用户名: 密码: 验证码:
抑制Dicer表达对人类细胞染色质结构及相关生理功能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Dicer是核糖核酸酶III家族成员之一,在RNAi途径中起着关键作用,具有重要的生物学功能:是miRNA和siRNA生物合成过程中的关键酶,能够调节DNA甲基化和组蛋白修饰,参与维持基因组的稳定性,参与DNA复制时间先后顺序和细胞衰老的调节等等。在小鼠中敲除Dicer导致多方面的异常,包括发育早期干细胞群不能维持、T细胞和B细胞发育异常、卵母细胞有丝分裂停滞、扩张性心肌病、原始生殖细胞和精子发育不良、肾小球疾病、视网膜退化、神经系统疾病等等。
     在脊椎动物中,RNAi依赖的染色质沉默不仅仅局限于着丝粒区。为了研究RNAi途径对印迹基因染色质结构的影响,我们在HEK293细胞中抑制Dicer的表达。结果发现干扰Dicer的表达能够诱导PHLDA2(11p15.5处印迹基因区域中的基因之一)的表达上调,该基因位点的组蛋白H3K9乙酰化水平增高,提示该基因的染色质被活化,但是该基因的DNA甲基化水平没有受到影响。同时,我们也发现在血清饥饿或接触抑制的HEK293细胞中PHLDA2的表达明显降低,说明PHLDA2的上调不是敲除Dicer诱导生长抑制的结果,而是染色质活化的结果。
     染色质的结构与基因组的稳定性密切相关,在果蝇中Dicer2的缺失通过引起异染色质的解凝聚诱导染色体外环状DNA (eccDNA)的形成;另外DNA损伤修复通路也可能与Dicer2突变细胞中的ecc DNA形成有关。DNA复制时间的先后顺序与染色质结构密切相关,一般来说,常染色质先复制,异染色质后复制。在Dicer缺失的胚胎干细胞中,卫星DNA的复制时间先后顺序发生紊乱,DNA复制时间先后顺序紊乱能诱发DNA损伤。作为基因组的免疫系统,RNAi通路可以抑制转座子的活动,Dicer缺失可能激活转座子,从而导致DNA损伤。为了研究Dicer缺失是否引起DNA损伤,我们用两个不同的siRNA在HEK293T和HepG2细胞中抑制Dicer的表达,结果表明抑制Dicer表达能够诱导DNA损伤,具体表现为:(1)与对照细胞相比,Dicer缺失细胞的γ-H2AX foci阳性率明显增加,复制蛋白A 70(RPA 70)的染色明显增强,并在细胞核中呈点状分布;(2)Dicer缺失细胞中检验点激酶1(Chk1)S345的磷酸化水平明显增加;(3)彗星电泳的结果直接表明,Dicer缺失能够诱导DNA损伤;(4)在Dicer缺失细胞中,一些与DNA损伤有关的基因,包括GADD45A、GADD45B、p21、BTG3、ATF3和EGR1的表达明显升高。
     DNA损伤能够诱导天然免疫系统NKG2D配体的表达,抑制Dicer表达能够诱导DNA损伤。为了研究Dicer缺失能否上调NKG2D配体的表达,我们用定量RT-PCR和流式细胞仪检测了主要组织相容性复合物I相关分子A和B(MICA和MICB)的表达。结果表明,在Dicer缺失的细胞中,MICA和MICB的表达明显增加。Dicer缺失诱导的MICA和MICB表达能够被DNA损伤途径组分(包括ATM、ART和Chk1)的抑制剂阻断,说明MICA和MICB表达上调是Dicer缺失诱导DNA损伤的结果。MICA和MICB表达的上调导致HEK293T和HepG2细胞对自然杀伤细胞株NKL的杀伤作用更加敏感。
     为了进一步证实异染色质解凝聚能够引起DNA损伤并诱导MICA和MICB的表达,我们用DNA甲基转移酶抑制剂5-氮杂脱氧胞苷(5-aza-dC)处理HEK293T和HepG2细胞。5-aza-dC诱导DNA去甲基化和异染色质解凝聚,并诱导DNA损伤和MICB的表达上调。
     Dicer缺失影响内皮细胞的迁移能力,在Dicer缺失的内皮细胞中,纤维粘连蛋白的表达明显增加。EGR1能够与纤维粘连蛋白的启动子结合,诱导纤维粘连蛋白表达,Dicer缺失能够诱导EGR1的表达,因此我们推测Dicer缺失可能通过EGR1诱导纤维粘连蛋白表达。为了证实这个假设,我们在HEK293T细胞中抑制Dicer的表达,结果发现Dicer缺失诱导EGR1依赖的纤维粘连表达增加,纤维粘连蛋白表达增加削弱了HEK293T细胞的迁移能力。另外,我们还发现在Dicer下调的HEK293T细胞中,抑制纤维粘连蛋白表达可诱导细胞凋亡。因此,我们推测纤维粘连蛋白表达增加可能是Dicer缺失的HEK293T细胞不发生凋亡的原因之一。
     综上所述,我们提出这样一个模型:Dicer是异染色质形成所必须的,Dicer缺失导致染色质解凝聚,从而打乱了DNA复制时间的先后顺序,诱导DNA损伤;异染色质解凝聚能够激活转座元件,另外Dicer缺失也可能增加来源于转座元件的双链RNA的稳定性,因此提高转座子活性,从而导致DNA损伤。DNA损伤诱导EGR1表达,进而激活纤维粘连蛋白转录,纤维粘连蛋白表达上调能够抑制细胞的迁移能力。另外,DNA损伤还能诱导MICA和MICB的表达,从而导致Dicer缺失的细胞被免疫系统清除。
Dicer is a ribonuclease III-like enzyme that plays a key role in the biogenesis of miRNAs and siRNAs. In addition, Dicer is essential for the regulation of chromatin structure and function, DNA replication timing, genome stability and cellular senescence. Targeted knockout of Dicer leads to the inability to maintain the stem cell population during early mouse development, aberrant T cell differentiation, meiosis arrest of mouse oocytes, dilated cardiomyopathy, poor proliferation of primordial germ cells and spermatogonia, aberrant B cell development, glomerular disease, degeneration of the mouse retina, and neurological disorders.
     It has been reported that RNAi-dependent chromatin silencing in vertebrates is not restricted to the centromeres. To address whether RNAi machinery could regulate the chromatin structure of imprinted genes, we knocked down Dicer in HEK293 cells, and found that the expression of PHLDA2, one of the several genes in the imprinted gene domain of 11p15.5, was specifically upregulated. This was accompanied by a shift towards more activated chromatin at PHLDA2 locus as indicated by change in H3K9 acetylation, however, the methylation state at this locus was not affected. Furthermore, we found that PHLDA2 was downregulated in growth-arrested HEK293 cells induced by either serum deprivation or contact inhibition. This suggests that PHLDA2 upregulation might be a direct result of Dicer knockdown-induced chromatin decomdensation rather than the consequence of growth arrest induced by Dicer knockdown.
     Chromatin structure plays pivotal roles in maintaining genome stability. Loss of Dicer2, a key enzyme in the RNAi pathway, not only results in decondensation of heterochromatin but also leads to accumulation of extrachromosomal circular (ecc) repeated DNAs. Ligase IV, an essential regulator of nonhomologous end joining, and perhaps other DNA damage repair machinery, participate in ecc DNA formation, this suggests that, in addition to increased accessibility of DNA repair and recombination proteins to repeated DNA caused by heterochromatin decondensation, activation of the DNA damage response may also contribute to the formation of ecc DNA in Dicer2 mutant cells. DNA replication timing is tightly regulated and correlates with chromatin state, and the timing of satellite DNA replication is misregulated in Dicer -deficient embryonic stem cells. Stalled and collapsed replication forks elicit the DNA damage response. In addition, loss of Dicer may activate transposons, which in turn leads to DNA damage. These observations collectively suggest that DNA damage response may be elicited in Dicer -deficient cells. To test this hypothesis, we knocked down Dicer in HEK293 cells and human hepatoma HepG2 cells. DNA damage was measured by immunostaining for the phosphorylated form of histone H2AX (γ-H2AX), a widely used marker for DSBs, and the replication protein A 70 (RPA70), a protein involved in DNA replication, recombination, and repair, that becomes phosphorylated and forms intranuclear foci upon exposure of cells to DNA damage, our results indicated that a much higher percentage of Dicer knockdown cells also displayed intense RPA foci andγ-H2AX foci. Consistent with the RPA andγ-H2AX staining results, an increase in checkpoint kinase 1 (Chk1) phosphorylation on S345, an event associated with DNA damage, was found in Dicer knockdown cells. As a more direct assessment of DNA damage, comet assay revealed that knockdown of Dicer resulted in accumulation of DNA breaks, as indicated by formation of a comet-like tail after single-cell gel electrophoresis. As a consequence of DNA damage, the DNA damage-induced genes, including growth arrest– and DNA damage– inducible geneα(GADD45A), growth arrest– and DNA damage– inducible geneβ(GADD45B), p21, B cell translocation gene 3 (BTG3), activating transcription factor 3 (ATF3), and early growth response 1 (EGR1) were up-regulated in Dicer knockdown cells.
     The DNA damage pathway regulates innate immune system ligands for the NKG2D receptor, and human NKG2D ligands are up-regulated by genotoxic stress and stalled DNA replication, conditions known to activate a major DNA damage checkpoint pathway. To test whether Dicer knockdown-induced DNA damage could activate the expression of NKG2D ligands, we checked the expression of major histocompatibility complex class I– related molecules A and B (MICA and MICB), ULBP1, -2, and -3 using quantitative RT-PCR and flow cytometry. Our results indicated that MICA and MICB were upregulated in Dicer knockdown cells, while the expression of ULBP1, -2, and -3 was not affected by Dicer knockdown. Up-regulation of MICA and MICB by Dicer knockdown is prevented by pharmacologic or genetic inhibition of DNA damage pathway components, including ataxia telangiectasia mutated (ATM) kinase, ATM- and Rad3-related kinase, or checkpoint kinase 1, indicating that up-regulation of MICA and MICB is the result of DNA damage response activation caused by Dicer knockdown. As a consequence of MICA and MICB upregulation, Dicer knockdown sensitized HEK293T cells and HepG2 cells to the lysis of NKL, a cell line derived from an aggressive form of human natural killer (NK) cell leukemia.
     To further confirm that chromatin decondensation causes DNA damage and induces the expression of MICA and MICB, we treated HEK293T cells and HepG2 cells with 5-Aza-2’-deoxycytidine (5-aza-dC), a DNA methyltransferase inhibitor. DNA methylation is essential for the heterochromatin condensation, 5-aza-dC treatment induces global DNA demethylation and hence heterochromatin decondensation. Our results demonstrated that 5-aza-dC treatment leads DNA damage and upregulation of MICA and MICB.
     Depletion of Dicer was found to impair the migration of endothelial cells, and fibronectin-1 (FN1) was upregulated in Dicer knockdown endothelial cells. EGR1 binds to the fibronectin-1 promoter and induces the expression of fibronectin-1. We found that EGR1 was upregulated in Dicer knockdown cells. Therefore, we hypothesized that Dicer knockdown may induce fibronectin-1 expression via an EGR1-dependant mechanism. To test this hypothesis, we knocked-down Dicer expression in HEK293T cells, and found that decreased Dicer expression induced the expression of fibronectin-1, and that the upregulation of fibronectin-1 in Dicer knockdown cells was caused by EGR1. Knockdown of Dicer sensitized cells to apoptosis induced by fibronectin-1 knockdown. Furthermore, we found that knockdown of Dicer impairs the migratory capacity of HEK293T cells.
     We proposed the following model: Dicer is essential for heterochromatin formation, loss of Dicer leads to chromatin decondensation, which in turn disrupts DNA replication timing and induces DNA damage; chromatin decondensation may also activate transponsable elements, in addition, decreased Dicer expression may stabilize the dsRNAs transcribed from transposable elements and hence enhance transposition, activation of transposition leads to DNA damage. DNA damage induces the expression of EGR1, which in turn activates the transcription of fibronectin-1, upregulation of fibronectin-1 impair cell migratory capacity. In addition, Dicer knockdown-induced DNA damage leads to the upregulation of MICA and MICB, and Dicer knockdown cells may be eliminated by immune cells.
引文
[1] S. Guo, K. Kemphues. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed [J]. Cell, 1995, 81: 611-20.
    [2] A. Fire, S. Xu, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans [J]. Nature, 1998, 391: 806-11.
    [3] C. Napoli, C. Lemieux, R . Jorgensen. Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans [J]. Plant Cell, 1990, 2: 279-289.
    [4] N. Romano, G. Macino. Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences [J]. Mol Microbiol, 1992, 6: 3343-53.
    [5] T. Elan, S. Balzergue, F. Béon, et al. Arabidopsis mutants impaired in cosuppression [J]. Plant Cell, 1998, 10: 1747-58.
    [6] D. Baulcombe. RNA as a target and an initiator of post-transcriptional gene silencing in transgenic plants [J].Plant Mol Biol, 1996, 32: 79-88.
    [7] C. Cogoni, G. Macino. Isolation of quelling-defective (qde) mutants impaired in posttranscriptional transgene-induced gene silencing in Neurospora crassa [J]. Proc Natl Acad Sci U S A, 1997, 16; 94:10233-8.
    [8] C. Cogoni, G. Macino. Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase [J]. Nature, 1999, 13; 399: 166-9.
    [9] T. Sijen, J. Fleenor, F. Simmer, et al.On the role of RNA amplification in dsRNA-triggered gene silencing [J]. Cell, 2001, 107:465-76.
    [10] C. Lipardi, Q. Wei, B. Paterson. RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs [J]. Cell, 2001,107: 297- 307.
    [11] M. Montgomery, A. Fire. Double-stranded RNA as a mediator in sequence-specific genetic silencing and co-suppression [J].Trends Genet, 1998,14:255-8.
    [12] Q. Que, H. Wang, J. English, et al.The Frequency and Degree of Cosuppression by Sense Chalcone Synthase Transgenes Are Dependent on Transgene Promoter Strength and Are Reduced by Premature Nonsense Codons in the Transgene Coding Sequence [J]. Plant Cell, 1997, 9: 1357-1368.
    [13] R. Jorgensen, N. Doetsch, A. Müller, et al. A paragenetic perspective on integration of RNA silencing into the epigenome and its role in the biology of higher plants [J], Cold Spring HarbSymp Quant Biol, 2006, 71:481-5.
    [14] M. Kumagai, J. Donson, G. della-Cioppa, et al. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA [J]. Proc Natl Acad Sci U S A, 1995, 92: 1679-83.
    [15] S. Angell, D. Baulcombe.Consistent gene silencing in transgenic plants expressing a replicating potato virus X RNA [J]. EMBO J, 1997, 16:3675-84.
    [16] O. Voinnet, D. Baulcombe. Systemic signalling in gene silencing [J]. Nature, 1997, 389: 553.
    [17] R. Ketting, T. Haverkamp, H. van Luenen, et al. Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD [J]. Cell, 1999, 99: 133-41.
    [18] H. Tabara, M. Sarkissian, W. Kelly, et al. The rde-1 gene, RNA interference, and transposon silencing in C. elegans [J]. Cell, 1999, 99: 123-32.
    [19] S. Jensen, M. Gassama, T. Heidmann. Taming of transposable elements by homology-dependent gene silencing [J]. Nat Genet, 1999, 21: 209-12.
    [20] R. Ketting, R. Plasterk. A genetic link between co-suppression and RNA interference in C. elegans [J]. Nature, 2000, 404: 296-8.
    [21] M. Montgomery, S. Xu, A. Fire. RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans [J].Proc Natl Acad Sci U S A, 1998, 95:15502-7.
    [22] L. Timmons, A. Fire. Specific interference by ingested dsRNA [J]. Nature, 1998, 29; 395: 854.
    [23] A. Grishok, H. Tabara, C. Mello. Genetic requirements for inheritance of RNAi in C. elegans [J]. Science, 2000, 287: 2494-7.
    [24] A. Hamilton, D. Baulcombe. A species of small antisense RNA in posttranscriptional gene silencing in plants [J]. Science, 1999, 286: 950-2.
    [25] T. Tuschl, P. Zamore, R. Lehmann, et al. Targeted mRNA degradation by double-stranded RNA in vitro [J]. Genes Dev, 1999, 13: 3191-7.
    [26] P. Zamore, T. Tuschl, P. Sharp, et al. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals [J]. Cell, 2000, 101: 25-33.
    [27] S. Elbashir, W. Lendeckel, T. Tuschl. RNA interference is mediated by 21- and 22-nucleotide RNAs [J]. Genes Dev, 2001, 15: 188-200.
    [28] S. Elbashir, J. Harborth, W. Lendeckel, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells [J]. Nature, 2001, 411: 494-8.
    [29] E. Bernstein, A. Caudy, S. Hammond, et al. Role for a bidentate ribonuclease in the initiation step of RNA interference [J]. Nature, 2001, 409: 363-6.
    [30] E. Billy, V. Brondani, H. Zhang, et al. Specific interference with gene expression induced by long, double-stranded RNA in mouse embryonal teratocarcinoma cell lines [J]. Proc Natl AcadSci U S A, 2001, 98: 14428-33.
    [31] S. Hammond, E. Bernstein, D. Beach, et al. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells [J]. Nature, 2000, 404: 293-6.
    [32] S. Hammond, S. Boettcher, A. Caudy, et al. Argonaute2, a link between genetic and biochemical analyses of RNAi [J]. Science, 2001, 293: 1146-50.
    [33] S. Elbashir, J. Martinez, A. Patkaniowska, et al. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate [J]. EMBO J, 2001, 20: 6877-88.
    [34] J. Martinez, A. Patkaniowska, H. Urlaub, et al. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi [J]. Cell, 2002, 110: 563-74.
    [35] A. Caudy, M. Myers, G. Hannon, et al. Fragile X-related protein and VIG associate with the RNA interference machinery [J]. Genes Dev, 2002, 16: 2491-6.
    [36] A. Ishizuka, M. Siomi, H. Siomi. A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins [J]. Genes Dev, 2002, 16: 2497-508.
    [37] A. Caudy, R. Ketting, S. Hammond, et al. A micrococcal nuclease homologue in RNAi effector complexes [J]. Nature, 2003, 425: 411-4.
    [38] Q. Liu, T. Rand, S. Kalidas, et al. R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway [J]. Science, 2003, 301: 1921-5.
    [39] D. Schwarz, G. Hutvágner, T. Du, et al. Asymmetry in the assembly of the RNAi enzyme complex [J]. Cell, 2003, 115: 199-208.
    [40] Y. Tomari, C. Matranga, B. Haley, et al. A protein sensor for siRNA asymmetry [J]. Science, 2004, 306: 1377-80.
    [41] Y.Tomari, T. Du, B. Haley, et al. RISC assembly defects in the Drosophila RNAi mutant armitage [J]. Cell, 2004, 116: 831-41.
    [42] G. Robb, T. Rana. RNA helicase A interacts with RISC in human cells and functions in RISC loading [J]. Mol Cell, 2007, 26: 523-37.
    [43] J. Liu, M. Carmell, F. Rivas, et al. Argonaute2 is the catalytic engine of mammalian RNAi [J]. Science, 2004, 305: 1437-41.
    [44] F. Rivas, N. Tolia, J. Song, et al. Purified Argonaute2 and an siRNA form recombinant human RISC [J]. Nat Struct Mol Biol, 2005, 12: 340-9.
    [45] C. Matranga, Y. Tomari, C. Shin, et al. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes [J]. Cell, 2005, 123: 607-20.
    [46] Y. Liu, X. Ye, F. Jiang, et al. C3PO, an endoribonuclease that promotes RNAi by facilitating RISC activation [J]. Science, 2009, 325: 750-3.
    [47] B. Reinhart, F. Slack, M. Basson, et al. The 21-nucleotide let-7 RNA regulates developmentaltiming in Caenorhabditis elegans[J]. Nature, 2000, 403: 901-6.
    [48] F.Slack, M. Basson, Liu Z, et al. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor [J]. Mol Cell, 2000 5:659-69.
    [49] P. Waterhouse, M. Wang, T. Lough. Gene silencing as an adaptive defence against viruses [J]. Nature, 2001, 411: 834-42.
    [50] M. Lagos-Quintana, R. Rauhut, W. Lendeckel, et al. Identification of novel genes coding for small expressed RNAs [J]. Science, 2001, 294: 853-8.
    [51] N. Lau, L. Lim, E. Weinstein, et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans [J]. Science, 2001, 294: 858-62.
    [52] R. Lee. Ambros V.An extensive class of small RNAs in Caenorhabditis elegans [J]. Science, 2001, 294: 862-4.
    [53] G. Hutvágner, J. McLachlan, A. Pasquinelli, et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA [J]. Science, 2001, 293: 834-8.
    [54] Y. Lee, K. Jeon, J. Lee, et al. MicroRNA maturation: stepwise processing and subcellular localization [J]. EMBO J, 2002, 21: 4663-70.
    [55] Y. Lee, C. Ahn, J. Han, et al. The nuclear RNase III Drosha initiates microRNA processing [J]. Nature, 2003, 425: 415-9.
    [56] Y. Lee, M. Kim, J. Han, et al. MicroRNA genes are transcribed by RNA polymerase II [J]. EMBO J, 2004, 23: 4051-60.
    [57] R. Yi, Y. Qin, I. Macara, et al. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs [J]. Genes Dev, 2003, 17: 3011-6.
    [58] E. Lund, S. Güttinger, A. Calado, et al. Nuclear export of microRNA precursors [J]. Science, 2004, 303: 95-8.
    [59] V. Kim, J. Han, M. Siomi. Biogenesis of small RNAs in animals [J]. Nat Rev Mol Cell Biol, 2009 ,10: 126-39.
    [60] J. Carrington, V. Ambros. Role of microRNAs in plant and animal development [J]. Science, 2003,301: 336-8.
    [61] V. Ambros. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing [J]. Cell, 2003,113:673-6.
    [62] V. Ambros. microRNAs: tiny regulators with great potential [J]. Cell, 2001,107: 823-6.
    [63] D. Bartel. MicroRNAs: genomics, biogenesis, mechanism, and function [J]. Cell, 2004,116: 281-97.
    [64] S. Grewal, J. Rice. Regulation of heterochromatin by histone methylation and small RNAs [J]. Curr Opin Cell Biol, 2004,16: 230-8.
    [65] M. Motamedi, A. Verdel, S. Colmenares, et al. Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs [J]. Cell, 2004,119: 789-802.
    [66] V. Schramke, R. Allshire. Hairpin RNAs and retrotransposon LTRs effect RNAi and chromatin-based gene silencing [J]. Science, 2003 ,301:1069-74.
    [67] A. Sigova, N. Rhind, P. Zamore. A single Argonaute protein mediates both transcriptional and posttranscriptional silencing in Schizosaccharomyces pombe [J]. Genes Dev, 2004, 18: 2359-67.
    [68] A. Herr, M. Jensen, T. Dal, et al. RNA polymerase IV directs silencing of endogenous DNA [J]. Science, 2005, 308: 118-20.
    [69] Y. Onodera, J. Haag, T. Ream, et al. Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation [J]. Cell, 2005, 120: 613-22.
    [70] B. Yu, Z. Yang, J. Li, et al. Methylation as a crucial step in plant microRNA biogenesis [J]. Science, 2005, 307: 932-5.
    [71] M. Mette, W. Aufsatz, J. van der Winden, et al. Transcriptional silencing and promoter methylation triggered by double-stranded RNA [J]. EMBO J, 2000, 19: 5194-201.
    [72] X. Cao, W. Aufsatz, D. Zilberman, et al. Role of the DRM and CMT3 methyltransferases in RNA-directed DNA methylation [J]. Curr Biol, 2003,13: 2212-7.
    [73] Z. Xie, L. Johansen, A. Gustafson, et al. Genetic and functional diversification of small RNA pathways in plants [J]. PLoS Biol, 2004, 2: E104.
    [74] C. Kanellopoulou, S. Muljo, A. Kung, et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing[J]. Genes Dev, 2005, 19: 489-501.
    [75] L. Sinkkonen, T. Hugenschmidt, P. Berninger, et al. MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells [J]. Nat Struct Mol Biol, 2008, 15: 259-67.
    [76] R. Benetti, S. Gonzalo, I. Jaco, et al. A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases[J]. Nat Struct Mol Biol, 2008,15: 268-79.
    [77] E. Murchison, J. Partridge, O. Tam, et al. Characterization of Dicer-deficient murine embryonic stem cells [J]. Proc Natl Acad Sci U S A, 2005, 102: 12135-40.
    [78] B. Cobb, T. Nesterova, E. Thompson, et al. T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer [J]. J Exp Med, 2005, 201: 1367-73.
    [79] Y. Ogawa, B. Sun, J. Lee. Intersection of the RNA interference and X-inacti- vation pathways[J]. Science, 2008, 320: 1336-41.
    [80] C. Kanellopoulou, S. Muljo, S. Dimitrov, et al. X chromosome inactivation in the absence of Dicer [J]. Proc Natl Acad Sci U S A, 2009, 106: 1122-7.
    [81] S. Buker, T. Iida, M. Bühler, et al. Two different Argonaute complexes are required for siRNA generation and heterochromatin assembly in fission yeast [J]. Nat Struct Mol Biol, 2007, 14:200-7.
    [82] S. Takada, E. Berezikov, Y. Choi, et al. Potential role of miR-29b in modulation of Dnmt3a and Dnmt3b expression in primordial germ cells of female mouse embryos[J]. RNA, 2009, 15:1507-14.
    [83] R. Garzon, S. Liu, M. Fabbri, et al. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1 [J]. Blood, 2009, 113: 6411-8.
    [84] M. Fabbri, R. Garzon, A. Cimmino, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B [J]. Proc Natl Acad Sci U S A, 2007, 104: 15805-10.
    [85] J. Tamminga, P. Kathiria, I. Koturbash, et al. DNA damage-induced upregulation of miR-709 in the germline downregulates BORIS to counteract aberrant DNA hypomethylation[J]. Cell Cycle, 2008, 7:3731-6.
    [86] S. Varambally, Q. Cao, R. Mani, et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer [J]. Science, 2008, 322: 1695-9.
    [87] J. Umbach, B. Cullen. The role of RNAi and microRNAs in animal virus replication and antiviral immunity [J]. Genes Dev, 2009, 23: 1151-64.
    [88] H. Scholthof. The Tombusvirus-encoded P19: from irrelevance to elegance [J]. Nat Rev Microbiol, 2006, 4:405-11.
    [89] J. Diaz-Pendon, F. Li, W. Li, et al. Suppression of antiviral silencing by cucumber mosaic virus 2b protein in Arabidopsis is associated with drastically reduced accumulation of three classes of viral small interfering RNAs [J]. Plant Cell, 2007, 19: 2053-63.
    [90] W. Reik, J. Walter. Genomic imprinting: parental influence on the genome [J]. Nat Rev Genet, 2001, 2: 21-32.
    [91] E. Davis, F. Caiment, X. Tordoir, et al. RNAi-mediated allelic trans-interaction at the imprinted Rtl1/Peg11 locus [J]. Curr Biol, 2005, 15: 743-9.
    [92] H. Seitz, N. Youngson, S. Lin, et al. Imprinted microRNA genes transcribed antisense to a reciprocally imprinted retrotransposon-like gene [J]. Nat Genet, 2003, 34: 261-2.
    [93] M. Fukasawa, S. Morita, M. Kimura, et al. Genomic imprinting in Dicer1-hypomorphic mice[J]. Cytogenet Genome Res, 2006, 113:138-43.
    [94] A. Aguilera, B. Gómez-González. Genome instability: a mechanistic view of its causes and consequences [J]. Nat Rev Genet, 2008, 9:204-17.
    [95] M. Bühler, D. Moazed. Transcription and RNAi in heterochromatic gene silencing[J]. Nat Struct Mol Biol, 2007, 14: 1041-1048.
    [96] S. Locke, R. Martienssen. Slicing and spreading of heterochromatic silencing by RNA interference [J]. Cold Spring Harb Symp Quant Biol, 2006, 71:497-503.
    [97] J. Peng, G. Karpen. H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability [J]. Nat Cell Biol, 2007, 9:25-35.
    [98] A. Donaldson. Shaping time: chromatin structure and the DNA replication programme[J]. Trends Genet, 2005, 21:444-9.
    [99] H. J?rgensen, V. Azuara, S. Amoils, et al. The impact of chromatin modifiers on the timing of locus replication in mouse embryonic stem cells [J]. Genome Biol, 2007, 8:R169.
    [100] R. Plasterk. RNA silencing: the genome's immune system [J]. Science, 2002, 296: 1263-5.
    [101] A. Fire. Nucleic acid structure and intracellular immunity: some recent ideas from the world of RNAi [J]. Q Rev Biophys, 2005, 38: 303-9.
    [102] J. Krol, A. Fiszer, A. Mykowska, et al. Ribonuclease dicer cleaves triplet repeat hairpins into shorter repeats that silence specific targets [J]. Mol Cell, 2007, 25: 575-86.
    [103] L. Lanier. Up on the tightrope: natural killer cell activation and inhibition [J]. Nat Immunol, 2008, 9: 495-502.
    [104] S. Gasser, S. Orsulic, E. Brown, et al. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor [J]. Nature, 2005, 436: 1186-90.
    [105] A. Muro, A. Chauhan, S. Gajovic, et al. Regulated splicing of the fibronectin EDA exon is essential for proper skin wound healing and normal lifespan [J]. J Cell Biol, 2003, 162:149-60.
    [106] D. Bing, S. Almeda, H. Isliker, et al. Fibronectin binds to the C1q component of complement [J]. Proc Natl Acad Sci U S A, 1982,79: 4198-201.
    [107] A. Ridley. Molecular switches in metastasis [J]. Nature, 2000, 406: 466-7.
    [108] C. Liu, E. Adamson, D. Mercola. Transcription factor EGR1 suppresses the growth and transformation of human HT-1080 fibrosarcoma cells by induction of transforming growth factor beta 1[J]. Proc Natl Acad Sci U S A, 1996, 93: 11831-6.
    [109] R. Huang, Y. Fan, I. de Belle, et al. Decreased EGR1 expression in human, mouse and rat mammary cells and tissues correlates with tumor formation[J]. Int J Cancer, 1997, 72:102-9.
    [110] C. Liu, J. Yao,I. de Belle, et al. The transcription factor EGR1 suppresses transformation of human fibrosarcoma HT1080 cells by coordinated induction of transforming growthfactor-beta1, fibronectin, and plasminogen activator inhibitor-1[J]. J Biol Chem, 1999, 274:4400-11.
    [111] C. Gaggioli, M. Deckert, G. Robert, et al. HGF induces fibronectin matrix synthesis in melanoma cells through MAP kinase-dependent signaling pathway and induction of EGR1[J]. Oncogene, 2005, 24: 1423-33.
    [112] E. Bernstein, S. Kim, M. Carmell, et al. Dicer is essential for mouse development [J]. Nat Genet, 2003, 35: 215-7.
    [113] S. Muljo, K. Ansel, C. Kanellopoulou, et al. Aberrant T cell differentiation in the absence of Dicer [J]. J Exp Med, 2005, 202: 261-9.
    [114] E. Murchison, P. Stein, Z. Xuan, et al.Critical roles for Dicer in the female germline [J].Genes Dev, 2007 ,21(6):682-93.
    [115] J. Chen, E. Murchison, R. Tang, et al. Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure [J]. Proc Natl Acad Sci U S A, 2008, 105: 2111-6.
    [116] K. Hayashi, S. Chuva de Sousa Lopes, M. Kaneda, et al. MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis [J]. PLoS One, 2008, 3:e1738.
    [117] S. Koralov, S. Muljo, G. Galler, et al. Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage [J]. Cell, 2008, 132:860-74.
    [118] J. Ho, P. Marsden. Dicer cuts the kidney [J]. J Am Soc Nephrol, 2008, 19: 2043-6.
    [119] D. Damiani, J. Alexander, J. O'Rourke, et al, Strettoi E Dicer inactivation leads to progressive functional and structural degeneration of the mouse retina [J]. J Neurosci, 2008, 28: 4878-87.
    [120] T. Davis, T. Cuellar, S. Koch, et al. Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus [J]. J Neurosci, 2008, 28:4322-30.
    [121] K. Nelson, G. Weiss. MicroRNAs and cancer: past, present, and potential future [J]. Mol Cancer Ther, 2008, 7: 3655-60.
    [122] J. Wilkins, D. Haig. What good is genomic imprinting: the function of parent-specific gene expression [J]. Nat Rev Genet, 2003, 4: 359-68.
    [123] F. Smith, A. Garfield, A. Ward. Regulation of growth and metabolism by imprinted genes [J]. Cytogenet Genome Res, 2006, 113: 279-91.
    [124] K. Delaval, R. Feil.Epigenetic regulation of mammalian genomic imprinting [J]. Curr Opin Genet Dev, 2004, 14:188-95.
    [125] T. Volpe, C. Kidner, I. Hall, et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi [J]. Science, 2002, 297:1833-7.
    [126] I. Hall, G. Shankaranarayana, K. Noma, et al. Establishment and maintenance of a heterochromatin domain [J]. Science, 2002, 297:2232-7.
    [127] P. Provost, R. Silverstein, D. Dishart, et al. Dicer is required for chromosome segregation and gene silencing in fission yeast cells [J]. Proc Natl Acad Sci U S A, 2002, 99:16648-53.
    [128] T. Volpe, V. Schramke, G. Hamilton, et al. RNA interference is required for normal centromere function in fission yeast [J]. Chromosome Res, 2003, 11:137-46.
    [129] I. Hall, K. Noma, S. Grewal.RNA interference machinery regulates chromosome dynamics during mitosis and meiosis in fission yeast [J]. Proc Natl Acad Sci U S A, 2003, 100:193-8.
    [130] M. O'Neill. The influence of non-coding RNAs on allele-specific gene expression in mammals [J]. Hum Mol Genet, 2005, 14:R113-20.
    [131] A. Verdel, S. Jia, S. Gerber, et al. RNAi-mediated targeting of heterochromatin by the RITS complex [J]. Science, 2004, 303: 672-6.
    [132] K. Noma, T. Sugiyama, H. Cam, et al. RITS acts in cis to promote RNA interference-mediated transcriptional and post-transcriptional silencing [J]. Nat Genet, 2004, 36:1174-80.
    [133] E. Lei, V. Corces. RNA interference machinery influences the nuclear organization of a chromatin insulator [J]. Nat Genet, 2006, 38:936-41.
    [134] C. Grimaud, F. Bantignies, M. Pal-Bhadra, et al. RNAi components are required for nuclear clustering of Polycomb group response elements [J]. Cell, 2006, 124: 957-71.
    [135] N. Qian, D. Frank, D. O'Keefe, et al. The IPL gene on chromosome 11p15.5 is imprinted in humans and mice and is similar to TDAG51, implicated in Fas expression and apoptosis [J]. Hum Mol Genet, 1997, 6:2021-9.
    [136] D. Haussecker, N. Proudfoot. Dicer-dependent turnover of intergenic transcripts from the human beta-globin gene cluster [J]. Mol Cell Biol, 2005, 25:9724-33.
    [137] B. Tycko. Imprinted genes in placental growth and obstetric disorders[J]. Cytogenet Genome Res, 2006, 113(1-4): 271-8.
    [138] P. Coan, G. Burton, A. Ferguson-Smith. Imprinted genes in the placenta-- a review [J]. Placenta, 2005, 26: S10-20.
    [139] K. Morris, S. Chan, S. Jacobsen, et al. Small interfering RNA-induced transcriptional gene silencing in human cells [J]. Science, 2004, 305:1289-92.
    [140] C. Park, Z. Chen, B. Kren, et al. Double-stranded siRNA targeted to the huntingtin gene does not induce DNA methylation[J].Biochem Biophys Res Commun, 2004, 323: 275-80.
    [141] P. Svoboda, P. Stein, W. Filipowicz, et al. Lack of homologous sequence-specific DNA methylation in response to stable dsRNA expression in mouse oocytes [J]. Nucleic Acids Res, 2004, 32:3601-6.
    [142] D. Frank, W. Fortino, L. Clark, et al. Placental overgrowth in mice lacking the imprinted gene Ipl [J]. Proc Natl Acad Sci U S A, 2002, 99: 7490-5.
    [143] M. Salas, R. John, A. Saxena, et al. Placental growth retardation due to loss of imprinting of Phlda2 [J]. Mech Dev, 2004, 121: 1199-210.
    [144] A. Feinberg. Imprinting of a genomic domain of 11p15 and loss of imprinting in cancer: an introduction [J]. Cancer Res, 1999, 59:1743s-1746s.
    [145] M. Lee, A. Feinberg. Genomic imprinting of a human apoptosis gene homologue, TSSC3 [J]. Cancer Res, 1998, 58:1052-6.
    [146] M. Kondo, S. Matsuoka, K. Uchida, et al. Selective maternal-allele loss in human lung cancers of the maternally expressed p57KIP2 gene at 11p15.5 [J]. Oncogene, 1996, 12:1365-8.
    [147] S. Uyeno, Y. Aoki, M. Nata, et al. IGF2 but not H19 shows loss of imprinting in human glioma [J].Cancer Res, 1996, 56:5356-9.
    [148] S. Müller, D. van den Boom, D. Zirkel, et al. Retention of imprinting of the human apoptosis-related gene TSSC3 in human brain tumors [J]. Hum Mol Genet, 2000, 9:757-63.
    [149] C. Park, S. Lee, G. Kandala, et al. A novel gene product that couples TCR signaling to Fas(CD95) expression in activation-induced cell death [J]. Immunity, 1996, 4: 583-91.
    [150] A. Saxena, P. Morozov, D. Frank, et al. Phosphoinositide binding by the pleckstrin homology domains of Ipl and Tih1 [J]. J Biol Chem, 2002, 277: 49935-44.
    [151] H. Cam, T. Sugiyama, E. Chen, et al. Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome [J]. Nat Genet, 2005, 37: 809-19.
    [152] S. Gasior, T. Wakeman, B. Xu, et al.The human LINE-1 retrotransposon creates DNA double-strand breaks [J]. J Mol Biol, 2006, 357: 1383-93.
    [153] E. Foster, J. Downs. Histone H2A phosphorylation in DNA double-strand break repair [J]. FEBS J, 2005, 272: 3231-40.
    [154] Y. Zou, Y. Liu, X. Wu, et al. Functions of human replication protein A (RPA): from DNA replication to DNA damage and stress responses [J]. J Cell Physiol, 2006, 208: 267-73.
    [155] R. Thyss, V. Virolle, Imbert V, et al. NF-kappaB/EGR1/Gadd45 are sequentially activated upon UVB irradiation to mediate epidermal cell death [J]. EMBO J, 2005, 24:128-37.
    [156] F. Fan, S. Jin, S. Amundson, et al. ATF3 induction following DNA damage is regulated by distinct signaling pathways and over-expression of ATF3 protein suppresses cells growth [J]. Oncogene, 2002, 21:7488-96.
    [157] Y. Ou, P. Chung, F. Hsu, et al. The candidate tumor suppressor BTG3 is a transcriptional target of p53 that inhibits E2F1 [J]. EMBO J, 2007, 26: 3968-80.
    [158] N. Gévry, H. Chan, L. Laflamme, et al. p21 transcription is regulated by differential localization of histone H2A.Z [J]. Genes Dev, 2007, 21:1869-81.
    [159] J. Sandoval, J. Rodríguez, G. Tur, et al. RNAPol-ChIP: a novel application of chromatin immunoprecipitation to the analysis of real-time gene transcription [J]. Nucleic Acids Res, 2004, 32: e88.
    [160] A. Sancar, L. Lindsey-Boltz, K. Unsal-Ka?maz, et al. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints[J]. Annu Rev Biochem, 2004, 73: 39-85.
    [161] T. Nolan, L. Braccini, G. Azzalin, et al. The post-transcriptional gene silencing machinery functions independently of DNA methylation to repress a LINE1-like retrotransposon in Neurospora crassa [J]. Nucleic Acids Res, 2005, 33:1564-73.
    [162] N. Yang, H. Kazazian Jr. L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells[J]. Nat Struct Mol Biol, 2006, 13: 763-71.
    [163] T. Watanabe, A. Takeda, T. Tsukiyama, et al. Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes [J]. Genes Dev, 2006, 20:1732-43.
    [164] O. Tam, A. Aravin, P. Stein, et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes [J]. Nature, 2008, 453:534-8.
    [165] W. Chung, K. Okamura, R. Martin, et al. Endogenous RNA interference provides a somatic defense against Drosophila transposons[J]. Curr Biol, 2008, 18:795-802.
    [166] C. Stoica, J. Carmichael, H. Parker, et al. Interactions between the RNA interference effector protein Ago1 and 14-3-3 proteins: consequences for cell cycle progression [J]. J Biol Chem, 2006, 281:37646-51.
    [167] N. Doi, S. Zenno, R. Ueda, et al. Short-interfering-RNA-mediated gene silencing in mammalian cells requires Dicer and eIF2C translation initiation factors [J]. Curr Biol, 2003, 13:41-6.
    [168] A. Lopez-Girona, B. Furnari, O. Mondesert, et al. Nuclear localization of Cdc25 is regulated by DNA damage and a 14-3-3 protein[J]. Nature, 1999, 397:172-5.
    [169] J. Carmichael, P. Provost, K. Ekwall, et al. ago1 and dcr1, two core components of the RNA interference pathway, functionally diverge from rdp1 in regulating cell cycle events in Schizosaccharomyces pombe [J]. Mol Biol Cell, 2004, 15:1425-35.
    [170] S. Gasser, D. Raulet. The DNA damage response arouses the immune system [J]. Cancer Res, 2006, 66:3959-62.
    [171] N. Welker, J. Habig, B. Bass. Genes misregulated in C. elegans deficient in Dicer, RDE-4, or RDE-1 are enriched for innate immunity genes [J].RNA, 2007, 13:1090-102.
    [172] C. Sledz, M. Holko, M. de Veer, et al, Williams BR. Activation of the interferon system by short-interfering RNAs [J]. Nat Cell Biol, 2003, 5:834-9.
    [173] J. Marques, B. Williams. Activation of the mammalian immune system by siRNAs[J]. Nat Biotechnol. 2005, 23:1399-405.
    [174] L. Molinero, M. Gruber, J. Leoni, et al. Up-regulated expression of MICA and proinflammatory cytokines in skin biopsies from patients with seborrhoeic dermatitis[J]. Clin Immunol. 2003, 106:50-4.
    [175] I. Behm-Ansmant, J. Rehwinkel, T. Doerks, et al. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes [J]. Genes Dev, 2006, 20:1885-98.
    [176] R. Abraham. Cell cycle checkpoint signaling through the ATM and ATR kinases [J].Genes Dev, 2001,15:2177-96.
    [177] D. Yadav, J. Ngolab, R. Lim, et al. Cutting edge: down-regulation of MHC class I-related chain A on tumor cells by IFN-gamma-induced microRNA [J]. J Immunol, 2009, 182: 39-43.
    [178] N. Stern-Ginossar, C. Gur, M. Biton, et al. Human microRNAs regulate stress-induced immune responses mediated by the receptor NKG2D [J]. Nat Immunol, 2008, 9:1065-73.
    [179] R. Ueda, G. Kohanbash, K. Sasaki, et al. Dicer-regulated microRNAs 222 and 339 promote resistance of cancer cells to cytotoxic T-lymphocytes by down-regulation of ICAM-1[J]. Proc Natl Acad Sci U S A, 2009,106:10746-51.
    [180] R. Mudhasani, Z. Zhu, G. Hutvagner, et al. Loss of miRNA biogenesis induces p19Arf-p53 signaling and senescence in primary cells [J]. J Cell Biol, 2008, 181:1055-63.
    [181] S. González, V. Groh, T. Spies. Immunobiology of human NKG2D and its ligands [J]. Curr Top Microbiol Immunol, 2006, 298:121-38.
    [182] V. Groh, A. Steinle, S. Bauer, et al. Recognition of stress-induced MHC molecules by intestinal epithelial gammadelta T cells [J]. Science, 1998, 279:1737-40.
    [183] S. Bauer, V. Groh, J. Wu, et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA[J]. Science, 1999, 285(5428):727-9.
    [184] V. Groh, R. Rhinehart, J. Randolph-Habecker, et al. Costimulation of CD8alphabeta T cells by NKG2D via engagement by MIC induced on virus-infected cells [J]. Nat Immunol, 2001, 2:255-60.
    [185] S. Armeanu, M. Bitzer, U. Lauer, et al. Natural killer cell-mediated lysis of hepatoma cells via specific induction of NKG2D ligands by the histone deacetylase inhibitor sodium valproate[J]. Cancer Res, 2005, 65:6321-9.
    [186] S. Skov, M. Pedersen, L. Andresen, et al. Cancer cells become susceptible to natural killer cell killing after exposure to histone deacetylase inhibitors due to glycogen synthase kinase-3-dependent expression of MHC class I-related chain A and B [J]. Cancer Res, 2005,65 (23):11136-45.
    [187] L. Andresen, H. Jensen, M. Pedersen, et al. Molecular regulation of MHC class I chain-related protein A expression after HDAC-inhibitor treatment of Jurkat T cells [J]. J Immunol, 2007, 179:8235-42.
    [188] N. Kato, J. Tanaka, J. Sugita, et al. Regulation of the expression of MHC class I-related chain A, B (MICA, MICB) via chromatin remodeling and its impact on the susceptibility of leukemic cells to the cytotoxicity of NKG2D-expressing cells [J]. Leukemia, 2007, 21:2103-8.
    [189] A. Lusser. Acetylated, methylated, remodeled: chromatin states for gene regulation [J]. Curr Opin Plant Biol, 2002, 5:437-43.
    [190] J. Christman. 5-Azacytidine and 5-aza-2'-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy [J]. Oncogene, 2002, 21: 5483-95.
    [191] S. Palii, B. Van. Emburgh, U. Sankpal, et al. DNA methylation inhibitor 5-Aza-2'- deoxycytidine induces reversible genome-wide DNA damage that is distinctly influenced by DNA methyltransferases 1 and 3B [J]. Mol Cell Biol, 2008, 28:752-71.
    [192] K. Robertson. DNA methylation and human disease [J].Nat Rev Genet, 2005, 6: 597-610.
    [193] J. Herman, S. Baylin. Gene silencing in cancer in association with promoter hypermethylation [J]. N Engl J Med, 2003, 349: 2042-54.
    [194] R. Jüttermann, E. Li, R. Jaenisch. Toxicity of 5-aza-2'-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation [J]. Proc Natl Acad Sci U S A, 1994, 91:11797-801.
    [195] Z. Guo, J. Hong, K. Irvine, et al. De novo induction of a cancer/testis antigen by 5-aza-2'-deoxycytidine augments adoptive immunotherapy in a murine tumor model [J].Cancer Res, 2006, 66:1105-13.
    [196] J. Wu, G. Zeng, W. Shen, et al. Up-regulation of major histocompatibility complex class I-related molecules A (MICA) induced by 5-aza-2'-deoxycytidine [J]. Zhonghua Gan Zang Bing Za Zhi, 2009, 17:675-8.
    [197] Y. Suárez, C. Fernández-Hernando, J. Pober, Sessa. et al. Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells [J]. Circ Res, 2007, 100:1164-73.
    [198] A. Kuehbacher, C. Urbich, A. Zeiher, et al. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis [J]. Circ Res, 2007, 101:59-68.
    [199] S. Asada, T. Takahashi, K. Isodono, et al. Downregulation of Dicer expression by serum withdrawal sensitizes human endothelial cells to apoptosis [J].Am J Physiol Heart CircPhysiol, 2008, 295:H2512-21.
    [200] C. Chassagne, C. Adamy, P. Ratajczak, et al. Angiotensin II AT(2) receptor inhibits smooth muscle cell migration via fibronectin cell production and binding [J]. Am J Physiol Cell Physiol, 2002, 282:C654-64.
    [201] M. Fornaro, J. Plescia, S. Chheang, et al. Fibronectin protects prostate cancer cells from tumor necrosis factor-alpha-induced apoptosis via the AKT/survivin pathway [J]. J Biol Chem, 2003, 278:50402-11.
    [202] D. Wu, X. Chen, D. Guo, et al. Knockdown of fibronectin induces mitochondria-dependent apoptosis in rat mesangial cells [J]. J Am Soc Nephrol, 2005,16:646-57.
    [203] A. Kuehbacher, C. Urbich, S. Dimmeler. Targeting microRNA expression to regulate angiogenesis [J].Trends Pharmacol Sci, 2008, 29:12-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700