with high count rate and low background: Analysis of translational diffusion. Eur. Biophys. J., 1993, Vol. 22,169-175
    
    [35]. M. B(?)hmer, F. Pampaloni, M. Wahl, H. J. Rahn, R. Erdmann, and J. Enderlein. Time-resolved confocal scanning device for ultrasensitive fluorescence detection.Rev. Scie. Instr., 2001, Vol. 72(11), 4145-4152
    [36]. M. M(?)ller. Confocal Light Microscopy. Fundamentals and biological applications.Universiteit van Amsterdam, 1999, Amsterdam
    [37]. R. Short and L. Mandel. Observation of sub-poissonian Photon Statistics. Phys.Rev. Lett., 1983, Vol. 51(5), 384-387
    
    [38]. P. Grangier, G. Roger, and A. Aspect. Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences.Europhys.Lett., 1986, Vol. 1, 173-179
    [39]. M. Orrit. Photon statistics in single molecule experiment. single molecule, 2002,Vol. 3,255-265
    
    [40]. J. A. Veerman, M. F. Garcia-Parajo, L. Kuipers, and N. F. Van Hulst.Time-Varying Triplet State Lifetimes of Single Molecules. Phys. Rev. Lett., 1999,Vol. 83,2155-2158
    
    [41]. A. Laura, Deschenes, and David A. Vanden Bout. Single molecule photobleaching:increasing photon yield and survival time through suppression of two-step photolysis. Chem. Phys. Letters, 1995, Vol. 236, 87-95
    [42]. Ph. Tamarat, A. Maali, B. Lounis, and M. Orrit. Ten Years of Single-Molecule Spectroscopy. J. Phys. Chem. A., 2000, Vol. 104, 1-16
    [43]. Nikodem Tomczak, Renaud A.L. Vallee, Erik M.H.P. van Dijk, Maria Garcia-Parajo, Laurens Kuipers, Niek F. van Hulst, G. Julius Vancso. Probing polymers with single fluorescent molecules. European Polymer Journal, 2004, Vol.40,1001 -1011
    [44]. B. Lounis and M. Orrit. Single-photon sources. Rep. Prog. Phys., 2005, Vol. 68,1129-1179
    [45]. R. Alleaume, F. Treussart, G. Messin, Y. Dumeige, J-F. Roch, A. Beveratos, R. Brouri-Tualle, J-P. Poizat, and P. Grangier. Experimental open-air quantum key distribution with a single-photon source. New J. Phys., 2004, Vol. 6, 92
    [46]. Y. Wada. Prospects for single molecule information processing devices. Current Applied Physics, 2001, Vol. 1, 28
    [47]. S. Kubatkin, A. Danilov, M. Hjor, J. Cornil, J. Bredas, N. Stuhr-Hansen, P.Hedegard and T. Bjrnholm. Single-electron transistor of a single organic molecule with access to several redox states. Nature, 2003, Vol. 425(16), 698-701
    [48]. W. E. Moerner. Single-photon sources based on single molecules in solids. New J. Phys.,2004, Vol. 6, 88(1-21)
    [49]. M. Orrit. Quantum light switch. Nature. Phys., 2007, Vol. 3, 755-756
    [50]. M. Orrit. Molecular entanglements. Science, 2002, Vol. 298, 369-370
    [51].李哲,曹莉.荧光单分子检测技术在生命科学中的应用.细胞生物学杂志,2005,Vol.27,649-651
    [52].陈同生,邢达.荧光相关谱技术及其应用.激光生物学报,2005,Vol.14,No.1
    [53].杨金龙,李震宇,候建国,朱清时.单分子科学进展.物理,2000,Vol.29,579
    [1]. W. E. Moerner, and T. Basche. Optical Spectroscopy of Single Impurity Molecules in Solids. Angew. Chrm. Inr. Ed. Engl., 1993, Vol. 32,451-476
    [2]. M. Orrit, J. Bernard and R. Personov. High-resolution spectroscopy of organic molecules in solids: from fluorescence line narrowing and hole burning to single molecule spectroscopy. J. Phys. Chem., 1993, Vol. 97,10256-10268
    [3]. H. de Vries and D. A. Wiersma. Fluorescence transient and optical free induction decay spectroscopy of pentacene in mixed crystals at 2 K. Determination of intersystem crossing and internal conversion rates. J. Chem. Phys., 1979, Vol. 70,5807-5822
    [4]. T. Basche, W. E. Moerner, M. Orrit and H. Talon. Photon antibunching in the fluorescence of a single dye molecule trapped in a solid. Phys. Rev. Lett., 1992, Vol.69, 1516-1519
    [5]. P. Kask, P. Piksarv, and U. Mets. Fluorescence correlation spectroscopy in the nanosecond time range: photon antibunching in dye fluorescence. Eur. Biophys. J.,1985, Vol. 12, 163-166
    
    [6]. D. Magde, E. L. Elson, and W.W. Webb. Thermodynamic fluctuations in a reacting system-measurement by fluorescence correlation spectroscopy. Phys. Rev.Lett., 1972,Vol. 29, 705-711
    [7]. E. L. Elson, and D. Magde. Fluorescence correlation spectroscopy. I: conceptual basis and theory. Biopolymers, 1974, Vol. 13, 1-27
    [8]. D. Magde, E. Elson, and W.W. Webb. Fluorescence correlation spectroscopy. II:an experimental realization. Biopolymers, 1974, Vol. 4, 29-61
    [9]. D. Magde, W.W. Webb, and E. Elson. Fluorescence correlation spectroscopy. III:uniform translation and laminar flow. Biopolymers, 1978, Vol. 17, 361-376
    [10]. M. Ehrenberg, and R. Rigler. Rotational Brownian motion and fluorescence intensity fluctuations. Chem. Phys., 1974, Vol. 4, 390-401
    
    [11]. R. Rigler, U. Mets, J. Widengren, and P. Kask. Fluorescence correlation spectroscopy with high count rate and lowbackground analysis of translational diffusion. Eur. Biophys. J., 1993, Vol. 22, 169-175
    [12]. S. R. Aragon, and R. Pecora. Fluorescence correlation spectroscopy as a probe of molecular dynamics. J. Chem. Phys., 1976, Vol. 64, 1791-1803
    [13]. S. R. Aragon, and R. Pecora. Fluorescence correlation spectroscopy and Brownian rotational diffusion. Biopolymers, 1975, Vol. 14,119-138
    
    [14]. M. Gfsch, H. Blom, J. Holm, T. Heino, and R. Rigler. Hydrodynamic flow profiling in microchannel structures by single molecule fluorescence correlation spectroscopy. Anal. Chem., 2000, Vol. 72, 3260-3265
    
    [15]. M. R. Taghizadeh, P. Blair, B. Layet, I. M. Barton, A. J. Waddie, and N. Ross. Design and fabrication of diffractive optical elements. Microelectron. Eng., 1997,Vol. 34,219-242
    [16]. J. Bengtsson. Design of fan-out kinoforms in the entire scalar diffraction regime with an optimal-rotation-angle method. Appl. Opt., 1997, Vol. 36, 8435-8444
    [17]. M. Brinkmeier, K. Dfrre, J. Stephan, and M. Eigen. Two beam cross correlation: a method to characterize transport phenomena in micrometer-sized structures. Anal.Chem., 1999, Vol. 71, 609-616
    [18]. R. H. Brown, and R. Q. Twiss. Correlation between photons in 2 coherent beams of light. Nature, 1956, Vol. 177, 27- 29
    
    [19]. U. Mets, J. Widengren, and R. Rigler. Application of the antibunching in dye fluorescence: measuring the excitation rates in solution. Chem. Phys., 1997, Vol.218, 191-198
    [20]. M. Ehrenberg, and R. Rigler. Polarized fluorescence and rotational Brownian motion. Chem. Phys. Lett., 1972, Vol. 14, 539-544
    
    [21]. P. Kask, P. Piksarv, and U. Mets. Fluorescence correlation spectroscopy in the nanosecond time range-photon antibunching in dye fluorescence. Eur. Biophys. J.,1985, Vol. 12, 163-166
    [22]. E. Betzig, and R. J. Chichester. Single molecules observed by near-field scanning optical microscopy. Science, 1993, Vol. 262, 1422-1425
    
    [23]. O. A. Mayboroda, A.van Remoortere, H. J. Tanke, C. H.Hokke, and A. M. Deelder,A new approach for fluorescence correlation spectroscopy (FCS) based immunoassays. J. Biotechnol., 2003, Vol. 107, 185-192
    [24]. N.L. Thompson, Fluorescence correlation spectroscopy. Techniques. J. R. Lakowicz,1991, Vol. 1,337-378
    
    [25]. J. Widengren, U. Mets, and R. Rigler. Fluorescence correlation spectroscopy of triplet states in solution: a theoretical and experimental study. J. Phys. Chem., 1995,Vol. 99, 13368-13379
    
    [26]. R. M. Dickson, A. B. Cubitt, R.Y. Tsien, and W. E. Moerner. On/ off blinking and switching behaviour of single molecules of green fluorescent protein. Nature, 1997,Vol. 388, 355-358
    
    [27]. D. A. VandenBout, W.T. Yip, D. H. Hu, D. K. Fu, T. M. Swager, and P. F. Barbara. Discrete intensity jumps and intramolecular electronic energy transfer in the spectroscopy of single conjugated polymer molecules. Science, 1997, Vol. 277,1074-1077
    
    [28]. M. Wu, P. M. Goodwin, W. P. Ambrose, and R. A. Keller, Photochemistry and fluorescence emission dynamics of single molecules in solution: B-phycoerythrin.J. Phys. Chem., 1996, Vol. 100, 17406-17409
    [29]. M. A. Bopp, Y.W. Jia, L.Q. Li, R.J. Cogdell, and R. M. Hochstrasser. Fluorescence and photobleaching dynamics of single light-harvesting complexes. Proc. Nail.Acad. Sci. U. S. A., 1997, Vol. 94, 10630-10635
    
    [30]. H. R Brown, and R. Q Twiss.. Correlation between Photons in Two Coherent Beams of Light. Nature, 1956, Vol. 177,27-29
    
    [31]. F. Treussart, R. Alleaume, L. T. Xiao, J. -M. Courty, and J. -F. Roch. Direct measurement of the photo statistics of a triggered single photon source, Phys. Rev.Lett., 2002, Vol. 89, No. 9, 093601
    [32]. F. Treussart, A. Clouqueur, C. Grossman and J. -F. Roch. Photon antibunching in the fluorescence of a single dye molecule embedded in a thin polymer film.Opt.Lett., 2001, Vol. 26, No. 19, 1504-1506
    [33]. L. Fleury, J. -M. Segura, G. Zumofen, B. Hecht and U. P. Wild. Nonclassical photon statistics in single-molecule fluorescence at room temperature. Phys. Rev.Lett., 2000, Vol. 84, No. 6,1148-1151
    
    [34]. R. Alleaume, F. Treussart, G. Messin, Y. Dumeige, J-F. Roch, A. Beveratos, R.Brouri-Tualle, J-P. Poizat, and P. Grangier. Experimental open-air quantum key distribution with a single-photon source. New J. Phys., 2004, Vol. 6, 92.
    [1]. J. K. Trautmann, J. J. Macklin, L. E. Brus, and E. Betzig, Near-field spectroscopy of single molecules at room temperature. Nature, 1994, Vol. 369,40-42
    [2]. X. S. Xie, and R. C. Dunn. Probing single molecule dynamics. Science, 1994, Vol. 265, 361-364
    [3]. S. Nie, D. T. Chiu, and R. N. Zare. Probing individual molecules with confocal fluorescence microscopy. Science, 1994, Vol. 266, 1018-1021
    [4]. T. Funatsu, Y. Hanada, M. Tokunaga, K. Saito, and T. Yanagida. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature, (London) 1995, Vol. 374, 555-559
    [5]. B. Lounis, and W. E. Moerner. Single photons on demand from a single molecule at room temperature. Nature, 2000, Vol. 407, No. 6803,491-493
    [6]. L. Fleury, J. -M.Segura, et al. Nonclassical photon statistics in single-molecule fluorescence at room temperature, Phys. Rev. Lett., 2000, Vol. 84, No. 6, 1148-1151
    [7]. F. grosshans, G. V. Assche, J. Wenger, R. Brourl, H. J. Cref and P. Grangler. Quantum key distribution using Gaussian-modulated coherent states. Nature, 2003,Vol. 421, No. 16,238-241
    [8]. E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto. Secure communication: Quantum cryptography with a photon turnstile. Nature, 2002, Vol. 420, 762-762
    [9]. A. Michler, M. D. Imamoglu, P. J. Carson, G. F. Strouse, and S. K. Buratto. Quantum correlation among photons from a single quantum dot at room temperature. Nature, 2000, Vol. 406, 968-970
    [10]. T. Maruyama, F. Narusawa, M. Kudo, and M. Tanaka. Development of a near-infrared photon-counting system using an InGaAs avalanche photodiode. Opt. Eng., 2002, Vol. 41, 395-402
    [11]. F. Zappa, A. L. Lacaita, S. D. Cova, and P. Lovati. Solid-state single-photon detectors. Opt. Eng., 1996, Vol. 35, 938-945
    [12]. Single photon counting module-SPCM-AQR series. PerkinElmer, http://optoelectronics.perkinelmer.com/content/Datasheets/SPCM-AQR.pdf.
    [13]. Amersham CyDye~(TM) monoreactive NHS Esters. GE Healthcare,http://www.gehealthcare.com/lifesciences
    [14]. Lipophilic Tracers - DiI, DiO, DiD, DiA, and DiR. Molecular probes, http://www.invitrogen.com/site/us/en/home/brands/Molecular-Probes.htmI
    [15]. SRfluor 680 Phenyl. Molecular probes, http://www.mtarget.com/srdye.html
    [16]. P. Kask, K. Palo, D.Ullmann, and K. Gall. Fluorescence-intensity distribution analysis and its application in bimolecular detection technology, PNAS, 1999, Vol.96, 13756-13761
    [17] P. Kask, K. Palo, N. Fay, L. Brand, (?). Mets, D. Ullmann, J. Jungmann, J. Pschorr, and K. Gall. Two dimensional fluorescence intensity distribution analysis: theory and applications. Biophys. J., 2000, Vol.78, 1703-1713
    [18]. H. Qian, and E. L. Elson. Distribution of molecular aggregation by analysis of fluctuation moments. PNAS, 1990, Vol. 87, 5479-5483
    [19]. Y. Chen, J. D. Miiller, P.T.C. So, and E. Gratton. The Photon Counting Histogram in Fluorescence Fluctuation Spectroscopy. Biophys. J., 1999, Vol. 77, 553-567
    [20]. Y. Chen, J. D. M(?)ller, Q. Q. Ruan, and E. Gratton. Molecular brightness characterization of EGFP in vivo by fluorescence fluctuation spectroscopy.Biophys. J., 2002, Vol. 82,133-144
    [21]. K. Palo, (?). Mets, S. J(?)ger, P. Kask, and K. Gall. Fluorescence intensity multiple distribution analysis: concurrent determination of diffusion times and molecular brightness. Biophys. J., 2000, Vol. 79, 2858-2866
    [22]. R. Rigler, and J. Widengreen. Utrasensitive detection of single molecules by fluorescence correlation spectroscopy. Bioscience, 1990, Vol. 3, 180-183
    [23]. P. Schwille, F. J. Meyer-Almes, and R. Rigler. Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution.Biophys. J., 1997, Vol. 72, 1878-1886
    [24]. S. Felekyan, R. K(?)hnemuth, V. Kudryavtsev, C. Sandhagen, W. Becker, and C. A.M. Seidel. Full correlation from picoseconds to seconds by time-resolved and time-correlated single photon detection. Rev. Sci. Instrum., 2005, Vol. 76, 083104
    [25]. D. V. O'Connor, and D. Phillips. Time-correlated single photon counting. Academic Press, London, 1984
    [26]. W. Becker. Advanced time-correlated single-photon counting techniques. Springer,Berlin, Heidelberg, New York, 2005
    [27]. A. A. Deniz, M. Dahan, J. R. Grunwell, T. Ha, A. E. Faulhaber, D. S. Chemla, S.Weiss and P. G. Schultz. Single-pair fluorescence energy transfer on freely diffusing molecules: Observation of F(?)rster distance dependence and subpopulations. Proc. Nat. Acad. Sci. USA., 1999, Vol. 96, 3670-3675
    [28]. C. Brunei, B. Lounis, P. Tamarat and M. Orrit. Triggered Source of Single Photons based on Controlled Single Molecule Fluorescence. Phys. Rev. Lett., 1999, Vol. 83,2722-2725
    [29]. L. Fleury, J. M. Segura, G. Zumofen, B. Hecht and U. P. Wild. Fleury. Nonclassical photon statistics in single-molecule fluorescence at room temperature. Phys. Rev.Lett., 2000, Vol. 84,1148-1151
    [30]. X. Michalet and S. Weiss, Single-molecule spectroscopy and microscopy. C. R.Physique, 2002, Vol. 3, 619-644
    [31]. F. Treussart, R. Alleaume, L. T. Xiao, J. -M. Courty, and J. -F. Roch. Direct measurement of the photo statistics of a triggered single photon source. Phys. Rev. Lett., 2002, Vol. 89, No. 9, 093601
    [32]. G. Li, T. C. Zhang, Y. Li, and J. M. Wang. Photon statistics of light fields based on single-photon-counting modules. Phys. Rev. A, 2005, Vol.71, 023807
    [33]. T. Huang, S. L. Dong, X. j. Guo, L. T. Xiao, and S. T. Jia. Signal-to-noise ratio improvement of photon counting using wavelength modulation spectroscopy. Appl. Phys. Lett. 2006, Vol. 89, 061102(1-3)
    [34]. A. Sanchez-Andres, Y. Chen and J. D. M(?)ller. Molecular Brightness Determined from a Generalized Form of Mandel's Q-Parameter. Biophys. J., 2005, Vol. 89,3531-3547
    [35]. R. Hanbury Brown and R. Q. Twiss. Correlation between Photons in Two Coherent Beams of Light. Nature, 1956, Vol. 177,27-29
    [36]. C. Brunei, B. Lounis, P. Tamarat and M. Orrit. Triggered Source of Single Photons based on Controlled Single Molecule Fluorescence. Phys. Rev. Lett., 1999, Vol. 83,2722-2725
    [37]. Ph. Tamarat, A. Maali, B. Lounis, and M. Orrit. Ten Years of Single-Molecule Spectroscopy. J. Phys. Chem. A., 2000, Vol. 104,1-16
    [38]. 王晓波,黄涛,邵军虎,降雨强,肖连团,贾锁堂.利用光子统计几率测量单分子光子源的信号背景比.物理学报,2005.Vol.54,617
    [39]. 肖连团,降雨强,赵延霆,尹王保,赵建明,贾锁堂.单光子探测用于光子统计测量的研究,科学通报,2004.Vol.49,727
    [40]. T. Huang, X. B. Wang, J. H. Shao, X. J. Guo, L. T. Xiao and S. T. Jia. Single event photon statistics characterization of a single photon source in an imperfect detection system. J. Lumin., 2007, Vol.124(2), 286
    [1]. A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier. Single photon quantum cryptography. Phys. Rev. Lett., 2002, Vol. 89, No. 10, 187901.
    [2]. A. Kuhn, M. Hennrich, and G. Rempe. Deterministic single-photon source for distributed quantum networking. Phys. Rev. Lett., 2002, Vol. 89, No. 6, 067901
    [3]. Th. Basche, and W. E.Moerner. Photon antibunching in the fluorescence of a single dye molecule trapped in a solid. Phys. Rev. Lett., 1992, Vol. 69, No. 1516
    [4]. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter. Stable Solid-State Source of Single Photons. Phys. Rev. Lett., 2000, Vol. 85, No.2,290-293
    [5]. B. Lounis, and M. Orrit. Single-photon sources. Rep. Prog. Phys., 2005, Vol. 681129-1179.
    [6]. B. Lounis, W. E. Moerner, Single photons on demand from a single molecule at room temperature. Nature, 2000, Vol. 407, No. 6803,491-493
    
    [7]. F. Treussart, A. Clouqueur, C. Grossman and J. F. Roch, Photon antibunching in the fluorescence of a single dye molecule embedded in a thin polymer film,Opt.Lett., 2001, Vol. 26, No. 19, 1504-1506
    [8]. James S. Allen. The detection of single positive ions, electrons and photons by a secondary electron multiplier. Phys. Rev., 1939, Vol. 55, No. 1, 966-967
    [9]. S. Fray, F. A. Johnson, R. Jones, T. P. McLean, and E. R. Pike. Photon-counting distributions of modulated laser beams. Phys. Rev., 1967, Vol. 153, No. 2, 357-359
    [10]. E. Gomez, F. Baumer, A. D. Lange, G. D. Sprouse, and L. A. Orozco, Lifetime measurement of the 6s level of rubidium. Phys. Rev. A, 2005, Vol. 72, No. 1,012502
    [11]. E. B. Shera, N. K. Seitzinger, L. M. Davis, R. A. Keller, and S. A.Soper, Detection of single fluorescent molecules. Chem. Phys. Lett., 1990, Vol. 174, 553-557
    [12]. R. All(?)aume, F. Treussart, J. -M. Courty and J. -F. Roch. Photon statistics characterization of a single-photon source. New J. Phys., 2004, Vol. 6, 85
    [13]. X. Michalet, and S. Weiss. Single-molecule spectroscopy and microscopy. C. R.Physique, 2002, Vol. 3, 619-644
    
    [14]. T. Huang, S. L. Dong, X. J. Guo, L. T. Xiao and S. T. Jia. Signal-to-noise ratio improvement of photon-counting using wavelength modulation spectroscopy. Appl.Phys. Lett., 2006, Vol. 89,061102
    
    [15]. L. T. Xiao, Y. T. Zhao, T. Huang, J. M. Zhao, W. B. Yin, and S. T. Jia. Effect of Background Noise on the Photon Statistics of Triggered Single Molecules. Chin.Phys. Lett., 2004, Vol. 21, No. 3, 489-492
    [16]. S. L. Dong, T. Huang, Y. Liu, J. Wang, L. T. Xiao, and S. T. Jia. Appropriate gate time for single molecular photon detection based on optimal signal-to-noise ratio analyses. Chin. Phys. Lett., 2007, Vol. 24, No.5
    [17]. W. E. Moerner. Examining nanoenvironments in solids on the scale of a single isolated impurity molecule. Science, 1994, Vol. 265, 46-53
    [18]. M. Bohmer, and J. Enderlein. Fluorescence spectroscopy of single molecules under ambient conditions: methodology and technology. Chem. Phys. Chem., 2003, Vol. 4(8), 793-808
    [19]. J. L Skinner, and W. E. Moerner. Structure and dynamics in solids as probed by optical spectroscopy. J. Phys. Chem., 1996, Vol. 100(31), 13251-13262
    [20]. E. Geva, and J. L. Skinner Theory of single-molecule optical lineshape distributions in low-temperature glasses. J. Phys. Chem. B, 1997, Vol. 101(44), 8920-8932
    [21]. D. Toptygin, R. S. Savtchenko, N. D. Meadow, S. Roseman, and L. Brand. Effect of the solvent refractive index on the excited-state lifetime of a single tryptophan residue in a protein. J. Phys. Chem. B, 2002, Vol. 106(14), 3724-3734
    [22]. R. A. L. Vallee, N. Tomczak, H. Gersen, E.M.H.P van Dijk, M.F Garcia-Parajo, G. J. Vancso, and N. F van Hulst. On the role of electromagnetic boundary conditions in single molecule fluorescence lifetime studies of dyes embedded in thin films. Chem. Phys. Lett., 2001, Vol. 348(3-4), 161-167
    [23]. H. Qian, M. P. Sheetz, and E. L. Elson. Single particle tracking analysis of diffusion and flow in two- dimensional systems. Biophys. J., 1991, Vol. 60, 910-921
    [24]. A. Ashkin. Optical trapping and manipulation of neutral particles using lasers. Proc. Natl. Acad. Sci. USA, 1997, Vol. 94, 4853-4860
    [25]. L. A. Deschenes, and D. A. Vanden Bout. Single molecule photobleaching: increasing photon yield and survival time through suppression of two-step photolysis. Chem. Phys. Lett., 2002, Vol. 365, 387-395
    [26]. J. Semin, and J. C. Martin. Fluorescence photon antibunching from single molecules on a surface. Chem. Phys. Lett, 1997, Vol. 269, 365-370
    [27]. B. R. Hanbury, and R. Q. Twiss. Correlation between photons in two coherent beams of light. Nature, 1956, Vol. 177,27-32
    [28]. R. Verberk, and M. Orrit. Photon statistics in the fluorescence of single molecules and nanocrystals:Correlation functions versus distributions of on- and off-times. J.of chem.Phys., 2003, Vol. 119, 2214
    [29]. W. Trabesinger, G. J. Schutz, H. J Gruber, H Schindler, and T. Schmidt. Detection of individual oligonucleotide pairing by single-molecule microscopy. Anal. Chem.,1999, Vol. 71(1), 279-283
    [30]. P. Zhang, and W. H. Tan, Direct observation of single-molecule generation at a solid liquid interface. Chem-Eur J, 2000, Vol. 6(6), 1087-1092
    [1]. T. Ha, T. Enderle, D. S. Chemla, P. R. Selvin, and S. Weiss. Single molecule dynamics studied by polarization modulation. Phys. Rev. Lett., 1996, Vol. 77, 3979-3982
    [2]. H. P. Lu, L. Xun, and X. S. Xie. Single-Molecule Enzymatic Dynamics. Science, 1998, Vol. 282,1877-1882
    [3]. T. Ha, T. A. Laurence, D. S. Chemla, and S. Weiss. Polarization Spectroscopy of Single Fluorescent Molecules. J. Phys. Chem. B, 1999, Vol. 103, 6839-6850
    [4]. F. Kulzer, and M. Orrit. Single-Molecule Optics. Annu. Rev. Phys. Chem., 2004, Vol. 55, 585-611
    [5]. M. A. Bopp, A. Sytnik, T. D. Howard, R. J. Cogdell, and R. M. Hochstrasser. The dynamics of structural deformations of immobilized single light-harvesting complexes. Proc. Natl. Acad. Sci. U.S.A., 1999, Vol. 96, 11271-11276
    [6]. B. Lounis and M. Orrit. Single-photon sources. Rep. Prog. Phys., 2005, Vol. 68,1129-1179
    [7]. S. L. Dong, T. Huang, Y. Liu, J. Wang, G. F. Zhang, L.T. Xiao, S. T. Jia. Fast recognition of single molecules based on single event photon statistics. Phys. Rev.A, 2007, Vol. 76, 063820
    [8]. G. B. DeMaggio, W. E. Frieze, D. W.Gidley, M. Zhu, H. A. Hristov, and A. F. Yee. Interface and surface effects on the glass transition in thin polystyrene films. Phys.Rev. Lett., 1997, Vol. 78,1524-1528
    [9]. E. S. A. Mounir, A. Takahara, and T. Kajiyama. Effect of Chain End Group-Substrate Interaction on Surface Molecular Motion of Polystyrene Ultrathin Films. Polym. J., 1999, Vol. 31, 550-556
    [10]. E. Betzig and R. J. Chichester. Single molecules observed by near-field scanning optical microscopy. Science, 1993, Vol. 262,1422-1425
    [11]. J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus. Imaging and Time-Resolved Spectroscopy of Single Molecules at an Interface. Science, 1996,Vol. 272, 255-258
    [12]. J. Jasny and J. Sepiol. A Novel Method of Finding the Orientation of a Radiating Dipole. Chem. Phys. Lett., 1997, Vol. 273,439-443
    [13]. Z. Sikorski, and L. M. Davis, Engineering the collected field for single-molecule orientation determination. Opt. Express, 2008, Vol. 16, 3660-3673
    [14]. B. Sick, B. Hecht, and L. Novotny. Orientational imaging of single molecules by annular illumination. Phys. Rev. Lett., 2000, Vol. 85, 4482-4485
    [15]. T. Ha, J. Glass, T. Enderle, D. S. Chemla, and S. Weiss. Hindered rotational diffusion and rotational jumps of single molecules. Phys. Rev. Lett., 1998, Vol. 80,2093-2096
    [16]. A. Sigl, Chr. Schamagl, J. Friedrich, A. Gourdon and M. Orrit. 2-methylterrylene in hexadecane: Do we see single rotational quantum jumps of methyl groups?. J.Chem. Phys., 2008, Vol. 128, 044508-044516
    [17]. R. M. Dickson, D. J. Norris, and W. E. Moerner. Simultaneous Imaging of Individual Molecules Aligned Both Parallel and Perpendicular to the Optic Axis.Phys. Rev. Lett., 1998, Vol. 81, 5322-5325
    [18]. M. Bohmer and J. Enderlein. Orientation imaging of single molecules by wide-field epifluorescence microscopy. J. Opt. Soc. Am. B, 2003, Vol. 20, 554-559
    [19]. M. A. Lieb, J. M. Zavislan, and L. Novotny. Single-molecule orientations determined by direct emission pattern imaging. J. Opt. Soc. Am. B, 2004, Vol. 21,1210-1215
    [20]. T. Ha, T. Enderle, D. S. Chemla, P. R. Selvin, and S. Weiss. Single molecule dynamics studied by polarization modulation. Phys. Rev. Lett., 1996, Vol. 77,3979-3982
    [21]. K. D. Weston and L. S. Goldner. Orientation imaging and reorientation dynamics of single dye molecules. J. Phys. Chem. B, 2001, Vol. 105, 3453-3462
    [22]. N. Tomczak, Renaud A. L. Vallee, Erik M. H. P. van Dijk, Maria Garcia-Parajo,Laurens Kuipers, Niek F. van Hulst, and G. Julius Vancso. Probing polymers with single fluorescent molecules. Euro. Polym. J, 2004, Vol. 40, 1001-1011
    [23]. A. Schob, F. Cichos, J. Schuster, and C. von Borczyskowski. Reorientation and translation of individual dye molecules in a polymer matrix. Euro. Polym. J, 2004,Vol.40, 1019-1026
    [24]. J. R. Dutcher and M. D. Ediger. Glass surfaces not so glassy. Science, 2008, Vol.319, 577-578
    [25]. Z. Fakhraai, and J. A. Forrest. Measuring the Surface Dynamics of Glassy Polymers. Science, 2008, Vol. 319, 600-604
    [26]. C. J. Ellison, and J. M. Torkelson. The distribution of glass- transition temperatures in nanoscopically confined glass formers. Nat. Mater., 2003, Vol. 2, 695-700
    [27]. E. Arunkumar, C. C. Forbes, B. C. Noll, and B. D. Smith. Squaraine-Derived Rotaxanes: Sterically Protected Fluorescent Near-IR Dyes. J. Am. Chem. Soc.,2005, Vol. 127, 3288-3289

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700