用户名: 密码: 验证码:
晚末次冰期以来南海古环境和古气候记录
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南海作为西太平洋地区最大的边缘海,位于欧亚大陆、菲律宾群岛和婆罗洲之间。其形态和地理位置决定了对环境变迁的灵敏性,以其高沉积速率和碳酸盐保存条件,弥补了西太平洋深水区的不足,业已成为古海洋学研究的理想场所之一。晚末次冰期,尤其是末次盛冰期以来经历了从末次冰期向全新世的转变过程,气候波动频繁,其沉积记录所反映的古气候信息受到越来越多学者的关注。而确定海洋沉积物的来源是研究陆源物质反映的环境和气候变化的先决条件。每年,珠江以及来自台湾的高山河流大约给南海输入了260Mt的沉积物。然而,由于这两个主要来源区的地质条件相似,例如岩石的性质和Nd同位素,学者很难确定沉积物的真实来源。海洋沉积物中的黏土矿物组合特征通常被认为是示踪沉积物来源和反映周围大陆风化条件的良好指标。先前对于南海柱状沉积物中黏土矿物组合的分析主要是以更新世以来大尺度的研究为主,很少涉及晚末次冰期以来的变化。同时,对于流入南海的第二大河流——珠江的泥质沉积的输运过程和沉积分布并未展开研究。笔者通过对南海北部黏土矿物的分析发现,虽然前人对南海表层黏土矿物组合特征展开了研究,但是并未从整体上对其分布特征和来源进行探讨。因此,本文中笔者采用AMS 14C定年柱状样的浮游有孔虫碳、氧同位素、黏土矿物、元素分析、有机碳以及碳酸盐含量等指标对晚末次冰期以来的古气候和古环境进行了探讨,并综合自己与前人的研究成果,系统讨论了南海表层黏土矿物的分布特征及来源,同时还运用2007年南海北部地球物理航次中获得的Chirp浅地层剖面与AMS 14C定年的柱状样对全新世以来珠江的泥质沉积物的输运过程和分布特征进行详细的研究。获得的主要认识如下:
     1.通过对ZHS-176柱中的浮游有孔虫G. ruber进行AMS 14C测年以及与SONNE17940柱的对比得出,ZHS-176柱的底部年龄约为22 ka BP。以柱深345 cm为深海氧同位素(Marine Isotope Stage, MIS)1/2期的界限,即末次冰期/全新世界限,上部为MIS 1,下部为MIS 2。年代数据表明在ZHS-176柱中,MIS 2未见底。
     2.ZHS-176柱的黏土矿物主要有四种,其中伊利石(平均39%)、绿泥石(平均27%)为主要成分,还有蒙皂石(平均21%)和高岭石(平均13%)。这些黏土矿物并非来自单一物源,而是多种来源的混合。台湾作为全球风化速度最快的地区之一为南海北部提供大量的伊利石和绿泥石。东海来源的黏土矿物组成与台湾的相似。而珠江为南海北部地区提供了丰富的高岭石,蒙皂石则主要来自吕宋岛。
     3.晚末次冰期期间,由于受到台湾海峡关闭和沉积速率较低影响,末次冰期时来自东海的长江源物质很难到达南海北部,其贡献非常有限。而海平面降低,珠江口向海延伸,导致珠江盆地的物质可以更多地到达南海北部陆坡。全新世时,海岸线与现今位置大致相同,来自东海的物质重新进入南海。
     4.ZHS-176柱浮游有孔虫氧同位素分析揭示了晚末次冰期期间的气候波动,如末次盛冰期、Heinrich事件1、Bφlling-Allerφd暖期与新仙女木事件在南海北部陆坡均有响应。同时,在全新世阶段分别发现了3个强降水期(S1~S3)和3个弱降水期(W1~W3)。表明了南海北部的气候变化与北大西洋的气候变化存在一定的遥相关性。
     5.在ZHS-176柱发现的所有气候变化中,全新世事件3最受关注。全新世事件3可能是由于4.2 ka BP前后太阳活动减弱,一方面导致北大西洋表层浮冰增加,表层海水温度降低,减弱了温盐循环,使海陆温差减小,季风减弱,另一方面使热带幅合带南移,在北半球中、低纬度大部分地区形成干旱降温事件。这一事件在各种气候载体中都有体现。而这一事件最终导致了非洲尼罗河流域古埃及文明、两河流域美索不达米亚古阿卡德帝国、印度河流域哈拉帕文明以及中国新石器文化的衰落。
     6.在ZHS-176柱中发现,Bφlling-Allerφd暖期时浮游有孔虫的碳同位素发生明显而短暂的负漂。这主要是由于当时大量的南极冰川水注入海洋,使南极中层水的密度小于北大西洋深层水,加速了北大西洋表层水的下沉与北大西洋温盐循环,使南海北部中层水温度急剧升高,而当时海平面又处于一个相对较低的阶段(-70~-80 m),从而导致海底天然气水合物失稳分解,释放出大量甲烷,影响了浮游有孔虫的碳同位素记录。类似的晚第四纪天然气水合物释放记录在加利福尼亚的圣塔芭芭拉盆地、瓜伊马斯盆地、俄罗斯的贝加尔湖、格陵兰海、秘鲁、东格陵兰陆架、巴布亚新几内亚以及南海南部均有发现。
     7.ZHS-176柱碳酸盐含量变化显示早全新世南海北部存在一个低钙事件,通过与其他5个柱状样的碳酸盐含量对比分析,笔者认为这一事件在南海北部普遍存在。降水量的增加、短暂的冷事件以及火山集中爆发都在一定程度上对南海北部地区的碳酸盐含量产生稀释作用;而碳酸盐溶解作用在早全新世处在一个相对较强的时期,表层海水初级生产力则降低。陆源物质的稀释作用对于这一事件起主导作用,其次是溶解作用和初级生产力。
     8.ZHS-176柱的化学元素变化特征显示晚末次冰期期间沉积物源区化学风化作用弱,陆源物质输入量高,而在全新世时则化学风化作用强,陆源物质输入量低,所指示的化学风化作用强度的变化与浮游有孔虫的氧同位素有着较好地对应关系。而ZHS-176柱的有机碳主要为生物成因,随着夏季风的增强,陆源有机碳的含量增加,但在3 ka BP前后由于夏季风减弱而导致陆源有机碳逐渐减少。
     9.南海表层黏土矿物组合主要包括伊利石、绿泥石、高岭石和蒙皂石,这些矿物在不同地区不同水深有着不同的分布特征,而物源区的不同是导致分布特征存在差异的主要因素。笔者结合在南海北部的工作和近年来其他学者发表的南海表层黏土矿物资料将其大致分为东南西北四个部分,并确定各自的物源区。台湾和吕宋岛是南海东部表层黏土矿物的主要来源;湄公河、婆罗洲、巽他陆架和印度尼西亚岛弧是南海南部的主要物源区;南海西部表层黏土矿物主要来自红河、湄公河、珠江、台湾、巽他陆架、印度尼西亚岛弧以及婆罗洲;珠江、台湾、长江和吕宋岛则是南海北部的主要来源。
     10.高分辨率Chirp浅地层剖面和钻孔资料显示,在珠江三角洲平原以及珠江口—雷州半岛长约350 km的南海北部陆架存在一厚度达~30 m的全新世珠江源泥质沉积区。这些陆源沉积物被南向的中国沿岸流和北向的南海暖流限制在南海北部陆架。在粤西陆架区,泥质沉积物主要分布于-50 m等深线以内,在珠江口东南部则可达-120 m等深线处。通过对比其他西太平洋边缘海陆架陆源沉积物所形成的沉积层序,笔者发现该泥质沉积区的形成过程可分为中全新世高海平面(~7.0 cal.ka BP)之前和之后两个阶段。在中全新世高海平面之前,远源的泥质沉积主要形成于11.2~9.8 cal.ka BP,当时海平面处于“冰融水脉冲事件”(meltwater pulse, MWP)1B之后的平缓上升期,而近端泥质沉积则形成于9.0 cal.ka BP之后,对应于MWP-1C之后的海平面平缓上升阶段。中全新世高海平面之后,距珠江口~150 km以内的粤西内陆架发育斜层理,厚度从-5~-10 m等深线处的~10 m向外海逐渐递减到-20~-30 m等深线处的<1~2m。
The South China Sea (SCS) is the largest marginal sea of the Western Pacific. It is surrounded by the Eurasia continent to the north and west, and Philippine islands and Borneo to the east and south. Due to the high sedimentation rate and carbonate preserving efficiency, the SCS is an ideal location for the paleoceanography studies. During the late last glacial period, especially for the Last Glacial Maximum (LGM), there were numerous climatic changes. The studies of the paleoenvironmental variation have attacted the scholars' interests. Determining the provenance of marine sediments is essential to understand the environmental and climatic conditions of its source areas. The SCS receives~260 Mt of fluvial sediments annually from the north direction, the majority of which is delivered by the Pearl River and small mountainous rivers in Taiwan. However, due to the similarity lying in the geological setting of the Pearl and Taiwanese rivers (e.g. characters of source rocks and Nd isotope value), the source of the sediments accumulated in the SCS has not been well established during the last glacial period. Clay mineral assemblages in marine sediments in general represent a well-suited tracer concerning their sources and the weathering condition of the surrounding continents. Although previous clay mineral studies in the SCS addressed the influence of chemical weathering and physical erosion on the surrounding continents in the past 20 Ma, few of them focuses on the entire period since the late last glacial period. Meanwhile, we also know little about the delivering process and distribution of mud from the Pearl River, the second largest river that drains into the SCS. Based on the review of the clay mineral research in the northern SCS (NSCS), I find that there is limited compilation for the source of the fine-grained sediment in the whole SCS. Therefore, a coupled approach based on clay mineral assemblages, planktonic foraminiferal oxygen and carbon isotopes, element analysis, organic carbon, and calcium carbonate content from the AMS 14C-dated borehole is used to trace the sources of the fine-grained sediments and to investigate the paleoenviornmental evolution in this area. I combine the research which conducted in the NSCS with the published data of the clay minerals in surface sediments of the SCS to trace the source of the clay mineral in the whole SCS. I also present the Chirp sonar high resolution sub-bottom profiles, which were obtained from the NSCS geophysical investigation in 2007, and adjacent sediment cores, which were published by previous scholars, to help better understand the Holocene delivering process and distribution of the Pearl River-derived sediment. Detailed conclusions are shown below:
     1.I use both planktonic foraminifera G. ruber AMS 14C dating and age correlations between cores ZHS-176 and SONNE 17940 for an age control of the past 22 cal. ka. The switch point from the Marine Isotope Stage (MIS) 2 to MIS 1 occurs at 345 cm depth. Below the 345 cm is MIS 2; above the 345 cm is MIS 1. The dating data show that the bottom of the borehole is not the start of the MIS 2.
     2. The clay mineral assemblages of core ZHS-176 are mainly composed of four species, which are dominated by illite (~39%) and chlorite (~27%), with associated with smectite (~21%) and kaolinite (~13%). The clay mineral assemblage analysis suggests multiple sediment sources. The denudation rates in Taiwan are almost the highest in the world, with providing numerous illite and cholorite to the NSCS. The East China Sea (ECS)-derived clay mineral assemblage is similar with Taiwan's. Kaolinite comes mainly from the Pearl River, and Luzon Island is the main contributor for smectite.
     3. Due to the closure of the Taiwan Strait, and lower sedimentation rates, sediment from the ECS is hard to enter the NSCS during the late last glacial period. The influence from the Pearl River increases during the cold interval due to a fallen sea level and the seaward extended paleo-Pearl River estuary. During the Holocene, the coastline generally remains the same position as it is today, the ECS-derived sediment reenter the SCS.
     4. The planktonic foraminiferal oxygen isotopic oscillations in core ZHS-176 during the late last glacial period reveal the paleoclimatic variations, including the LGM, Heinrich event 1, Bφlling-Allerφd (B/A), and Younger Dryas. During the Holocene, I also find three periods of strong precipitation stages (S1~S3) and three periods of weak precipitation stages (W1~W3). The oxygen isotopic record exhibits correlation with climate records from distant regions, including the high-latitude area of North Atlantic, providing evidence for global tele-connection among regional climates.
     5. Among the climatic oscillations which are found in core ZHS-176, the Holocene event 3 attacts huge interests. The weak solar activity is the main mechanism of this cold and dry event in most part of the low and middle latitudes in North Hemisphere. It causes the sea surface temperature, thermohaline circulation and monsoon decreasing, and Intertropical Convergence Zone southward moving. It appears in different proxies. This cold/dry or cold/wet climate fluctuation maybe the main reason of the collapse of the Old Kingdom in Nile River, Akkadian empire in Mesopotamia, urban Harappan civilization in Indus valley, and Neolithic cultures in China.
     6. There is a brief negative planktonic foraminifera carbon isotopic shift in core ZHS-176 during B/A. Due to the massive input of freshwater from Antarctica, the density of the Antarctic Intermediate Water decreases and the North Atlantic thermohaline circulation intensifies, which leads to the NSCS intermediate water warming at the Bφlling oscillation. During the relative low sea level stage (-70~-80 m), rapid increase of temperature in NSCS will dissociate the gas hydrate at depth and expel massive methane into the overlying sediments and ocean water. Releasing of gas hydrate markedly affects the planktonic foraminifera as shown by the carbon isotopic variation in core ZHS-176. Similar carbon isotope excursions also happened in other areas, such as the Santa Barbara Basin, Guaymas Basin, Lake Baikal, Greenland Sea, Peru, East Greenland continental shelf, Papua New Guinea, and southern SCS.
     7. The calcium carbonate content variation history of core ZHS-176 reveals that there is a low calcium carbonate event during the early Holocene. Compared with that of other five cores, I find this event occurs widely in the whole NSCS. There are two main reasons for this excursion: (1) abundant precipitation, cold events and centralized volcanic eruptions reinforce the dilution of terrigenous sediment, (2) strong carbonate dissolution, and (3) low primary productivity reduces the carbonate content. The terrigenous sediment dilution dominates the calcium carbonate content in the NSCS, the carbonate dissolution and sea surface primary productivity are the secondary mechanisms.
     8. The major and trace element variations of core ZHS-176 show that the amplitude of chemical weathering is low, and the terrigenious input is high during the late last glacial period, while the amplitude of chemical weathering is high, and the terrigenious input is low during the Holocene. The oscillation of the elements is related to the planktonic foraminerfera oxygen isotope variation. The organic carbon is mainly biogenic origin. The terrigenious organic carbon relative content increases with the strengthen summer monsoon, while it decreases around 3 ka BP.
     9. The clay mineral assemblages in surface sediments of the SCS consist of illite, chlorite, kaolinite, and smectite. The relative abundance of these clay mineral components varies in different regions and also with different water depth. It is mainly controlled by the provenance. I combine the research which conducted in the NSCS with the peers' published data of the clay minerals in surface sediments of the SCS, and divide the SCS into four parts to trace the sources. The Taiwan Island and Luzon Island are the main provenances for the eastern SCS. The Mekong River, Borneo, Sunda shelf and Indonesia arc are the contributors for surface sediments in the southern SCS. The clay minerals in surface sediments of the western SCS are mainly from the Mekong, Red, and Pearl Rivers, Sunda shelf, Indonesia arc and Borneo. The Pearl, and Yangtze Rivers, Taiwan and Luzon Island are the sources for surface sediments in the NSCS.
     10. High resolution Chirp profiling and coring reveals an elongated (~350 m) Holocene Pearl River-derived mud area (thickness<30 m) extending from the Pearl River delta plain southwestward off the Guangdong coast to the Leizhou Peninsula. Most of the terrigenous sediments are transported and trapped on the NCSC continental shelf, because of the convergence of the southward-flowing China coastal current and northward-flowing SCS warm current. On the continental shelf off the west Guangdong Province, the mud is deposited in water shallower than 50 m; while to the southeast of the Pearl River estuary, the mud area can extend to the-120 m isobath. Through analyzing the terrigenous sedimentary sequences from other continental shelves of the Western Pacific marginal seas, we find the formation of the mud area can be further divided into two stages:before the mid-Holocene sea-level highstand (MHSH) (~7.0 cal. ka BP), the distal mud was deposited between 11.2 and 9.8 cal. ka BP, when the sea-level rose slowly after the meltwater pulse (MWP)-1B. The proximal mud was deposited after 9.0 cal. ka BP, when the sea-level rose slowly after MWP-1C; after the MHSH, clinoform developed on the continental shelf off the west Guangdong Province, extending~150 km from the Pearl River estuary. This clinoform thins offshore, from~10 m thickness around 5-10 m water depth to< 1~2 m around 20-30 m water depth.
引文
[1]Urey H G. The thermodynamic properties of isotopic substances. Journal of the Chemical Society,1947,1: 562-581.
    [2]Emiliani C. Pleistocene temperatures. Journal of Geology,1955,63:538-578.
    [3]Martinson D G, Pisias N G, Hays J D, et al. Age dating and the orbital theory of the ice ages:Development of a high-resolution 0 to 300,000-year chronostratigraphy. Quaternary Research,1987,27:1-29.
    [4]向荣.冲绳海槽黑潮流域近4万年以来的古海洋环境演化:博士学位论文.青岛:中国科学院海洋研究所,2001.
    [5]Hanebuth T, Stattegger K, Grootes P M. Rapid flooding of the Sunda shelf:a late-glacial sea-level record. Science,2000,288:1033-1035.
    [6]Hanebuth T, Stattegger K, Bojanowski A. Termination of the Last Glacial Maximum sea-level lowstand:The Sunda-Shelf data revisited. Global and Planetary Change,2009,66:76-84.
    [7]Heinrich H. Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years. Quaternary Research,1988,29:142-152.
    [8]Broecker W S, Andree M, Klas M, et al. New evidence from the South China Sea for an abrupt termination of the last glacial period. Nature,1988,333:156-158.
    [9]Bond G, Heinrich H, Broecker W, et al. Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period. Nature,1992,360:245-249.
    [10]Dansgaard W, Johnsen S J, Clausen H B, et al. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature,1993,364:218-220.
    [11]Broecker W S. Massive iceberg discharges as trigger for global climate change. Nature,1994,372:421-424.
    [12]Bond G, Broecker W, Jhonsen S, et al. Correlations between climate records from North Atlantic sediments and Greenland ice. Nature,1993,365:143-147.
    [13]Bond G, Showers W, Cheseby M, et al. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science,1997,278:1257-1266.
    [14]Bond G, Kromer B, Beer J, et al. Persistent solar influence on north Atlantic climate during the Holocene. Science,2001,294:2130-2136.
    [15]deMenocal P, Ortiz J, Guilderson T, et al. Coherent high-and low-latitude climate variability during the Holocene warm period. Science,2000,288:2198-2202.
    [16]Nyberg J, Malmgren B A, Kuijpers A, et al. A centennial scale variability of tropical North Atlantic surface hydrography during the late Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology,2002,183, 25-41.
    [17]Meese D A, Gow A J, Grootes P, et al. The accumulation record from the GISP2 core as an indicator of climate change throughout the Holocene. Science,1994,266:1680-1682.
    [18]汪品先,卞云华,李保华,等.西太平洋边缘海的“新仙女木”事件.中国科学(D辑),1996,26:452-460.
    [19]施雅风,姚檀栋,杨保.近2000a古里雅冰芯10a尺度的气候变化及其与中国东部文献记录的比较.中国科学(D辑),1999,29(增刊1):79-86.
    [20]Aucour A-M, Bonnefille R, Hillaire-Marcel C. Sources and accumulation rates of organic carbon in an equatorial peat bog (Burundi, East Africa) during the Holocene:carbon isotope constraints. Palaeogeography, Palaeoclimatology, Palaeoecology,1999,150:179-189.
    [21]An Z, Porter S C, Kutzbach J E, et al. Asynchronous Holocene optimum of the East Asian monsoon. Quaternary Science Reviews,2000,19:743-762.
    [22]Cullen H M, deMenocal P B, Hemming S, et al. Climate change and the collapse of the Akkadian empire: evidence from the deep sea. Geology,2000,28:379-382.
    [23]Hong Y, Jiang H B, Liu T S, et al. Response of climate to solar forcing recorded in a 6000 year δ18O time-series of Chinese peat cellulose. The Holocene,2000,10(1):1-7.
    [24]Fleitmann D, Burns S J, Mudelsee M, et al. Holocene forcing of the Indian Monsoon recorded in a stalagmite from southern Oman. Science,2003,300:1737-1739.
    [25]郑卓,王建华,王斌,等.海南岛双池玛珥湖全新世高分辨率环境记录.科学通报,2003,48(3):282-286.
    [26]Magny M. Holocene climate variability as reflected by mid-European lake-level fluctuations and its probable impact on prehistoric human settlements. Quaternary International,2004,113:65-79.
    [27]Wang Y, Cheng H, Edwards R L, et al. The Holocene Asian monsoon:links to solar changes and North Atlantic climate. Science,2005,308:854-857.
    [28]Hu C, Henderson G M, Huang J, et al. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records Earth and Planetary Science Letters,2008,266:221-232.
    [29]Denne R A, Sen Gupta B K. Association of bathyal foraminifera with water masses in the northwestern Gulf of Mexico. Marine Micropaleontology,1991,17:173-193.
    [30]Ravlo A C, Fairbanks R G. Oxygen isotope composition of multiple species of planktonic foraminifera: records of the modern photic zone temperature gradient. Paleoceanography,1992,7:815-831.
    [31]Ravlo A C, Fairbanks R G, Philander S G H. Reconstructing tropical Atlantic hydrography using plantonic foraminifera and an ocean model. Paleoceanography,1990,5:409-431.
    [32]Wells P, Wells G, Cali J, et al. Response of deep-sea benthic foraminifera to Late Quaternary climate changes, southeast Indian Ocean, offshore Western Australia. Marine Micropaleontology,1994,23(3):185-229.
    [33]Andreason D J, Ravelo A C. Tropical Pacific Ocean thermocline depth reconstruction for the last glacial maximum. Paleoceanography,1997,12(3):395-413.
    [34]Pflaumann W, Jian Z. Modern distribution patterns of plantonic foraminifera in the South China Sea and Western Pacific:A new transfer technique to estimate regional sea-surface temperatures. Marine Geology, 1999,156:41-83.
    [35]Hermelin J O R, Scott D B. Recent benthic foraminifera from the central North Atlantic. Micropaleontology, 1985,31(3):199-220.
    [36]Corliss B H. Morphotype and microhabitat preference of benthic foraminifera from the northwest Atlantic Ocean. Marine Micropaleontology,1991,17:195-236.
    [37]Xu X, Oda M. Surface-water evolution of the eastern East China Sea during the last 36,000 years. Marine Geology,1999,156:285-304.
    [38]Jian Z, Wang L, Kienast M, et al. Benthic foraminiferal paleocenography of the South China Sea over the last 40,000 years. Marine Geology,1999,156:159-186.
    [39]Zhou D, Liang Y B, Zeng C K. Oceanology of China Seas. Kluwer,1994, pp.345-573.
    [40]阎军.冲绳海槽Z14-6孔氧同位素地层学研究.海洋与湖沼,1990,21(5):442-447.
    [41]李铁刚,阎军,苍树溪.冲绳海槽北部RD-82和RD-86孔的氧同位素记录及其古环境分析.海洋地质与第四纪地质,1996,16(2):61-67.
    [42]孟宪伟,杜德文,吴金龙,等.冲绳海槽中段火山岩系Sr和Nd同位素地球化学特征及其地质意义.中国科学D辑:地球科学,1999,29(4):367-371.
    [43]孟宪伟,杜德文,程振波.冲绳海槽有孔虫壳体的微量元素Sr、Nd同位素地球化学.海洋学报,2001,23(2):62-67.
    [44]Wang J, Saito Y, Oba T, et al. High-resolution records of thermocline in the Okinawa Trough since about 10000 a BP. Science in China:Series D,2001,44(3):193-200.
    [45]蒋富清,孟庆勇,徐兆凯,等.冲绳海槽北部15 ka BP以来沉积物源及控制因素——稀土元素的证据.海洋与湖沼,2008,39(2):112-118.
    [46]Chang F, Li T, Zhuang L., et al. A Holocene paleotemperature record based on radiolaria from the northern Okinawa Trough (East China Sea). Quaternary International,2008,183:113-122.
    [47]中国科学院南海海洋研究所.南海海区综合调查研究报告(一),科学出版社,1982.
    [48]中国科学院南海海洋研究所.南海海区综合调查研究报告(二),科学出版社,1985.
    [49]郑连福,陈文斌.南海海洋沉积作用过程与地球化学研究.海洋出版社,1993,201.
    [50]郑执中,郑守仪.南海北部的浮游有孔虫.海洋与湖沼,1964,6(1):38-84.
    [51]Chen M P, Chen J C. Chemical variations of planktonic foraminifers in deep-sea core V19-134, the South China Sea. Acta Oceanographica Taiwanica,1973,3:97-116.
    [52]蔡慧梅,涂霞.南海西沙、中沙群岛表层沉积物中有孔虫、介形虫分布.南海海洋科学集刊,1983,4:25-63.
    [53]Rottman M L. Dissolution of planktonic foraminifera and pteropods in South China Sea sediments. Journal of Foraminifera Research,1979,9(1):41-49.
    [54]涂霞.南海中部海区浮游有孔虫的溶解—碳酸盐溶解作用初探.热带海洋,1984,3(4):18-23.
    [55]汪品先,何炎,胡兰英,等.有孔虫.南海北部大陆架第三纪古生物图册.广州:广东科学技术出版社,1981,83-137.
    [56]赵泉鸿,汪品先.南海第四纪古海洋学研究进展.第四纪研究,1999,(6):481-501.
    [57]汪品先,闵秋宝,卞云华,等.十三万年来南海北部陆坡的浮游有孔虫及其古海洋学意义.地质学报,1986,60(3):215-225.
    [58]Wang C-H, Chen M P, Lo S C. Stable isotope records of Late Pleistocene sediments from the South China Sea. Bulletin of the Institute of Earth Sciences, Academia Sinica, Taipei,1986,6:185-195.
    [59]何起祥,张明书.中国西沙礁相地质.北京:科学出版社,1986,117.
    [60]王律江,汪品先.用转换函数法推算南海古温度的尝试.科学通报,1988,33(5):371-373.
    [61]Wang L, Wang P. Late Quaternary paleoceanography of the South China Sea:Glacial-interglacial contrasts in an enclosed basin. Paleoceanography,1990,5(1):77-90.
    [62]Wang P, Li Q (eds.). The South China Sea—Paleoceanography and sedimentology. Springer,2009,506.
    [63]Sarnthein M, Pflaumann U, Wang P, et al (eds). Preliminary report on SONNE-95 cruise "Monitor Monsoon" to the South China Sea. Berichte-Reports, Geologisch-Palaontologisches Institut und Museum, Christian-Albrechts-Universitat, Kiel,1994,48, pp.1-225.
    [64]Sarnthein M, Wang P (eds). Response of west Pacific marginal seas to global climate change. Marine Geolgoy (special issue),1999,156:1-308.
    [65]Laj C, Wang P, Balut Y. IPEV les rapports de campagnes a la mer. MD 147/MARCO POLO-IMAGES Ⅻ a bord du "Marion Dufresne",2005, pp.59.
    [66]Wei K-Y, Lee M-Y, Duan W, et al. Palaeoceanographic change in the northeastern South China Sea during the last 15000 years. Journal of Quaternary Science,1998,13(1):55-64.
    [67]Wang P. Response of Western Pacific marginal seas to glacial cycles:paleoceanographic and sedimentological features. Marine Geology,1999,156:5-39.
    [68]Wang L, Sarnthein M, Erlenkeuser H, et al. East Asian monsoon climate during the Late Pleistocene: high-resolution sediment records from the South China Sea. Marine Geology,1999,156:245-284.
    [69]Jian Z, Wang P, Chen M, et al. Foraminiferal response to major Pleistocene paleoceanographic changes in the southern South China Sea. Paleoceanography,2000,15 (2):229-243.
    [70]Liu Z, Trenteasux A, Clemens S C, et al. Clay mineral assemblages in the northern South China Sea: Implications for East Asian monsoon evolution over the past 2 million years. Marine Geology,2003,201: 133-146.
    [71]Liu Z, Colin C, Huang W, et al. Clay minerals in surface sediments of the Pearl River drainage basin and their contribution to the South China Sea. Chinese Science Bulletin,2007,52(8):1101-1111.
    [72]Liu Z, Tuo S, Colin C, et al. Detrital fine-grained sediment contribution from Taiwan to the northern South China Sea and its relation to regional ocean circulation. Marine Geology,2008,255:149-155.
    [73]Wan S, Li A, Clift P D, et al. Development of the East Asian monsoon:Evidence from the sediment record in the South China Sea since 8.5 Ma. Palaeogeography, Palaeoclimatology, Palaeoecology,2006,241:139-159.
    [74]Wan S, Li A, Clift P D, et al. Development of the East Asian monsoon:Mineralogical and sedimentologic records in the northern South China Sea since 20Ma. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007,254:561-568.
    [75]Wan S, Li A, Xu K, et al. Characteristics of clay minerals in the northern South China Sea and its implications for evolution of East Asian Monsoon since Miocene. Journal of China University of Geosciences,2008,19(1):23-37.
    [76]Wiesner M G, Kuhnt W, Shipboard Scientific Party. Cruise report, R/V Sonne SO-114, Manila-Kota Kinabalu. Inst. Biogeochem. Mar. Chem., University Hamburg, IBMC Library Ref. No ⅡA 942,1997, pp. 55.
    [77]Stattegger K, Kuhnt W, Wong H K, et al. Cruise Report SONNE 115 SUNDAFLUT. Berichte-Report 86, Institut fur Geowissenschaften, Univ. Kiel,1997, pp.211.
    [78]Wiesner M G, Kuhnt W, Shipboard Scientific Party. Cruise report, R/V Sonne SO-132, Manila-Kota Kinabalu. Inst. Biogeochem. Mar. Chem., University Hamburg, IBMC Library Ref. No ⅡA 943,1998, pp. 120.
    [79]Wiesner M G, Stattegger K, Kuhnt W, et al. Cruise report, R/V Sonne SO-140, Singapore-Nha Trang-Manila. Ber. Rep. Inst. Geowiss. Univ. Kiel,1999,7, pp.157..
    [80]Suess E. RV SONNE cruise report SO 177, Sino-German cooperative project, South China Sea Continental Margin:geological methane budge and environmental effects of methane emissions and gas hydrates. IFM-GEOMAR Reports,2005, pp.133.
    [81]Wang P, Prell W L, Blum P (eds.). Proc. ODP, Init. Repts, Vol.184 [CD-ROM]. Ocean Drilling Program, Texas A & M University, College Station TX 77845-9547,2000, USA.
    [82]Chen M T, Beaufort L, Shipboard Scientific Party of the IMAGES Ⅲ/MD 106-IPHIOS Cruise (Leg Ⅱ). Exploring Quaternary variability of the Earth Asian monsoon, Kuroshio Current, and Western Pacific Warm Pool systems:High-resolution investigations of paleoceanography from the IMAGES Ⅲ (MD 106)-IPHIS Cruise. Terr. Atmos. Ocean. Sci. (TAO) Taipei,1998,9(1):129-142.
    [83]Bassinot F. IPF les rpports des campagnes a la mer, WEPAMA Cruise MD 122/IMAGES Ⅶ on board RV "Marion Dufresne", Leg 1,2002, pp.301.
    [84]Umgrove, J H F. Structural History of the East Indies. Cambridge:Cambridge University Press.1949.
    [85]秦蕴珊,李凡,唐宝珏,等.南黄海西部埋藏古河系.科学通报,1986,31:1887-1889.
    [86]Torgersen T, Hutchinson M F, Searle D E, et al. General bathymetry of the Gulf of Carpentaria and the Quaternary physiography of Lake Carpentaria. Palaeogeography, Palaeoclimatology, Palaeoecology,1983, 41:207-225.
    [87]Wang P, Sun X. Last glacial maximum in China:comparison between land and sea. Catena,1994,23: 341-353.
    [88]Grootes P M, Stuiver M, White J W C, et al. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature,1993,366:552-554.
    [89]Jian Z, Wang P, Saito Y, et al. Holocene variability of the Kuroshio Current in the Okinawa Trough, northwestern Pacific Ocean. Earth and Planetary Science Letters,2000,184:305-319.
    [90]Zhao M, Xing L, Ding L, et al. Mid-late Holocene sea surface temperature and productivity changes in the continental shelf of the East China Sea. American Geophysical Union, Fall Meeting,2008.
    [91]钱建兴.晚第四纪以来南海古海洋学研究.北京:科学出版社,1999,1-167.
    [92]Wang P, Wang L, Bian Y, et al. Late Quaternary paleoceanogmphy of the South China Sea:Surface circulation and carbonate cycles. Marine Geology,1995,127:145-165.
    [93]Boulay S, Colin C, Trentesaux A, et al. Sedimentary responses to the Pleistocene climatic variations recorded in the South China Sea. Quaternary Research,2007,68:162-172.
    [94]Milliman J D, Syvitski J P M. Geomorphic/tectonic control of sediment discharge to the ocean:the importance of small mountainous rivers. Journal of Geology,1992,100:525-544.
    [95]Dadson S J, Hovius N, Chen H, et al. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature,2003,426:648-651.
    [96]Liu J P, Liu C S, Xu K H, et al. Flux and fate of small mountainous rivers derived sediments into the Taiwan Strait. Marine Geology,2008,256:65-76.
    [97]Li X-h, Wei G, Shao L, et al. Geochemical and Nd isotopic variations in sediments of the South China Sea:a response to Cenozoic tectonism in SE Asia. Earth and Planetary Science Letters,2003,211:207-220.
    [98]Boulay S, Colin C, Trentesaux A, et al. Sediment sources and East Asian monsoon intensity over the last 450ky. Mineralogical and geochemical investigations on South China Sea sediments. Palaeogeography, Palaeoclimatology, Palaeoecology,2005,228:260-277.
    [99]Biscaye P E. Mineralogy and sedimentation of recent deep-sea clays in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin,1965,76:803-832.
    [100]Grousset F, Latouche C, Maillet N. Clay minerals as indicators of wind and current contribution to post-glacial sedimentation on the Azores/Iceland Ridge. Clay Minerals,1983,18:65-75.
    [101]Petschick R, Kuhn G, Gingele F. Clay mineral distribution in surface sediments of the South Atlantic: sources, transport, and relation to oceanography. Marine Geology,1996,130:203-229.
    [102]刘忠臣,刘保华,黄振宗,等.中国近海及邻近海域地形地貌.北京:海洋出版社,2005.1-227.
    [103]许东禹,刘锡清,张训华,等.中国近海地质.北京:地质出版社,1997.1-310.
    [104]Holtzapffel T. Les Mineraux Argileux:Preparation, Analyse Dif-fractometrique et Determination. Societe Geologique du Nord.1985,12:136.
    [105]庄丽华.黄东海陆架晚第四纪古环境演化及海平面变化:博士学位论文.青岛:中国科学院海洋研究所,2002.
    [106]Stuiver M, Reimer P J. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon,1993,35:215-230.
    [107]卞云华,汪品先,郑连福.南海北部晚第四纪浮游有孔虫的溶解作用旋回.见:业治铮,汪品先主编.南海晚第四纪古海洋学研究.青岛:青岛海洋大学出版社,1992,261-273.
    [108]刘志飞.Trentesaux A, Clemens S C,等.南海北坡ODP 1146站第四纪粘土矿物记录:洋流搬运与东亚季风演化.中国科学(D辑),2003,33(3):271-280.
    [109]杨文光,郑洪波,谢听,等.南海北部陆坡沉积记录的全新世早期夏季风极强事件.第四纪研究,2008,28(3):425-430.
    [110]Gingele F X, Miiller P M, Schneider R R. Orbital forcing of freshwater input in the Zaire Fan area--clay mineral evidence from the last 200 kyr. Palaeogeography, Paleoclimatology, Palaeoecology,1998,138: 17-26.
    [111]Blunier T, Chappellaz J, Schwander J, et al. Asynchrony of Antarctic and Greenland climate change during the last glacial period. Nature,1998,394:739-743.
    [112]Blunier T. "Frozen" methane escapes from the sea floor. Science,2000,288:68-69.
    [113]Petschick R. MacDiff 4.2.2. Available at:http://servermac.geologie.un-frankfurt.de/Rainer.html.2000.
    [114]Esquevin J. Influence de la composition chimique des illites sur-cristallinite. Bulltin Centre Recherche. Pau-SNPA,1969,3 (1):147-153.
    [115]Krumm S, Buggisch W. Sample preparation effects on illite crys-tallinity measurements:grain size gradation and particle orientation. Journal of Metamorphic Geology,1991,9:671-677.
    [116]Ehrmann W. Implications of Late Eocene to Early Miocene Clay Mineral Assemblages in McMurdo Sound (Ross Sea, Antarctica) on Paleoclimate and Ice Dynamics. Palaeogeography, Palaeoclimatology, Palaeoecology,1998,139:213-231.
    [117]Chamley H. Clay Sedimentology. Springer, Berlin.1989,1-623.
    [118]Chen P-Y. Minerals in bottom sediments of the South China Sea. Geological Society of America Bulletin, 1978,89:211-222.
    [119]何良彪.南海沉积岩芯中粘土矿物的研究.青岛海洋大学学报,1992,22(3):73-81.
    [120]唐志礼,王有强.南海北部海域黏土矿物分布特征.海洋学报,1992,14(1):64-72.
    [121]Chamley H, Angelier J., Teng L S. Tectonic and environmental control of the clay mineral sedimentation in the Late Cenozoic orogen of Taiwan. Geodinamica Acta,1993,6(2):135-147.
    [122]Sun X J, Li X, Berg H J. Pollen distribution in hemipelagic surface sediments of the South China Sea and its relation to modern vegetation distribution. Marine Geology,1999,156:211-226.
    [123]邵磊,李献华,韦刚健,等.南海陆坡高速堆积体的物质来源.中国科学(D辑),2001,31(10):828-833.
    [124]邵磊,乔培军,庞雄,等.南海北部近代沉积物钕同位素分布及意义.科学通报,2009,54(1):98-103.
    [125]邵磊,李学杰,耿建华,等.南海北部深水底流沉积作用.中国科学(D辑),2007,37(6):771-777.
    [126]Liu Z, Zhao Y, Colin C, et al. Chemical weathering in Luzon, Philippines from clay mineralogy and major element geochemistry of river sediments. Applied Geochemistry,2009,24:2195-2205.
    [127]Gingele F X, Deckker P D, Hillenbrand C-D. Clay mineral distribution in surface sediments between Indonesia and NW Australia-source and transport by ocean currents. Marine Geology,2001,179:135-146.
    [128]Liu J P, Milliman J D, Gao S, et al. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea. Marine Geology,2004,209:45-67.
    [129]Yu H-S., Chuang C-Y. Morphology and canyon forming processes of upper reach of the Penghu submarine canyon off Southwestern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences,2002,13:91-108.
    [130]苍树溪,阎军.西太平洋特定海域古海洋学研究.青岛:青岛海洋大学出版社,1992,1-180.
    [131]同济大学海洋地质系.古海洋学概论.上海:同济大学出版社,1989,1-316.
    [132]Schmidt G A. Forward modeling of carbonate proxy data from planktonic foraminiferal using isotope tracers in a global ocean model. Paleoceanography,1999,14:482-497.
    [133]Duplessy J-C, Laybeyrie L, Juillet-leclerc A, et al. Surface salinity reconstruction of the North Atlantic Ocean during the last glacial maximum. Oceanologica Acta,1991,14:311-324.
    [134]Shackleton N J, and Vincent E. Oxygen and carbon isotope studies in recent foraminifera from the Southern Indian Ocean. Marine Micropaleontology,1978,3:1-13.
    [135]Yokoyama Y, Lambeck K, Deckker P D, et al. Timing of the Last Glacial Maximum from observed sea-level minima. Nature,2000,406:713-716.
    [136]EPICA community members. Eight glacial cycles from an Antarctic ice core. Nature,2004,429:623-628.
    [137]Li T, Liu Z, Hall M A, et al. Heinrich event imprints in the Okinawa Trough:evidence from oxygen isotope and planktonic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology,2001,176:133-146.
    [138]Xiang R, Sun Y, Li T, et al. Paleoenvironmental change in the middle Okinawa Trough since the last deglaciation:Evidence from the sedimentation rate and planktonic foraminiferal record. Palaeogeography, Palaeoclimatology, Palaeoecology,2007,243:378-393.
    [139]Xiang R, Chen M, Li Q, et al. Planktonic forminiferal records of East Asia monsoon changes in the southern South China Sea during the last 40,000 years. Marine Micropaleontology,2009, doi: 10.1016/j.marmicro.2009.06.004.
    [140]Steinke S, Kienast M, Groeneveld J, et al. Proxy dependence of the temporal pattern of deglacial warming in the tropical South China Sea:toward resolving seasonality. Quaternary Science Reviews,2008,27: 688-700.
    [141]An Z. The history and variability of East Asian paleomonsoon climate. Quaternary Science Reviews,2000, 19:171-187.
    [142]Yuan D, Cheng H, Edwards R L. Timing duration and transitions of the last interglacial monsoon. Science, 2004,304:575-578.
    [143]Alley R B, Meese D A, Shuman C A, et al. Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature,1993,362:527-529.
    [144]Stuiver M, Grootes P M, Braziunas T F. The GISP2 δ18O climate record of the past 16,500 years and the role of the Sun, ocean, and volcanoes, Quaternary Research,1995,44:341-354.
    [145]Wang L, Sarnthein M, Duplessy J-C, et al. Paleo sea surface salinities in the low-latitude Atlantic:The δ18O record of Globigerinoides ruber (white). Paleoceanography,1995,10(4):749-761.
    [146]Alley R B, Marotzke J, Nordhaus W D, et al. Abrupt climate change. Science,2003,299:2005-2010.
    [147]Stocker T F. Past and future reorganizations in the climate system. Quaternary Science Reviews,2000,19: 301-319.
    [148]Broecker W S. Was the Younger Dryas triggered by a flood? Science,2006,312:1146-1148.
    [149]Stuiver M, Reimer P J, Bard E, et al. Intcal98 radiocarbon age calibration,24,000-0 cal BP. Radiocarbon, 1998,40:1041-1083.
    [150]Shao X, Wang Y, Cheng H, et al. Long-term trend and abrupt events of the Holocene Asian monsoon inferred from a stalagmite δ18O record from Shennongjia in Central China. Chinese Science Bulletin,2006, 51(2):221-228.
    [151]Shen J, Yang L, Yang X, et al. Lakes sediment records on climate change and human activities since the Holocene in Erhai catchment, Yunnan Province, China. Science in China (Series D),2005,48(3):353-363.
    [152]Lin H-L, Peterson L C, Overpeck J T, et al. Late Quaternary climate change from δ18O records of multiple species of planktonic foraminifera:High-resolution records from the anoxic Cariaco Basin, Venezuela. Paleoceanography,1997,12:415-427.
    [153]黄元辉.末次冰消期以来南海北部表层海水盐度变化.微体古生物学报,2008,25(2):125-131.
    [154]施雅风.中国全新世大暖期气候与环境.北京:海洋出版社,1992,1-212.
    [155]Denton G H, Karlen W. Holocene climatic variations-Their pattern and possible cause. Quaternary Research,1973,3(2):155-174.
    [156]Gupta A K, Anderson D M, Overpeck J T. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature,2003,421:354-357.
    [157]Alley R B, Mayewski P A, Sowers T, et al. Holocene climatic instability:A prominent, widespread event 8,200yr ago. Geology,1997,25:483-486.
    [158]Rohling E J, Palike H. Centennial-scale climate cooling with a sudden cold event around 8,200 years ago. Nature,2005,434:975-979.
    [159]Chen F, Zhu Y, Li J, et al. Abrupt Holocene changes of the Asian monsoon at millennial-and centennial-scales:evidence from lake sediment document in Minqin Basin, NW China. Chinese Science Bulltetin,2001, 46(23):1942-1947.
    [160]金章东,沈吉,王苏民等.早全新世降温事件的湖泊沉积证据.高校地质学报,2003,9(1):11-18.
    [161]Clark P U, Fitzhugh W W. Late deglaciation of the central Labrador coast and its implications for the age of glacial lakes Naskaupi and Mclean and for prehistory. Quaternary Research,1990,34:296-305.
    [162]Barber D C, Dyke A, Hillaire-Marcel C, et al. Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature,1999,400:344-348.
    [163]Clarke G K C, Leverington D W, Teller J T, et al. Paleohydraulics of the last outburst flood from glacial Lake Agassiz and the 8,200 BP cold event. Quaternary Science Reviews,2004,23:389-407.
    [164]Wu W, Liu T. Possible role of the "Holocene Event 3" on the collapse of Neolithic Cultures around the Central Plain of China. Quaternary International,2004,117:153-166.
    [165]Weiss H, Bradley R S. What drives societal collapse? Science,2001,291:609-610.
    [166]Peng Y, Xu Y, Jin L. Climate changes over eastern China during the last millennium in simulations and reconstructions. Quaternary International,2009, doi:10.1016/j.quaint.2009.02.013
    [167]Crowley T J. Cause of climate change over the past 1000 years. Science,2000,289:270-277.
    [168]Eddy J A. The Maunder Minimum. Science,1976,192:1189-1202.
    [169]Robock A. The "Little Ice Age":Northern Hemisphere average observations and model calculations. Science,1979,206:1402-1404.
    [170]于革,刘健.全球12000 aBP以来火山爆发记录及对气候变化影响的评估.湖泊科学,2003,15(1):11-20.
    [171]Ruddiman W F. Cold climate during the closest Stage 11 analog to recent Millennia. Quaternary Science Reviews,2005,24:1111-1121.
    [172]Perry C A, Hsu K J. Geophysical, archeological, and historical evidence support a solar-output model for climate change. Proceedings of the National Academy of Science of USA,2000,97(23):12433-12438.
    [173]Weiss H, Courty M-A, Wetterstrom W, et al. The genesis and collapse of third millennium north Mesopotamian civilization. Science,1993,261:995-1004.
    [174]Stanley J-D, Krom M D, Cliff R A, et al. Short contribution:Nile flow failure at the end of the Old Kingdom, Egypt:strontium isotopic and petrologic evidence. Geoarchaeology:An International Journal, 2003,18(3):395-402.
    [175]Kaniewski D, Paulissen E, Van Campo E, et al. Middle East coastal ecosystem response to middle-to-late Holocene abrupt climate changes. Proceedings of the National Academy of Science of USA,2008,105(37): 13941-13946.
    [176]Staubwasser M, Sirocko F, Grootes P M, et al. Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability. Geophysical Research Letters,2003, 30(8):1425, doi:10.1029/2002GL016822.
    [177]Courty M A, Coldberg P, Macphall R. Soils and Micromorphology in Archaeology. Cambridge:Cambridge University Press,1989,112-128.
    [178]Thompson L G, Mosley-Thompson E, Henderson K A. Ice-core palaeoclimate records in tropical South America since the Last Glacial Maximum. Journal of Quaternary Science,2000,15(4):377-394.
    [179]Shi Y, Kong Z, Wang S, et al. Mid-Holocene climates and environments in China. Global and Planetary Change,1993,7:219-233.
    [180]Thompson L G, Mosley-Thompson E, Davis M E, et al. Kilimanjaro ice core records:evidence of Holocene climate change in tropical Africa. Science,2002,298:589-593.
    [181]Steig E J, Morse D L, Waddington E D, et al. Wisconsinan and Holocene climate history from an ice core at ice core at Taylor Dome, western Ross Sea embayment, Antarctica. Geografisker Annaler:Series A,2000, 82(2-3):213-235.
    [182]Mayewski P A, Rohling E E, Stager J C, et al. Holocene climate variability. Quaternary Research,2004,62, 243-255.
    [183]Arz H W, Lamy F, Patzold J. A pronounced dry event recorded around 4.2 ka in brine sediments from the northern Red Sea. Quaternary Research,2006,66:432-441.
    [184]Pantaleon-Cano J, Yll E-I, Perez-Obiol R, et al. Palynological evidence for vegetational history in semi-arid areas of the western Mediterranean (Almeia, Spain). The Holocene,2003,13(1):109-119.
    [185]陈金霞,张德玉,张文卿,等.末次冰期以来冲绳海槽北部古气候变化的孢粉记录.海洋学报,2006,28(1):85-91.
    [186]沈吉,刘兴起,Matsumoto R,等.晚冰期以来青海湖沉积物多指标高分辨率的古气候演化.中国科学D辑,2004,34(6):582-589.
    [187]Wei K, Gasse F. Oxygen isotopes in lacustrine carbonates of West China revisited:implications for post glacial changes in summer monsoon circulation. Quaternary Science Reviews,1999,18:1315-1334.
    [188]Chen F H, Shi Q, Wang J M. Environmental changes documented by sedimentation of Lake Yiema in arid China since the Late Glaciation. Journal of Paleolimnology,1999,22:159-169.
    [189]Dean W E. Rates, timing, and cyclicity of Holocene eolian activity in north-central United States:evidence from varved lake sediments. Geology,1997,25(4):331-334.
    [190]Enzel Y, Ely L L, Mishra S, et al. High-resolution Holocene environmental changes in the Thar Desert, northwestern India. Science,1999,284:125-128.
    [191]Baker P A, Seltzer G O, Fritz S C, et al. The history of South American tropical precipitation for the past 25,000 years. Science,2001,291:640-643.
    [192]Bar-Matthews M, Ayalon A, Kaufman A, et al. The Eastern Mediterranean paleoclimate as a reflection of regional events:Soreq cave, Israel. Earth and Planetary Science Letters,1999,166:85-95.
    [193]Denniston R F, Gonzalez L A, Asmerom Y, et al. Evidence for increased cool season moisture during the middle Holocene. Geology,1999,27:815-818.
    [194]Hong Y T, Wang Z G, Jiang H B, et al. A 6000-year record of changes in drought and precipitation in northeastern China based on a δ13C time series from peat cellulose. Earth and Planetary Science Letters, 2001,185:111-119.
    [195]徐海,洪业汤,林庆华,等.红原泥炭纤维素氧同位素指示的距今6ka温度变化.科学通报,2002,47(15):1181-1186.
    [196]Hong Y T, Hong B, Lin Q H, et al. Correlation between Indian Ocean summer monsoon and North Atlantic climate during the Holocene. Earth and Planetary Science Letters,2003,211:371-380.
    [197]Phadtare N R. Sharp decrease in summer monsoon strength 4000-3500 cal yr B.P. in the central higher Himalaya of India based on pollen evidence from alpine peat. Quaternary Research,2000,53:122-129.
    [198]Hughes P D M, Mauquoy D, Barker K E, et al. Mire-development pathways and palaeoclimatic records from a full Holocene peat archive at Walton Moss, Cumbria, England. The Holocene,2000,10:465-479.
    [199]安成邦,冯兆东,唐领余,等.甘肃中部4000年前环境变化与古文化变迁.地理学报,2003,58(5):743-748.
    [200]Zang H C, Ma Y Z, Wunnemann B, et al. A Holocene climatic record from arid northwestern China. Palaeogeography, Palaeoclimatology, Palaeoecology,2000,162:389-401.
    [201]李平日,郑建生,方国祥.广州地区第四纪地质.广州:华南理工大学出版社,1991,53-81.
    [202]朱海虹.云南断陷湖泊环境与沉积.北京:科学出版社,1992,103-107.
    [203]Forman S L, Oglesby R, Markgraf V, et al. Paleoclimatic signigicance of late Quaternary eolian deposition on the Piedmont and High Plain, central United States. Global and Planetary Change,1995,11:35-55.
    [204]Baucom P C, Rigsby C A. Climate and lake-level history of the northern Altiplano, Bolivia, as recorded in Holocene sediments of the Rio Desaguadero. Journal of Sedimentary Research,1999,69(3):597-611.
    [205]吴文祥,刘东生.4000a BP前后降温事件与中华文明的诞生.第四纪研究,2001,21(5):443-451.
    [206]王绍武.2200-2000BC的气候突变与古文明的衰落.自然科学进展,2005,15(9):1094-1099.
    [207]Weiss H. Late third millennium abrupt climate change and social collapse in West Asia and Egypt. In: Dalfes H N, Kukla G, Weiss H, eds. Third millennium BC climate change and old world collapse. Berlin, Heidelberg:Springer Verlag,1997,711-723.
    [208]deMenocal P B. Cultural response to climate change during the late Holocene. Science,2001,292: 667-673.
    [209]Possehl G. Climate and the eclipse of the ancient cities of the Indus. In:Dalfes H N, Kukla G, Weiss H, eds. Third millennium BC climate change and old world collapse. Berlin, Heidelberg:Springer Verlag, 1997,193-244.
    [210]Singh G, Joshi R D, Singh A B. Stratigraphic and radiocarbon evidence for the age and development of three salt lakes deposits in Rajasthan, India. Quaternary Research,1972,2:496-505.
    [211]Bryson R A, Swain AM. Holocene variations of monsoon rainfall in Rajasthan. Quaternary Research,1981, 16:135-145.
    [212]Hsu K J. Sun climate, hunger, and mass migration. Science in China, Series D,1998,41(5):449-472.
    [213]谢维杨.中国早期国家.杭州:浙江人民出版社,1995,223-235.
    [214]陈淳.资源、神权与文明的兴衰.东南文化,2000,5:14-19.
    [215]Zhu C, Song J, You K, et al. Paleo-environmental changes in the Yangtze Delta during past 8000 years. Journal of Geographical Sciences,1996,2:148-152.
    [216]施少华.中国全新世高温期中的气候突变事件及其对人类的影响.海洋地质与第四纪地质,1993,13(4):65-73.
    [217]刘峰贵,侯光良,张镱锂,等.中全新世气候突变对青海东北部史前文化的影响.地理学报,2005,60(5):733-741.
    [218]俞伟超.良渚文化和龙山文化衰变的奥妙.文物天地,1992,3:9-11.
    [219]Alley R B, Clark P U, Keigwin D, et al. Making sense of millennial scale climate change. Geophysical Monograph,1999,112:385-394.
    [220]Bond G C, Showers W, Elliot M, et al. The North Atlantic's 1-2 kyr climate rhythm:relation to Heinrich events, Dansgaard/Oeschger cycles and the Little Ice Age. Geophysical Monograph,1999,112:35-58.
    [221]Imbrie J, Berger A, Boyle E A, et al. On the structure and origin of major glaciations cycles 2. The 100,000-year cycle. Paleoceanography,1993,8:699-735.
    [222]Booth R K, Jackson S T, Forman S L, et al. A severe centennial-scale drought in mid-continental North America 4200 years ago and apparent global linkages. The Holocene,2005,15:321-328.
    [223]Haug G H, Hughen K A, Sigman D M, et al. Southward migration of the Intertropical Convergence Zone through the Holocene. Science,2001,293:1304-1308.
    [224]Starkel L. Environmental changes in Central Europe 5000-3000 BP. In:Dalfes H N, Kukla G, Weiss H, eds. Third Millennium BC climate change and old world collapse. Berlin, Heidelberg:Springer Verlag,1997, 351-370.
    [225]Suzuki H.3500 years ago climatic changes and ancient civilizations. Bulletin of the Department of Geography, University of Tokyo,1979,11:43-58.
    [226]Bryson R A. Late Quaternary volcanic modulation of Milankovitch climate forcing. Theoretical and Applied Climatology,1988,39(3):115-125.
    [227]Zielinski G A. Use of paleo-records in determining variability within the volcanism-climate system. Quaternary Science Reviews,2000,19:417-438.
    [228]Chappellaz J, Barnola J M, Raynaud D, et al. Ice-core record of atmospheric methane over the past 160,000 years. Nature,1990,345:127-131.
    [229]Lorius C, Jouzel J, Raynaud D, et al. The ice-core record:Climate sensitivity and future greenhouse warming. Nature,1990,347:139-145.
    [230]Raynaud D, Barnola J M, Chappellaz J, et al. The ice record of greenhouse gases:A view in the context of future changes. Quaternary Science Review,2000,19:9-17.
    [231]Hendy I L, Kennett J P. Latest Quaternary north pacific surface-water responses imply atmospheric-driven climate instability. Geology,1999,27:291-294.
    [232]Hendy I L, Kennett J P. Dansgaard-Oeschger cycles and the California current system:Planktonic foraminiferal response to rapid climate change in Santa Barbara Basin, ocean drilling program hole 893A. Paleoceanography,2000,15:30-42.
    [233]Smith L M, Sachs J P, Jennings A E, et al. Light δ13C events during deglaciation of the East Greenland continental shelf attributed to methane release from gas hydrates. Geophysical Research Letters,2001, 28(11):2217-2220.
    [234]Hendy I L, Kennett J P, Roark E B, et al. Apparent synchroneity of submillennial scale climate events between Greenland and Santa Barbara Basin, California from 30-10ka. Quaternary Science Review,2002, 21:1167-1184.
    [235]Severinghaus J P, Sowers T, Brook E J, et al. Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature,1998,391:141-146.
    [236]Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature,1999,399:429-436.
    [237]Severinghaus J P, and Brook E J. Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice. Science,1999,286:930-933.
    [238]Ehhalt D, Prather M, Dentener F, et al. Atmospheric chemistry and greenhouse gases, in Climate Change 2001:The Scientific Basis:Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by Houghton J. T., Ding Y., Griggs D. J., et al., Cambridge:Cambridge University Press,2001, pp.239-287.
    [239]Leggett J. The nature of the greenhouse threat, in Global Warming:The Greenpeace Report, edited by Leggett J, New York:Oxford University Press,1990, pp.30,40-41.
    [240]Brook E J, Sowers T, Orchardo J. Rapid variations in atmospheric methane concentration during the past 110,000 years. Science,1996,273:1087-1091.
    [241]Nisbet E G. Sources of atmospheric CH4 in early postglacial time. Journal of Geophysical Research,1992, 97:12849-12867.
    [242]Kennett J P, Cannariato K G, Hendy I L, et al. Carbon isotopic evidence for methane hydrate instability during quaternary interstadials. Science,2000,288:128-133.
    [243]Kvenvolden K A. Methane hydrates and global climate. Global Biogeochemical Cycles,1988,2:221-229.
    [244]Kvenvolden K A. A review of the geochemistry of methane in natural gas hydrate. Organic Geochemistry, 1995,23:997-1008.
    [245]Brewer P G, Orr F M, Friederich G., et al. Deep-ocean field test of methane hydrate formation from a remotely operated vehicle. Geology,1997,25:407-410.
    [246]Dickens G R, O'Neil J. R., Rea D. K., et al. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography,1995,10,965-971.
    [247]Kennedy M J, Christie-Blick N. Sohl L. E. Are Proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following Earth's coldest intervals? Geology,2001,29:443-446.
    [248]Jiang G, Kennedy M J, Christie-Blick N. Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature,2003,426:822-826.
    [249]Wang J, Jiang G, Xiao S, et al. Carbon isotope evidence for widespread methane seeps in the ca.635 Ma Doushantuo cap carbonate in south China. Geology,2008,36(5):347-350.
    [250]Krull E S, Retallack G J.δ13C depth profiles from Paleosols across the Permian-Triassic boundary; evidence for methane release. GSA Bull,2000,112:1459-1472.
    [251]Heydari E, Hassanzadeh J, Deev Jahi. Model of the Permian-Triassic boundary mass extinction:a case for gas hydrate as the main cause of biological crisis on Earth. Sedimentary Geology,2003,163:147-163.
    [252]Retallack G J, Smith R M H, Ward P D. Vertebrate extinction across Permian-Triassic boundary in Karoo Basin, South Africa. GSA Bulltin,2003,115:1133-1152.
    [253]Ryskin G J. Methane-driven oceanic eruptions and mass extinctions. Geology,2003,31:741-744.
    [254]Hesselbo S P, Grocke D R, Jenkyns H C, et al. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature,2000,406:392-395.
    [255]Padden M, Weissert H, de Rafelis M. Evidence for Late Jurassic release of methane from gas hydrate. Geology,2001,29:223-226.
    [256]Jahren A H, Arens N C, Sarmiento G, et al. Terrestrial record of methane hydrate dissociation in the Early Cretaceous. Geology,2001,29:159-162.
    [257]Jahren A H, Conrad C R, Jenkyns H C, et al. A plate tectonic mechanism for methane hydrate release along subduction zones. Earth Planetary Science Letters,2005,236:691-704.
    [258]Kennett J P, Cannariato K G, Hendy I L, et al. Primary cause of quaternary instability of methane hydrates, in Methane hydrates in quaternary climate change:the clathrate gun hypothesis, edited by Kennett J. P., Cannariato K. G., Hendy I. L., et al., Washington, D C:American Geophysical Union,2002, pp.113-124.
    [259]Prokopenko A A, Williams D F. Deglacial methane emission signals in the carbon isotopic record of Lake Baikal. Earth and Planetary Science Letters,2004,218:135-147.
    [260]Hill T M, Kennett J P, Spero H. J. High-resolution records of methane hydrate dissociation:ODP Site 893, Santa Barbara Basin. Earth Planetary Science Letters,2004,223:127-140.
    [261]卢苗安,马宗晋,陈木宏,等.倒数第二次冰消期西太平洋边缘海地区δ13C值快速负偏事件及其成因.第四纪研究,2002,22(4):349-358.
    [262]Keigwin L D. Late Pleistocene-Holocene paleoceanography and ventilation of the Gulf of California. Journal of Oceanography,2002,58:421-432.
    [263]Millo C, Sarnthein M, Erlenkeuser H, et al. Methane-driven late Pleistocene 813C minima and overflow reversals in the southwestern Greenland Sea. Geology,2005,33:873-876.
    [264]Wefer G,Heinze P-M, Berger W H. Clues to ancient methane release. Nature,1994,369:282.
    [265]de Garidel-Thoron T, Beaufort L, Bassinot F, et al. Evidence for large methane releases to the atmosphere from deep-sea gas-hydrate dissociation during the last glacial episode. PNAS,2004,101:9187-9192.
    [266]Kvenvolden K A. Gas hydrates:geological perspective and global change. Reviews of Geophysics,1993, 31:173-187.
    [267]姚伯初.南海北部陆缘天然气水合物初探.海洋地质与第四纪地质,1998,18(4):11-18.
    [268]Chen D F, Huang Y Y, Xun L Y, et al. Seep carbonates and preserved methane oxidizing archaea and sulfate reducing bacteria fossils suggest recent gas venting on the seafloor in the Northeastern South China Sea. Marine and Petroleum Geology,2005,22:613-621.
    [269]蒋少涌,杨涛,薛紫晨,等.南海北部海区海底沉积物中孔隙水的Cl-和SO42-浓度异常特征及其对天然气水合物的指示意义.现代地质,2005,19(1):45-54.
    [270]Weaver A J, Saenko O A, Clark P U, et al. Meltwater pulse 1A from Antarctica as a trigger of the Bφlling-Allerφd Warm Interval. Science,2003,299:1709-1713.
    [271]Buffett B A. Clathrate hydrates. Annual Review of Earth and Planetary Sciences,2000,28:477-507.
    [272]Matsumoto R, Borowski W S. Gas hydrate estimates from parently determined oxygen isotopic fractionation (aGH-IW) and 8180 anomalies of the interstitial water:Leg 164, Blake Ridge. In Paull C K, Matsumoto R, Wallace P J, Dillon W P (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 2000,164:147-149.
    [273]Borowski W S, Paull C K, Ussler W Ⅲ. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate. Geology,1996,24:655-658.
    [274]Brook E J, Harder S, Severinghaus J, et al. On the origin and timing of rapid changes in atmospheric methane during the last glacial period. Global Biogeochemical Cycles,2000,14:559-572.
    [275]汪品先.西太平洋边缘海的冰期碳酸盐旋回.海洋地质与第四纪地质,1998,18(1):1-11.
    [276]Arrhenius G O S. Sediment cores from the east Pacific. Reports of the Swedish deep sea expediton (1947-1948),1952,5,1-288.
    [277]江茂生,朱井泉,李学杰.深水碳酸盐沉积研究进展.古地理学报,2001,3(4):61-68.
    [278]Luz B, Shackleton N J. CaCO3 solution in tropical east Pacific during the past 130,000 year. In:Sliter W V, Be A W, Berger W H (Eds.), Dissolution of deep-sea carbonates. Cushman Foundation for Foraminiferal Research Special Publication,1975,13:142-150.
    [279]Schonfeld J, Kudrass, H. Hemipelagic sediment accumulation rates in the South China Sea related to Late Quaternary sea-level changes. Quaternary Research,1993,40:368-379.
    [280]Stephens M P, Kadko D C. Glacial-Holocene calcium carbonate dissolution at the central equatorial Pacific seafloor. Paleoceanography,1997,12:797-804.
    [281]涂霞.南海东北部海区有孔虫的分布与海洋环境的关系.热带海洋,1983,2(1):11-19.
    [282]谢凯旋,陈民本.南海表层沉积物中之浮游性有孔虫.中央地质调查所刊汇,台北,第3号,1984,81-106.
    [283]李粹中.南海中部沉积物的元素地球化学特征.东海海洋,1987,5:77-91.
    [284]李粹中.南海深水碳酸盐沉积作用.沉积学报,1989,7:35-43.
    [285]郑连福.南海中部海区表层沉积中有孔虫的初步研究.东海海洋,1987,5(1-2):19-41.
    [286]陈木宏,陈绍谋.南海碳酸盐溶解与深海沉积物类型.热带海洋,1989,8(3):20-26.
    [287]Calvert S E, Pedersen T F, Thunell R C. Geochemistry of the surface sediments of the Sulu and South China Seas. Marine Geology,1993,114:207-231.
    [288]汪品先.十五万年来的南海.上海:同济大学出版社,1995,1-184.
    [289]李学杰,段威武,魏国彦,等.近2万年来南海北部与西部碳酸盐旋回及其古海洋学意义.海洋地质与第四纪地质,1997,17:9-20.
    [290]李学杰,江茂生.南海北部全新世早期低钙事件及其古气候解释.古地理学报,2003,5(3):355-364.
    [291]温孝胜,赵焕庭,张乔民,等.伶仃洋钻孔岩心的沉积特征及环境演化.海洋学报,1997,19(2):121-128.
    [292]周静,王苏民,吕静.洱海地区一万多年以来气候环境演化的湖泊沉积记录.湖泊科学,2003,15(2):104-111.
    [293]Wu Y H, Lucke A, Wunnemann B, et al. Holocene climate change in the Central Tibetan Plateau inferred by lacustrine sediment geochemical records. Science in China Series D-Earth Science,2007,50(10): 1548-1555.
    [294]Wang N L, Yao T D, Thompson L G, et al. Evidence for cold events in the early Holocene from the Guliya ice core, Tibetan Plateau, China. Chinese Science Bulletin,2002,47(17):1422-1427.
    [295]张美良,程海,林玉石,等.贵州荔波1.5万年以来石笋高分辨率古气候环境记录.地球化学,2004,33(1):65-74.
    [296]Qin J M, Yuan D X, Cheng H, et al. The Y. D. and climate abrupt events in the early and middle Holocene: Stalagmite oxygen isotope record from Maolan, Guizhou, China. Science in China Series D-Earth Science, 2005,48(4):530-537.
    [297]Liu Y, Fu Y, Du D, et al. Paleoceanographic records in the sedimentary cores from the middle Okinawa Trough. Chinese Science Bulletin,2003,48(S1):74-81.
    [298]秦大河.中国气候与环境演变.北京:科学出版社,2005,1-562.
    [299]Liu Y, Ole B N, Zhang D, et al. Holocene tephra deposits in the northern Okinawa Trough. Acta Oceanologica Sinica,2006,25(1):78-89.
    [300]魏国彦,李孟扬,段威武,等.南海东北部末次冰期—全新世古海洋学.海洋地质与第四纪地质,1999,19(3):19-28.
    [301]Li B, Zhao Q, Chen M, et al. Carbonate dissolution and deep-water paleoceanography of the South China Sea since the Middle Pleistocene. Chinese Science Bulletin,2001,46(22):1908-1912.
    [302]Peterson L C, Prell W L. Carbonate dissolution in recent sediments of the eastern equatorial Indian Ocean: Preservation patterns and carbonate loss above the lysoline. Marine Geology,1985,64:259-290.
    [303]Mayers P A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Organic Geochemistry,1997,27:213-250.
    [304]Wei G J, Shao L, Liu Y et al. Climatic impact on Al, K, Sc and Ti in marine sediments:evidence from ODP Site 1144 South China Sea. Geochemical Journal,2003,37:593-602.
    [305]Bruland K W. Trace elements in sea water. Riley J P, Chester R (eds), Chemical Oceanography,1983,8: 157-220, Academic Press, New York.
    [306]Goldberg E D, Arrhenius G O S. Chemistry of Pacific pelagic sediments. Geochimica et Cosmochimica Acta,1958,13:152-212.
    [307]Murray R W, Leinen M. Scavenged excess aluminum and its relationship to bulk titanium in biogenic sediment from the central equatorial Pacific Ocean during. Geochimica et Cosmochimica Acta,1996,60: 3869-3878.
    [308]韦刚健,刘颖,李献华,等.南海沉积物中过剩铝问题的探讨.矿物岩石地球化学通报,2003,22(1):23-25.
    [309]Wei G J, Liu Y, Li X H, et al. High-resolution elemental records from the South China Sea and their paleoproductivity implications. Paleoceanography,2003,18:1054-1065.
    [310]Peuraniemi V, Pulkkinen P. Preglacial weathering crust in Ostrobothnia, western Finland, with special reference to the Raudaskyla occurrence. Chemical Geology,1993,107:313-316.
    [311]Murray R W, Knowlton C, Leinen M, et al. Export production and terrigenous matter in the Central Equatorial Pacific Ocean during interglacial oxygen isotope stage 11. Global and Planetary Change,2000, 24:59-78.
    [312]Nesbitt H W, Markovics G. Weathering of grandioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments. Geochimica et Cosmochimica Acta,1997,61(8): 1653-1670.
    [313]Wei Q Liu Y, Li X, et al. Major and trace element variations of the sediments at ODP Site 1144, South China Sea, during the last 230 ka and their paleoclimate implications. Palaeogeography, Palaeoclimatology, Palaeoecology,2004,212:331-342.
    [314]赵一阳,鄢明才.中国浅海沉积地球化学.北京:科学出版社,1994.
    [315]Zhang C S, Wang L J, Li G S, et al. Grain size effect on multi-element concentrations in sediments from the intertidal flats of Bohai Bay, China. Applied Geochemistry,2002,17:59-68.
    [316]Kronberg B I, Nesbitt H W, Lam W W. Upper Pleistocene Amazon deep-sea fan muds reflect intense chemical weathering of their mountainous source lands. Chemical Geology,1986,54:283-294.
    [317]Weaver C E. Potassium, illite and the ocean. Geochimica et Cosmochimica Acta,1967,31:2181-2196.
    [318]Nesbitt H W, Markovics G, Price R C. Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochimica et Cosmochimica Acta,1980,44:1659-1666.
    [319]Nesbitt H W, Young G M. Early Proterozoic climate and plate motions inferred from major element chemistry of lutites. Nature,1982,299:715-717.
    [320]Schroeder J O, Murray R W, Leinen M, et al. Barium in equatorial Pacific carbonate sediment:terrigenous, oxide, and biogenic associations. Paleoceanography,1997,12:125-146.
    [321]Liu Z, Colin C, Huang W, et al. Climatic and tectonic controls on weathering in south China and Indochina Peninsula:Clay mineralogical and geochemical investigations from the Pearl, Red, and Mekong drainage basins. Geochemistry, Geophysics, Geosystems,2007,8, Q05005, doi:10.1029/2006GC001490.
    [322]颜文,古森昌,陈忠,等.南海97-37柱样的主元素特征及其潜在的古环境指示作用.热带海洋学报,2002,21(2):75-83.
    [323]Dickens G R. Sulfate profiles and barium fronts in sediment on the Black Ridge:Present and past methane fluxes through a large gas hydrate reservoir. Geochimica et Cosmochimica Acta,2001,65(4):529-543.
    [324]Riedinger N, Kasten S, Groger J, et al. Active and buried authigenic barite fronts in sediments from the Eastern Cape Basin. Earth and Planetary Science Letters,2006,241:876-887.
    [325]Torres M E, McManus J, Huh C A. Fluid seepage along the San Clemente Fault scarp:Basin-wide impact on barium cycling. Earth and Planetary Science Letters,2002,203:181-194.
    [326]Dickens G R, Fewless T, Thamas E, et al. Excess barite accumulation during the Paleocene Eocene thermal maximum:massive input of dissolved barium from seafloor gas hydrate reservoirs. In Wing S L, Gingerich P D, Schmitz B (Eds.). Causes and consequences of globally warm climates in the early Paleogene. Special paper, Geological Society of America,2003,369:11-23.
    [327]冯东,陈多福.海底沉积物孔隙水钡循环对天然气渗漏的指示.地球科学进展,2007,22(1):49-57.
    [328]Berner R A. Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over Phanerozoic time. Palaeogeography, Palaeoclimatology, Palaeoecology,1989,75:97-122.
    [329]Tesi T, Miserocchi S, Goni M A, et al. Organic matter origin and distribution in suspended particulate materials and surficial sediments from the western Adriatic Sea (Italy). Estuarine Coastal and Shelf Science, 2007,73:431-446.
    [330]Hedges J I, Keil R G, Benner R. What happens to terrestrial organic matter in the ocean? Organic Geochemistry,1997,27:195-212.
    [331]Lowemark L, Stenke S, Wang C-H, et al. New evidence for a glacioeustatic influence on deep water circulation, bottom water ventilation and primary productivity in the South China Sea. Dynamics of Atmospheres and Oceans,2009,47:138-153.
    [332]Chen M-T, Shiau L-J, Yu P-S, et al.500000-year records of carbonate, organic carbon, and foraminiferal sea-surface temperature from the southeastern South China Sea (near Palawan Island). Palaeogeography, Palaeoclimatology, Palaeoecology,2003,197:113-131.
    [333]Tyson R V. Sedimentary organic matter. Chapman and Hall, London,1995, p.615.
    [334]Emerson S. Organic carbon preservation in marine sediments, In Sundquist E T, Broecker W. (Eds.), CO2: Natural variations Archean to present. Geophysical Monographs, AGU, Washington D. C.,1985, pp.78-87.
    [335]Ingall E D, van Capellen P. Relationship between sedimentation rate and burial of organic phosphorus and organic carbon in marine settings. Geochimica et Cosmochimica Acta,1990,54:373-386.
    [336]Ibach L E J. Relationship between sedimentation rate and total organic carbon content in ancient marine sediments. AAPG Bulletin,1982,66:170-183.
    [337]Boutton T W. Stable carbon isotope ratios of natural materials:atmospheric, terrestrial, marine, and freshwater, environments. In:Coleman D C, Fry B. (Eds.), Carbon isotope techniques. Academic Press, San Diego,1991, pp.155-172.
    [338]Meyers P A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Organic Geochemistry,1997,27:213-250.
    [339]Jia G, Peng P. Temporal and spatial variations in signatures of sedimented organic matter in Lingding Bay (Pearl estuary), southern China. Marine Chemistry,2003,82:47-54.
    [340]Schultz D, Calder J A. Organic carbon 13C/12C variations in estuarine sediments. Geochimica et Cosmochimica Acta,1976,40:381-385.
    [341]Hu J, Sun X, Peng P, et al. Spatial and temporal variation of organic carbon in the northern South China Sea revealed by sedimentary records. Quaternary International,2009,206:46-51.
    [342]Minoura K, Hoshino K, Nakamura T, et al. Late Pleistocene-Holocene paleoproductivity circulation in the Japan Sea:sea-level control on δ13C and δ15N records of sediment organic material. Palaeogeography, Palaeoclimatology, Palaeoecology,1997,135:41-50.
    [343]Pelejero C. Terrigenous n-alkane input in the South China Sea:high-resolution records and surface sediments. Chemical Geology,2003,200:89-103.
    [344]Muller P J, Erlenkeuser H, von Grafenstein R. Glacial-interglacial cycles in oceanic productivity inferred from organic carbon contents in eastern North Atlantic sediment cores. In:Thiede J, Suess E. (Eds.), Coastal upwelling, its sediment record. Part B. Sedimentary records of ancient coastal upwelling. NATO Conference Series IV, Marine Science. Plenum Press, New York, NY, United States,1983, pp.365-398.
    [345]Thunell R C, Miao Q, Calvert S E, et al. Glacial-Holocene biogenic sedimentation patterns in the South China Sea:productivity variations and surface water pCO2. Paleoceanography,1992,5:77-90.
    [346]Huang C-Y, Wu S-F, Zhao M, et al. Surface Ocean and monsoon climate variability in the South China Sea since the last glaciation. Marine Micropaleonotology,1997,32:71-94.
    [347]Higginson M J, Maxwell J R, Altabet M A. Nitrogen isotope and chlorine paleoproductivity records from the Northern South China Sea:remove vs. local forcing of millennial-and orbital-scale variability. Marine Geology,2003,201:223-250.
    [348]孔祥乐,项海光.海洋沉积粘土矿物与全球变化研究的探讨.海洋湖沼通报,2003,(1):22-26.
    [349]杨作升.黄河、长江、珠江沉积物中粘土的矿物组合、化学特征及其与物源区气候环境的关系.海洋与湖沼,1988,19(4):336-346.
    [350]Park Y A, Khim B K. Clay minerals of the recent fine-grained sediments on the Korean continental shelves. Continental Shelf Research,1990,10:1179-1191.
    [351]Moriatry K C. Clay minerals in southeast Indian Ocean sediments, transport mechanisms and depositional environments. Marine Geology,1977,25:149-174.
    [352]Boulay S, Colin C, Trentesaux A, et al. Mineralogy and sedimentology of Pleistocene sediment in the South China Sea (ODP Site 1144). In:Prell W L, Wang P, Blum P, et al (Eds.). Proceedings of the Ocean Drilling Program, Scientific Results,2003,184:1-21.
    [353]何锦文,唐志礼.南海东北部海区的黏土矿物.热带海洋,1985,4(3):46-51.
    [354]高水土.南海中部沉积物中的黏土的分布.东海海洋,1987,5(1-2):100-108.
    [355]周怀阳,叶瑛,沈忠悦.南海南部沉积物中的粘土矿物组成变化及其古环境信息记录初探.海洋学报,2004,26(2):52-60.
    [356]李学杰,汪品先,徐彩珍,等.南海西部表层沉积物黏土矿物的分布.海洋地质与第四纪地质:2008,28(1):9-16.
    [357]朱凤冠.东海陆架区全新世地层中粘土矿物.东海海洋,1985,3(4):32-43.
    [358]朱凤冠,李秀珠,高水土.东海大陆架沉积物中粘土矿物的研究.东海海洋,1988,6(1):40-51.
    [359]时秀民,李坤业,杨慧兰,等.东海DC-2孔岩芯粘土矿物组合及其分布特征.海洋科学,1988,(2):13-19.
    [360]周晓静,高抒,贾建军.长江粘土矿物示踪标记稳定性的初步研究.海洋与湖沼,2003,34(6):683-692.
    [361]Park Y A, Khim B K. Origin and dispersal of recent clay minerals in the Yellow Sea. Marine Geology,1992, 104(1-4):205-213.
    [362]时秀民,李坤业,杨慧兰.南黄海粘土矿物的分布特征.海洋科学,1989,(3):32-37.
    [363]陈正新.南黄海QC1孔粘土矿物研究.海洋地质与第四纪地质,1990,10(3):35-45.
    [364]魏建伟,石学法,辛春英,等,南黄海黏土矿物分布特征及其指示意义.科学通报,2001,46(增刊): 30-33.
    [365]宋召军,张志,余继峰,等.南黄海表层沉积物中粘土矿物分布及物源分析.山东科技大学学报,2008,27(3):1-4.
    [366]Butt F A, Elverhoi A, Solheim A, et al. Deciphering Late Cenozoic development of the western Svalbard margin from ODP 986 results. Marine Geology,2000,169:373-390.
    [367]张乃娴,万国江,马玉光.威宁草海沉积物中的粘土矿物及其环境记录.地质科学,2000,35(2):206-211.
    [368]蓝先洪.海洋沉积物中粘土矿物组合特征的古环境意义.海洋地质动态,2001,17(1):5-7.
    [369]刘饮甫,彭苏萍,曹代勇,等.郑州超化煤矿山西组泥页岩中粘土矿物及地化研究.煤田地质与勘探,1999,27(6):9-13.
    [370]Gingele F X, De Deckker P, Hillenbrand C-D. Late Quaternary fluctuations of the Leeuwin Current and palaeoclimates on the adjacent land masses:clay mineral evidence. Australian Journal of Earth Science, 2001,48(6):867-874.
    [371]布拉特H,米德顿G V,穆雷R C.沉积岩的成因.北京:科学出版社,1978.
    [372]师育新,戴雪荣,李节通.末次间冰期兰州黄土记录中的粘土矿物及其环境意义探讨.海洋地质与第四纪地质,1997,7(1):87-93.
    [373]鲁春霞.粘土矿物在古环境研究中的指示作用.中国沙漠,1997,17(4):456-459.
    [374]汤艳杰,贾建业,谢先德.粘土矿物的环境意义.地学前缘,2002,9(2):337-341.
    [375]唐松,邵磊,赵泉鸿.南海渐新世以来粘土矿物的演变特征及意义.沉积学报,2004,22(2):337-341.
    [376]陈涛,王欢,张祖青,等.粘土矿物对古气候指示作用浅析.岩石矿物,2003,22(4):416-419.
    [377]隆浩,王晨华,刘勇平,等.粘土矿物在过去环境变化研究中的应用.盐湖研究,2007,15(2):21.29.
    [378]刘志飞,Colin C, Trentesaux A,等.南海南部晚第四纪东亚季风演化的粘土矿物记录.中国科学:D辑,2004,34(3):272-279.
    [379]邱中炎,沈忠悦,韩喜球,等.南海粘土矿物组合特征及其环境意义.海洋学研究,2008,26(1):58-64.
    [380]Tamburini F, Adatte T, Follmi K, et al. Investigating the history of East Asian monsoon and climate during the last glacial-interglacial period (0-140 000 years):mineralogy and geochemistry of ODP Sites 1143 and 1144, South China Sea. Marine Geology,2003,201:147-168.
    [381]Liu Z, Colin C, Trentesaux A, et al. Erosinal history of the eastern Tibetan Plateau since 190 kyr ago:clay mineralogical and geochemical investigations from the southwestern South China Sea. Marine Geology, 2004,209:1-18.
    [382]Steinke S, Hanebuth T J J, Vogt C, et al. Sea level induced variations in clay mineral composition in the southwestern South China Sea over the past 17,000 yr. Marine Geolgoy,2008,250:199-210.
    [383]Wehausen R, Tian J, Brumsack H J, et al. Geochemistry of Pliocence sediments from ODP site 1143 (Southern South China Sea). In:Wang P, Prell W L, et al. (Eds.), Proceedings of the Ocean Drilling Program, Science Results,2003,184, pp.1-25.
    [384]Milliman J D, Meade R H. World-wide delivery of river sediment to the oceans. Journal of Geology,1983, 91:1-21.
    [385]Gupta A, Hock L, Huang X, et al. Evaluation of part of the Mekong River using satellite imagery. Geomorphology,2002,44:221-239.
    [386]刘志飞,赵玉龙,李建如,等.南海西部越南岸外晚第四纪黏土矿物记录:物源分析与东亚季风演化.中国科学:D辑,2007,37(9):1176-1184.
    [387]Xue Z. Asymmetric evolution of monsoon controlled delta system:A case study of Mekong River delta, southern Vietnam. Ph.D. Dissertation, North Carolina State University, USA,2010.
    [388]范德江,杨作升,毛登,等.长江与黄河沉积物中粘土矿物及地化成分的组成.海洋地质与第四纪地质,2001,21(4):7-12.
    [389]Schirrmeister L, and Storr M. The weathering of basaltic rocks in Burundi and Vietnam. Catena,1994,21: 243-256.
    [390]邱燕,姚伯初,李唐根,等.南海西沙西南海域表层沉积物特征.海洋地质与第四纪地质,1997,17(4):41-53.
    [391]Gibbs R J. Clay mineral segregation in the marine environment. Journal of Sedimentary Petrology,1977, 47(1):237-243.
    [392]Ludmann T, Wong H K, Berglar K. Upward flow of North Pacific Deep Water in the northern South China Sea as deduced from the occurrence of drift sediments. Geophysics Research Letters,2005,32:L05614. doi: 10.1029/2004GL021967.
    [393]钟广法,李前裕,郝沪军,等.深水沉积物波及其在南海研究之现状.地球科学进展,2007,22(9):907-913.
    [394]Caruso M J, Gawarkiewicz G G, Beardsley R C. Interannual variability of the Kuroshio intrusion in the South China Sea. Journal of Oceanography,2006,62:559-575.
    [395]Milliman J D, Shen H-T, Yang Z-S, et al. Transport and deposition of river sediment in the Changjiang estuary and adjacent continental shelf. Continental Shelf Research,1985,4:37-45.
    [396]Ji J, Chen J, Lu H. Origin of illite in the loess from the Luochuan area, Loess Plateau, Central China. Clay Minerals,1999,34:525-532.
    [397]Liu J P, Xu K H, Li A C, et al. Flux and fate of Yangtze River sediment delivered to the East China Sea. Geomorphology,2007,85:208-224.
    [398]Syvitski J P M, Vorosmarty C J, Kettner A J, et al. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science,2005,308:376-380.
    [399]Meade R H. River-sediment inputs to major deltas. In Milliman J, Haq B (Eds.), Sea-level rise and coastal subsidence. London:Kluwer,1996, pp.63-85.
    [400]Liu J P, Xue Z, Ross K, et al. Fate of sediments delivered to the sea by Asian large rivers:Long-distance transport and formation of remote alongshore clinothems. The sedimentary Record,2009,7(4):4-9.
    [401]Alexander C R, DeMaster D J, Nittrouer C A. Sediment accumulation in a modern epicontinental-shelf setting:the Yellow Sea. Marine Geology,1991,98(1):51-72.
    [402]Yang Z S, Liu J P. A unique Yellow River-derived distal subaqueous delta in the Yellow Sea. Marine Geology,2007,240:169-176.
    [403]Chen Z, Song B, Wang Z, et al. Late Quaternary evolution of the sub-aqueous Yangtze Delta, China: sedimentation, stratigraphy, palynology, and deformation. Marine Geology,2000,162:423-441.
    [404]Liu J P, Li A C, Xu K H, et al. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea. Continental Shelf Research,2006,26:2141-2156.
    [405]Xu K, Milliman J D, Li A, et al. Yangtze-and Taiwan-derived sediments on the inner shelf of East China Sea. Continental Shelf Research,2009,29:2240-2256.
    [406]Ta T K O, Nguyen V L, Tateishi M, et al. Sediment facies and Late Holocene progradation of the Mekong River Delta in Bentre Province, southern Vietnam:an example of evolution from a tide-dominated to a tide-and wave-dominated delta. Sedimentary Geology,2002,152:313-325.
    [407]Xue Z, Liu J P, DeMaster D, et al. Late Holocene evolution of the Mekong subaqueous delta, southern Vietnam. Marine Geology,2010,269(1-2):46-60.
    [408]Dai S B, Yang S L, Cai A M. Impacts of dams on the sediment flux of the Pearl River, southern China. Catena,2008,76:36-43.
    [409]童娟.珠江流域概况及水文特性分析.水利科技与经济,2007,13(1):31-33.
    [410]黄镇国,李平日,张仲英,等.珠江三角洲形成发育演变.广州:科学普及出版社广州分社,1982,1-274.
    [411]Owen R B, Neller R J, Shaw R, et al. Late Quaternary environmental changes in Hong Kong. Palaeogeography, Palaeoclimatology, Palaeoecology,1998,138:151-173.
    [412]Fyfe J A, Selby I C, Plater A J, et al. Erosion and sedimentation associated with the last sea level rise offshore Hong Kong, South China Sea. Quaternary International,1999,55:93-100.
    [413]Yim W W-S. Stratigraphy of Quaternary offshore sand and gravel deposits in the Hong Kong SAR, China. Quaternary International,2001,82:101-116.
    [414]Yim W W-S, Hilgers A, Huang G, et al. Stratigraphy and optically stimulated luminescence dating of subaerially exposed Quaternary deposits from two shallow bays in Hong Kong China. Quaternary International,2008,183:23-39.
    [415]Zong Y, Huang G, Switzer A D, et al. An evolutionary model for the Holocene formation of the Pearl River delta, China. The Holocene,2009,19:129-142.
    [416]Zong Y, Yim W W-S, Yu F, et al. Late Quaternary environmental changes in the Pearl River mouth region, China. Quaternary International,2009,206:35-45.
    [417]兰彬斌,蓝东兆,郑志昌,等.西江三角洲岩心中的硅藻及其记录的古环境.海洋学报,2008,30(1):93-99.
    [418]Yim W W-S, Huang G, Fontugne M R, et al. Plstglacial sea-level changes in the northern South China Sea continental shelf:Evidence for a post-8200 calendar yr BP meltwater pulse. Quaternary International,2006, 145-146:55-67.
    [419]黄永样,葛同明.珠江口盆地晚第四纪地层及环境初步研究.海洋地质与第四纪地质,1995,15:23-36.
    [420]肖尚斌,陈木宏,陆钧,等.南海北部陆架柱状样沉积物记录的残留沉积.海洋地质与第四纪地质,2006,26:1-5.
    [421]赵铁虎,张训华,王修田,等.广东珠江口.东平近海浅地层剖面的声学特征及地质意义.物探化探计算技术,2007,29(3):183-188.
    [422]刘昭蜀,赵焕庭,范时清,等.南海地质.科学出版社,2002.
    [423]Cattaneo A, Correggiari A, Langone L, et al. The late-Holocen Gargano subaqueous delta, Adriatic shelf: sediment pathways and supply fluctuations. Marine Geology,2003,193(1-2):61-91.
    [424]Diaz J I, Palanques A, Nelson C H, et al. Morpho-structure and sedimentary of the Holocene Ebro prodelta mud belt (northwestern Mediterranean Sea). Continental Shelf Research,1996,16(4):435-456.
    [425]Nittrouer C A, Kuehl S A, Figueiredo A G, et al. The geological record preserved by Amazon shelf sedimentation. Continental Shelf Research,1996,16:817-841.
    [426]Chen J Y, Shen H T, Yun C X. Process of dynamics and geomorphology of the Changjiang estuary. Shanghai:Shanghai Science and Technology Press,1988, pp.1-454.
    [427]杨作升,郭志刚,王兆祥,等.黄东海陆架悬浮体向其东部深海区输送的宏观格局.海洋学报,1992,14(2):81-90.
    [428]Cookman J L, Flemings P B. STORMSED 1.0:hydrodynamics and sediment transport in a 2-D, steady-state, wind-and wave-driven coastal circulation model. Computers and Geosciences,2001,27(6): 647-674.
    [429]Su J. Overview of the South China Sea circulation and its influence on the coastal physical oceanography outside the Pearl River Estuary. Continental Shelf Research,2004,24:1745-1760.
    [430]Driscoll N W, Karner G D. Three-dimensional quantitative modeling of clinoform development. Marine Geolgoy,1999,154(1-4):383-398.
    [431]鲍才旺.珠江口陆架区埋藏古河道与古三角洲.海洋地质与第四纪地质,1995,15(2):25-34.
    [432]Stanley D J, Warne A G. Worldwide initiation of Holocene marine deltas by deceleration of sea-level rise. Science,1994,265:228-231.
    [433]Zong Y, Lloyd J M, Leng M J, et al. Reconstruction of Holocene monsoon history from the Pearl River estuary, southern China, using diatoms and carbon isotope ratios.,The Holocene,2006,16:251-263.
    [434]Nittrouer C A, Curtin T B, DeMaster D J. Concentration and flux of suspended sediment on the Amazon continental shelf. Continental Shelf Research,1986,6(1-2):151-174.
    [435]Allison M A, Lee M T, Ogston A S, et al. Origin of Amazon mudbanks along the northeastern coast of South America. Marine Geology,2000,163(1-4):241-256.
    [436]Syvitski J P M, Saito Y. Morphodynamics of deltas under the influence of humans. Global and Planetary Change,2007,57:261-282.
    [437]彭学超.琼州海峡地质构造特征及成因分析.南海地质研究,2000,(12):44-57.
    [438]王文介.南海北部的潮波传播与海底沙脊和沙波发育.热带海洋,2000,19(1):1-7.
    [439]赵焕庭,王丽荣,袁家义.琼州海峡成因与时代.海洋地质与第四纪地质,2007,27(2):33-40.
    [440]李占海,柯贤坤.琼州海峡潮流沉积物通量初步研究.海洋通报,2000,19(6):42-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700