用户名: 密码: 验证码:
铟锌氧化物薄膜晶体管和高功函数TCO薄膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有源矩阵有机发光二极管(Active Matrix Organic Light Emitting Diode, AMOLED)显示具有轻薄、反应速度快、对比度高、视角广等特点,被认为是下一代显示技术。其使用的薄膜晶体管(TFT)主要有两种,一种是非晶硅(a-Si)TFT,一种是多晶硅(p-Si)TFT。由于a-Si TFT的载流子迁移率小于1cm2/V.s,不能适应快速、大面积和更高清晰度显示的需求;a-Si薄膜是不透明的,像素开口率达不到100%,为了获得足够的亮度,就需要增加光源强度,从而增加功率消耗;a-Si材料在可见光范围内是光敏材料,在可见光照射下将使TFT性能恶化。低温多晶硅(LTPS)TFT凭借其较高的载流子迁移率具有反应速度快、亮度高、清晰度好等优点,是一种继a-Si TFT的主流技术。但是,p-Si TFT技术同时具有均匀性差、工艺复杂、设备昂贵、成本高等问题;其工艺温度对有机基板而言非常之高,不能适应柔性显示的需求;而且LTPS-TFT也不透明,同样存在光敏性问题。
     OLED的工作原理基本上可以分为载流子的注入、载流子的传输和载流子复合及辐射衰减三个过程。载流子注入是指载流子通过电极/有机层界面从电极进入有机层的过程。该过程的难易程度对器件的工作电压、效率和寿命有直接的影响。选择合适的电极材料并对电极进行修饰是提高载流子注入和实现注入平衡的重要途径。如果仔细考察一下OLED的发展历史就会发现,OLED效率和稳定性提高的过程在某种意义上说也是电极改善的过程。高功函数阳极可以降低阳极和空穴传输层之间的势垒,改善空穴的注入效果,进而改善器件的性能。
     针对上述课题,本课题开展了铟锌氧化物半导体TFT以及高功函数透明导电氧化物(TCO)薄膜的研究。透明氧化物半导体(TOS)如In2O3和ZnO的载流子迁移率相对较高,工艺温度较低,在均匀性、成本和适用基板等方面也具有优越性。因此如果在TFTLCD或AMOLED中采用透明氧化物半导体TFT替代a-SiTFT或p-Si TFT作为像素开关,将大大提高有源矩阵的开口率,从而提高亮度,降低功耗;因为制备温度较低甚至是室温,所以氧化物TFT又适用于柔性显示。与采用空穴注入缓冲材料如酞菁铜(CuPc)等技术不同,高功函数TCO薄膜的研制仅需在制备TCO薄膜的工艺中增加一个靶材,与现有的OLED生产工艺的相容性好,方法简单,成本低廉,具有产业化的前景,也有将此技术移植到ITO的制备工艺中的潜能,能够为大规模使用高功函数TCO的技术奠定基础。论文开展的主要研究工作和取得的成果如下:
     采用直流反应磁控溅射InZn合金靶,在玻璃衬底上制备了非晶透明铟锌氧化物(a-IZO)半导体薄膜。研究了铟锌含量比和氧分量等参数对a-IZO半导体薄膜的电学和光学性能的影响。研究结果表明,通过调节制备过程中的氧分压,在保证可见光平均透射率大于80%的前提下,实现了a-IZO薄膜的电阻率可在10-3ohm-cm到106ohm-cm量级范围内的调制,而且所制备的a-IZO薄膜具有良好的表面平整性,表面方均根粗糙度小于1nm。这对探索全透明TFT器件的沟道层和电极材料具有重要意义。
     论文研究了顶栅和底栅结构的IZO-TFT。其中,以磁控溅射法室温制备a-IZO半导体沟道层,以脉冲等离子体沉积(PPD)技术制备SiO2介质层薄膜。顶栅结构氧化硅介质层IZO-TFT器件的阈值电压和迁移率分别为-2.4V和0.25 cm2V-1s-1;底栅结构氧化硅介质层IZO-TFT器件的阈值电压和迁移率分别为0.94 V和5.2cm2 V-1s-1,器件的开关比约为104。实验证实了PPD制备的SiO2介质层构成的TFT,也能显示良好的器件性能。以直流磁控溅射法制备的Ta2O5作为介质层,制备了顶栅结构氧化钽介质层IZO-TFT器件,器件的阈值电压和迁移率分别为0.22 V和1.1 cm2V-1s-1。
     提出了氧化物半导体沟道层和有机介质层研制TFT的思路。采用提拉和旋涂方法低温制备了绝缘性和透明性良好的聚乙烯吡咯烷酮有机介质层。以此有机介质层和a-IZO沟道层结合成功制备了高性能无机-有机复合结构的IZO-TFT,器件迁移率、阈值电压和开关比分别为7.8 cm2V-1s-1、-4.8 v和3.9×105。研究表明,氧分压比较高的条件下制备的IZO薄膜,其载流子迁移率比较低,以它为沟道层制备的TFT器件的迁移率也比较低。
     采用旋涂法室温制备聚四乙烯苯酚(PVP)有机介质层,其可见光平均透射率也大于85%。采用溅射法室温制备表面平整的a-IZO半导体薄膜。以a-IZO作为沟道层、PVP作为介质层,室温制备了顶栅结构的无机有机混合型TFT,测试结果表明该类型的TFT具有饱和特性,且显示耗尽工作模式。TFT的阈值电压为-1.5V,迁移率为3.3 cm2V-1s-1,开关比为105。聚四乙烯苯酚有机介质层旋涂后,进行低温烘烤处理,烘烤处理后,薄膜晶体管的迁移率、阈值电压和开关比分别为3.8V、25.4 cm2V-1s-1和>106。器件的性能得到了改善,这是由于烘烤有利于去除有机层中溶剂的残余成分和改善有机层与沟道层之间的界面状态。实验结果揭示了该种TFT的良好性能和应用前景。
     论文在采用直流磁控溅射法研制了具有优良光学和电学性能的掺钨氧化铟(IWO)透明导电氧化物薄膜的基础上,研究了退火处理工艺对IWO薄膜光学和电学性能的影响。实验发现IWO薄膜的光学和电学性能对氧分压非常敏感,退火处理有助于改善IWO薄膜的电阻率,获得了最小电阻率为2.2×10-4ohm·cm,载流子迁移率高达63.5 cm2V-1s-1,可见光范围平均透射率(含基片)83.2%的光学和电学性能优良的IWO薄膜。
     在IWO薄膜研究工作的基础上,探索性地开展了铂钨共掺高功函数薄膜In2O3:Pt,W的研究。在IWO薄膜之上,研制一层很薄的铂钨共掺氧化铟薄膜,通过改变掺铂含量和铂钨共掺氧化铟薄膜的厚度,实现了既保持透明性,有能有效调制功函数的In2O3:Pt,W透明导电氧化物薄膜。利用XPS和AFM等分析表征In2O3:Pt,W薄膜的化学价态以及表面形貌。In203:Pt,W薄膜的表面方均根粗糙度小于7nm。采用UPS表征样品的表面功函数。实验结果表明,In2O3:Pt,W薄膜中Pt含量为6.7 at.%,薄膜厚度为10nm时,In2O3:Pt,W薄膜的功函数由原来的IWO薄膜的4.6 eV提高到了5.5 eV,这时薄膜的电阻率为5.7×10-4ohm-cm,可见光范围的平均透射率为82.7%,证实了高功函数元素可以有效提高透明导电氧化物薄膜的功函数,为研制高功函数TCO薄膜提供了有价值的思路。
     在高功函数In2O3:Pt,W研究的基础上,以IWO/In2O3:Pt,W薄膜为阳极,研制了IWO/In203:Pt,W/NPB/Alq3/LiF/Al结构的OLED器件。研究结果表明,当该器件的工作电压为14v时,电流密度和发光亮度分别达到1600mA/cm2和2.5×104cd/m2。而采用ITO薄膜为阳极,以同样结构和同样工艺条件制备的OLED器件,在相同的工作电压条件下,其电流密度和发光亮度仅为950mA/cm2和7.2x103cd/m2,证实了高功函数阳极能有效降低OLED器件的工作电压。
Active Matrix Organic Light Emitting Diode (AMOLED) displays have been considered as the next generation displays technologies due to its advantages such as much thinner and lighter weight, quick response, high contrast ratio, wide viewing angle and low power consumption. Currently, amorphous silicon(a-Si) TFT and polycrystalline silicon(p-Si) TFT are two main technologies to determine which pixels get turned on to form an picture. Usually, the field effect mobility for a-Si TFT is less than 1 cm2/V·s and can not be used to the fast, large-area and high definition display. Besides, a-Si thin film is opaque and light-sensitive, which results in the decrease of aperture ratio and requires the black matrix. Therefore, power consumption will be raised for the increase of light intensity so as to obtain enough brightness. Low-temperature polycrystalline silicon (LTPS) TFT technology is also attractive for the high field effect mobility and demonstrates advantages like fast response, high brightness and high definition. Nevertheless, LTPS TFT faces problems, such as ununiformity, complicated process and high cost. Moreover, it is not transparent and the process temperature is still high for organic substrates, thus unsuitable for flexible displays.
     The main work principle for OLED can be defined as three processes:carrier injection, carrier transport, recombination and radiation degradation. The carrier injection can be explained that the carrier enters the organic layer through the interface between the electrode and the organic layer. The control of this process has direct effects on work voltage, efficiency and lifetime of the device. Thus, it is rather important to choose appropriate electrode material and make certain modification for improving the carrier injection and balancing the process. In fact, it can be referred from the development of OLED that the improvement of OLED efficiency and stability attributes much to the improvement of electrode. The high work function of the anode helps to reduce the potential barrier between the anode and hole transport layer (HTL), with better hole injection and OLED performance.
     As to above issues, the investigations of indium zinc oxide (IZO) semiconductor thin films and transparent conductive oxide (TCO) thin films with high work function were carried out. Transparent oxide semiconductors (TOS), such as In2O3 and ZnO, have both high carrier mobility and high transparency in the visible region. Low temperature process and uniformity are also their advantages. The substitution of the TFT with TOS for silicon-based TFT in TFT LCD or AMOLED may improve the pixel aperture ratio and brings higher brightness with lower power consumption. Such TFT can be prepared at room temperature, implying the potential application in flexible displays. Compared with the introduction of buffer materials for hole injection, CuPc for an instance, the fabrication of TCO thin films with high work function needs only an additional target and is compatible with the current OLED production, meeting industry concerns. Main research work and achievements are concluded as follows.
     The transparent amorphous In-Zn-O (a-IZO) semiconductor thin films have been prepared on glass substrates using direct current reactive magnetron sputtering with In/Zn alloy targets. The influence of deposition parameters such as In/Zn ratio and oxygen partial pressure on electrical and optical properties of a-IZO thin films have been investigated in detail. The result shows that by adjusting oxygen partial pressure during the deposition, the resisitivity of a-IZO thin film can be changed from 10-3 to 106 ohm-cm with the transmittance of over 80% in the visible light region. Moreover, the prepared a-IZO thin films have smooth surfaces with the root mean square roughness less than 1 nm.
     Amorphous IZO-based TFTs with both top-gate structure and bottom-gate structure are prepared. The a-IZO channel layer was deposited by dc reactive magnetron sputtering at room temperature. SiO2 dielectric layer was prepared by pulsed plasma deposition (PPD) method. The top-gate IZO-TFT demonstrates the threshold voltage of -2.4 V and mobility of 0.25 cm2 V-1s-1 and the corresponding values are 0.94 V and 5.2 cm2 V-1s-1 for bottom-gate IZO-TFT with the on-off ratio-104. The top-gate IZO-TFT using TaaO5 dielectric layer prepared by dc reactive magnetron sputtering shows the threshold voltage of 0.22 V and mobility of 1.1 cm2 V-1s-1.
     The thought of preparing TFT with oxide semiconductor channel layer and organic dielectric layer was proposed. The polyvinyl pyrrolidone dielectric layer was prepared at low temperature with good transparency and insulation by dip coating and spin coating. The hybrid IZO-TFT with inorganic channel layer and organic dielectric layer has been successfully prepared. The mobility, threshold voltage and on-off ratio of the device are 7.8 cm2V-1s-1、-4.8 V and 3.9 X 105, respectively. It is also found that IZO thin film prepared at high oxygen partial pressure shows lower carrier mobility and the TFT device with it as the channel displays lower field effect mobility accordingly.
     Poly-4-vinylphenol was also used as the dielectric layer and prepared at room temperature by spin coating with the transmittance over 85% in the visible region. The top-gate IZO TFT with poly-4-vinylphenol dielectric layer works in the depletion mode. The threshold voltage, mobility and on-off ratio of the device are-1.5 V,3.3 cm2V-1s-1 and 105, respectively. When the organic layer was properly cured, the mobility of the TFT is remarkably enhanced to 25.4 cm2V-1s-1 with the threshold voltage of 3.8 V. The device performance are improved because the baking helps to make the organic layer more compact, remove the residual component of the solvent, and better the interface between the dielectric layer and the channel layer.
     Transparent conductive tungsten-doped indium oxide (IWO) thin films with low resistivity and high transparency in the visible region are deposited. The experimental parameters are optimized. For example, the oxygen partial pressure significantly influences performance of IWO films. Further, the effects of post-annealing on the electrical and optical properties of IWO films are studied. It is found that proper post-annealing can reduce thin film resistivity and IWO film exhibits the minimum resistivity of 2.2×10-4Ω·cm. The carrier mobility reaches 63.5 cm2 V-1s-1 and the transmission is 83.2% in visible region.
     Platinum and tungsten codoped indium oxide (In2O3:Pt,W) thin layers with high work function were then prepared and studied in detail. On IWO layer, In2O3:Pt,W film of a few nanometers was deposited. The work function can be modulated with still high transparency in the visible region by adjusting the platinum content and the thickness of In2O3:Pt,W thin film. The chemical valence of elements and the morphology are characterized by X-ray photoelectron spectroscopy (XPS) and Atomic Force Microscope (AFM), respectively. The root mean square roughness of In2O3:Pt,W thin film is less than 7nm. The work function of thin films are characterized using Ultraviolet Photoemission Spectroscopy (UPS). It was confirmed that the work functions 3φof IWO and IWO/In2O3:Pt,W thin films are 4.7 and 5.5 eV, respectively. The resistivity of IWO/In2O3:Pt,W double layers film reaches 5.7×10-4 ohm-cm and the average visible light transmission of 82.7% was obtained. It is confirmed that the high work function elements is effective for the improvement of TCO thin film work function, this provide valuable ideas for the study of high work function TCO thin films.
     An OLED device with structure of IWO/In2O3:Pt,W/NPB/Alq3/LiF/Al was fabricated. When the voltage is 14 V, the current density and the brightness is 1600 mA/cm2 and 2.5×104 cd/m2, respectively. While the current density and the brightness of the OLED with ITO anode is 950 mA/cm2 and 7.2×103 cd/m2. This verifies OLED with the high work function anode has low working voltage.
引文
[1]Lecomber P G, Spear W E, Ghaith A. amorphous-silicon field-effect device and possible application[J]. Electronics Letters,1979,15:179-181.
    [2]Hoffman R L, Norris B J, Wager J F. ZnO-based transparent thin-film transistors[J]. Applied Physics Letters, 2003,82(5):733-735.
    [3]Carcia P F, McLean R S, Reilly M H, et al. Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering[J]. Applied Physics Letters,2003,82(7):1117-1119.
    [4]Nishii J, Hossain F M, Takagi S, et al. High Mobility Thin Film Transistors with Transparent ZnO Channels[J]. Japanese Journal of Applied Physics,2003,42(4A):L347-L349.
    [5]Hosono H, Kikuchi N, Ueda N, et al. Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples[J]. Journal of Non-Crystalline Solids,1996,198-200:165-169.
    [6]Hosono H, Yasukawa M, Kawazoe H. Novel Oxide Amorphous Semiconductors: Transparent Conducting Amorphous Oxides[J]. Journal of Non-Crystalline Solids,1996,203:334-344.
    [7]Masuda S, Kitamura K, Okumura Y, et al. Transparent thin film transistors using ZnO as an active channel layer and their electrical properties[J]. Journal of Applied Physics,2003,93(3):1624-1630.
    [8]Norris B J, Anderson J, Wager J F, et al. Spin-coated zinc oxide transparent transistors[J]. Journal of Physics D-Applied Physics,2003,36(20):L105-L107.
    [9]Look D C. Progress in ZnO Materials and Devices[J]. Journal of Electronic Materials,2006, 35(6):1299-1305.
    [10]Look D C. New Developments in ZnO Materials and Devices. Proceeding of the IEEE,2007,6474:647402.
    [11]Fortunato E, Pimentel A, Pereira L, et al. High field-effect mobility zinc oxide thin film transistors produced at room temperature[J]. Journal of Non-Crystalline Solids,2004,338-340:806-809.
    [12]Fortunato E, Barquinha P, Pimentel A, et al. Recent advances in ZnO transparent thin film transistors[J]. Thin Solid Films,2005,487(1-2):205-211.
    [13]Yao Q J, Li D J. Fabrication and property study of thin film transistor using rf sputtered ZnO as channel layer[J]. Journal of Non-Crystalline Solids,2005,351(40-42):3191-3194.
    [14]Lee K, Kim J H,Im S, et al. Low-voltage-driven top-gate ZnO thin-film transistors with polymer/high-k oxide double-layer dielectric[J]. Applied Physics Letters,2006,89(13):133507.
    [15]Chang S, Song Y W, Lee S, et al. Efficient suppression of charge trapping in ZnO-based transparent thin film transistors with novel Al2O3/HfO2/Al2O3 structure[J]. Applied Physics Letters,2008,92(19):192104.
    [16]Hirao T, Furuta M, Hiramatsu T, et al. Bottom-Gate Zinc Oxide Thin-Film Transistors (ZnO TFTs) for AM-LCDs[J]. IEEE Transactions on Electron Devices,2008,55(11):3136-3142.
    [17]Kim J H, Ahn B D, Lee C H, et al. Characteristics of transparent ZnO based thin film transistors with amorphous HfO2 gate insulators and Ga doped ZnO electrodes[J]. Thin Solid Films,2008, 516(7):1529-1532.
    [18]Zhang L, Zhang H, Bai Y, et al. Enhanced performances of ZnO-TFT by improving surface properties of channel layer[J]. Solid State Communications,2008,146(9-10):387-390.
    [19]Jejurikar S M, SouzaK M M D, Adhi K P. Understanding the role of the insulator in the performance of ZnO TFTs[J]. Thin Solid Films,2009,518(4):1177-1179.
    [20]Navamathavan R, ChoiS C K. Park J. Electrical properties of ZnO-based bottom-gate thin film transistors fabricated by using radio frequency magnetron sputtering[J]. Journal of Alloys and Compounds,2009, 475(1-2):889-892.
    [21]Cho N G, Kim D H, Kim H G, et al. Zinc oxide thin film transistors using MgO-Bi1.5Zn1.0Nb1.5O7 composite gate insulator on glass substrate[J]. Thin Solid Films,2010,518(10):2843-2846.
    [22]Kim J J, Jun-Yong Bak, Jong-Hoon Lee, et al. Characteristics of laser-annealed ZnO thin film transistors[J]. Thin Solid Films,2010,518(11):3022-3025.
    [23]Dhananjay, Krupanidhi S B. Low threshold voltage ZnO thin film transistor with a Zn0.7Mg0.3O gate dielectric for transparent electronics[J]. Journal of Applied Physics,2007,101(12):123717.
    [24]Shin P K, Aya Y, Ikegami T, et al. Application of pulsed laser deposited zinc oxide films to thin film transistor device[J]. Thin Solid Films,2008,516(12):3767-3771.
    [25]Bang S, Lee S, Jeon S, et al. A12O3 buffer in a ZnO thin film transistor with poly-4-vinylphenol dielectric[J]. Semiconductor Science and Technology,2009,24(2):025008.
    [26]Jo J, Choi H, Yun J, et al. Improvement of on/off ratio in ZnO thin-film transistor by using growth interruptions during metalorganic chemical vapor deposition[J]. Thin Solid Films,2009,517(23):6337-6340.
    [27]Cheng H C, Chen C F, Lee C C. Thin-film transistors with active layers of zinc oxide (ZnO) fabricated by low-temperature chemical bath method[J]. Thin Solid Films,2006,498:142-145.
    [28]张新安,张景文,杨晓东,等.L-MBE法制备以ZnO为沟道层的薄膜晶体管[J].半导体学报,2006,27(06):1051-1054.
    [29]张新安,张景文,张伟风,等.以ZnO为沟道层的薄膜晶体管制备研究[J].功能材料,2008,39(07):1144-1150.
    [30]Bae H. Im SS. Ultraviolet detecting properties of ZnO-based thin film transistors[J]. Thin Solid Films,2004, 469:75-79.
    [31]Shin J H, Lee J S, Hwang C S, et al. Light Effects on the Bias Stability of Transparent ZnO Thin Film Transistors[J]. Etri Journal,2009,31(1):62-64.
    [32]Bae H S, Im S. ZnO-based thin-film transistors of optimal device performance[J]. Journal of Vacuum Science & Technology B,2004,22(3):1191-1195.
    [33]Bae H S, Kim J H, Im S. Mobility enhancement in ZnO-based TFTs by H treatment[J]. Electrochemical and Solid State Letters,2004,7(11):G279-G281.
    [34]Barquinha P, Fortunato E, Goncalves A, et al. Influence of time, light and temperature on the electrical properties of zinc oxide TFTs[J]. Superlattices and Microstructures,2006,39(1-4):319-327.
    [35]Hsieh H H, Wu C C.4.2:Scaling Effects on ZnO Transparent TFTs. SID Symposium Digest of Technical Papers,2006,37(1):21-24.
    [36]Hsieh H H, Wu C C. Scaling Effects on ZnO Transparent TFTs[J]. SID International Symposium - Digest of Technical Papers,2006:21-24.
    [37]Remashan K, Janga J H, Hwang D K, et al. ZnO-based thin film transistors having high refractive index silicon nitride gate[J]. Applied Physics Letters,2007,91:182101.
    [38]Carcia P F, McLean R S, Reilly M H, et al. A comparison of zinc oxide thin-film transistors on silicon oxide and silicon nitride gate dielectrics[J]. Applied Physics Letters,2007,102:074512.
    [39]Hsieh H H, Wu C C. Amorphous ZnO transparent thin-film transistors fabricated by fully lithographic and etching processes[J]. Applied Physics Letters,2007,90:013502.
    [40]Chen H J H, Yeh B B L, Pan H C, et al. ZnO transparent thin-film transistors with HfO2/Ta2O5 stacking gate dielectrics[J]. ELECTRONICS LETTERS,2008,44(3):186.
    [41]Kim J H, Ahn B D, Lee C H, et al. Characteristics of transparent ZnO based thin film transistors with amorphous HfO2 gate insulators and Ga doped ZnO electrodes[J]. Thin Solid Films,2008,516:1529-1532.
    [42]Song I, Kim S, Yin H X, et al. Short channel characteristics of Gallium-Indium-Zinc-Oxide thin film transistors for three-dimensional stacking memory[J]. IEEE Electron Device Letters,2008,29(6):549-552.
    [43]Remashan K, Hwang D K, Park S J, et al. Impact of Hydrogenation of ZnO TFTs by Plasma-Deposited Silicon Nitride Gate Dielectric[J]. IEEE Transactions on Electron Devices,2008,55(10):2736-2743.
    [44]Jejurikar S M, Souza M M D, Adhi K P. Understanding the role of the insulator in the performance of ZnO TFTs[J]. Thin Solid Films,2009,518(4):1177-1179.
    [45]Siddiqui J, Cagin E, Chen D, et al. ZnO thin-film transistors with polycrystalline (Ba,Sr)TiO3 gate insulators[J]. Applied Physics Letters,2006,88:212903.
    [46]Kim I D, Lim M H, Kang K T, et al. Room temperature fabricated ZnO thin film transistor using high-K Bi1.5Zn1.0Nb1.5O7 gate insulator prepared by sputtering[J]. Applied Physics Letters,2006,89:022905.
    [47]袁广才,徐征,张福俊,等.以Al2O3/AlN为复合绝缘缓冲层的ZnO-TTFT透过率的研究[J].功能材料,2007,38(2):185-189.
    [48]Lee K, Kim J H, Im S. Probing the work function of a gate metal with a top-gate ZnO-thin-film transistor with a polymer dielectric[J]. Applied Physics Letters,2006,88(2):023504.
    [49]Hirao T, Furuta M, Furuta H, et al. High Mobility Top-Gate Zinc Oxide Thin-Film Transistors (ZnO-TFTs) for Active-Matrix Liquid Crystal Displays. SID International Symposium - Digest of Technical Papers, 2006:18-20.
    [50]Park S H K, Hwang C S, Ryu M, et al. Transparent and Photo-stable ZnO Thin-film Transistors to Drive an Active Matrix Organic-Light-Emitting-Diode Display Panel[J]. Advanced Materials,2009,21(6):678-682.
    [51]马仙梅,荆海,李香萍,等.ZnO-TFT的制备及ZnO薄膜性能研究,2008China FPD Conference.2008.p.181-183.
    [52]马仙梅,荆海,马凯,等.ZnO薄膜及ZnO-TFT的性能研究[J].液晶与显示,2009,31(01):115-116.
    [53]袁广才.以Al2O3/AlN为复合绝缘缓冲层的ZnO-TTFT透过率的研究[J].功能材料,2007,38(2):186-189.
    [54]Zhang X A, Zhang J W, Zhang W F, et al. Enhancement-mode thin film transistor with nitrogen-doped ZnO channel layer deposited by laser molecular beam epitaxy[J]. Thin Solid Films,2008,516(10):3305-3308.
    [55]Wang X Y, Dong G F, Qiao J, et al. Solution-Processed Zinc Oxide Thin Films and Top-Gate Thin Film Transistors[J]. Chinese Journal of Inorganic Chemistry,2009,25(12):2071-2076.
    [56]Orita M, Ohta H, Hirano M, et al. Amorphous transparent conductive oxide InGaO3(ZnO)(m) (m<= 4):a Zn 4s conductor[J]. Philosophical Magazine. B,2001,81(5):501-515.
    [57]Nomura K, Ohta H, Ueda K, et al. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor[J]. Science,2003,300(5623):1269-1272.
    [58]Nomura K, Ohta H, Takagi A, et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors[J]. Nature,2004,432(7016):488-492.
    [59]Kumomi H, Nomura K, Kamiya T, et al. Amorphous oxide channel TFTs[J]. Thin Solid Films,2008, 516:1516-1522.
    [60]Kamiya T, Hiramatsu H, Nomura K, et al. Device applications of transparent oxide semiconductors: Excitonic blue LED and transparent flexible TFT[J]. Journal of Electroceramics 2006,17(2):267-275.
    [61]Hosono H. Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application[J]. Journal of Non-Crystalline Solids,2006,352(9-20):851-858.
    [62]Nomura K, Ohta H, Ueda K, et al. Electron transport in InGaO3(ZnO)(m) (m = integer) studied using single-crystalline thin films and transparent MISFETs[J]. Thin Solid Films,2003,445(2):322-326.
    [63]Nomura K, Ohta H, Masahiro H A, et al. All oxide transparent MISFET using high-k dielectrics gates[J]. Microelectronic Engineering,2004,72(1-4):294-298.
    [64]Yabuta H, Sano M, Abe K, et al. High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering[J]. Applied Physics Letters,2006,89(11):112123.
    [65]Iwasaki T, Itagaki N, Den T, et al. Combinatorial approach to thin-film transistors using multicomponent semiconductor channels: An application to amorphous oxide semiconductors in In-Ga-Zn-O system[J]. Applied Physics Letters,2007,90(24):242114.
    [66]Jeong J K, Jeong J H, Yang H W, et al. High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel[J]. Applied Physics Letters,2007,91(11):113505.
    [67]Kang D, Lim H, Kim C, et al. Amorphous gallium indium zinc oxide thin film transistors: Sensitive to oxygen molecules[J]. Applied Physics Letters,2007,90(19):192101.
    [68]Kim M, Jeong J H, Lee H J, et al. High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper[J]. Applied Physics Letters,2007,90(21):212114.
    [69]Park J S, Jeong J K, Mo Y G, et al. Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment[J]. Applied Physics Letters,2007,90(26):262106.
    [70]Suresh A, Wellenius P, Dhawan A, et al. Room temperature pulsed laser deposited indium gallium zinc oxide channel based transparent thin film transistors[J]. Applied Physics Letters,2007,90(12):123512.
    [71]Barquinha P, Vila A M, Goncalves G, et al. Gallium-indium-zinc-oxide-based thin-film transistors: Influence of the source/drain material[J]. IEEE Transactions on Electron Devices,2008,55(4):954-960.
    [72]Chiang H Q, McFarlane B R, Hong D, et al. Processing effects on the stability of amorphous indium gallium zinc oxide thin-film transistors[J]. Journal of Non-Crystalline Solids,2008,354(19-25):2826-2830.
    [73]Kim J B, C Fuentes-HernandezB. Kippelen. High-performance InGaZnO thin-film transistors with high-k amorphous Ba0.5Sr0.5TiO3 gate insulator[J]. Applied Physics Letters,2008,93(24):242111.
    [74]Kwon J Y, Son K S, Jung J S, et al. Bottom-Gate Gallium Indium Zinc Oxide Thin-Film Transistor Array for High-Resolution AMOLED Display[J]. IEEE Electron Device Letters,2008,29(12):1309-1311.
    [75]Lim W, Douglas E A, Kim S H, et al. Low-temperature-fabricated InGaZnO4 thin film transistors on polyimide clean-room tape[J]. Applied Physics Letters,2008,93(25):252103.
    [76]Lim W, Kim S, Wang Y L, et al. High-performance indium gallium zinc oxide transparent thin-film transistors fabricated by radio-frequency sputtering[J]. Journal of the Electrochemical Society,2008, 155(6):H383-H385.
    [77]Lim W, Kim S H, Wang Y L, et al. Stable room temperature deposited amorphous InGaZnO4 thin film transistors[J]. Journal of Vacuum Science & Technology B,2008,26(3):959-962.
    [78]Lim W T, Jang J H, Kim S H, et al. High performance indium gallium zinc oxide thin film transistors fabricated on polyethylene terephthalate substrates[J]. Applied Physics Letters,2008,93(8):082102.
    [79]Bobade S M, Shin J H, Cho Y J, et al. Room temperature fabrication Oxide TFT with Y2O3 as a gate oxide and Mo contact[J]. Applied Surface Science,2009,255(17):7831-7833.
    [80]Cho Y J, Shin J H, Bobade S M, et al. Evaluation of Y2O3 gate insulators for a-IGZO thin film transistors[J]. Thin Solid Films,2009,517(14):4115-4118.
    [81]Kim G H, Kim H S, Shin H S, et al. Inkjet-printed InGaZnO thin film transistor[J]. Thin Solid Films,2009, 517(14):4007-4010.
    [82]Kim G H, Shin H S, Ahn B D, et al. Formation Mechanism of Solution-Processed Nanocrystalline InGaZnO Thin Film as Active Channel Layer in Thin-Film Transistor[J]. Journal of the Electrochemical Society,2009, 156(1):H7-H9.
    [83]Kim J B, Fuentes-Hernandez C, Potscavage W J, et al. Low-voltage InGaZnO thin-film transistors with A12O3 gate insulator grown by atomic layer deposition[J]. Applied Physics Letters,2009,94(14):142107.
    [84]Kim S, Park J, Kim C J, et al. Source/Drain Formation of Self-Aligned Top-Gate Amorphous GaInZnO Thin-Film Transistors by NH3 Plasma Treatment[J]. IEEE Electron Device Letters,2009,30(4):374-376.
    [85]Lee J, Park J S, Pyo Y S, et al. The influence of the gate dielectrics on threshold voltage instability in amorphous indium-gallium-zinc oxide thin film transistors[J]. Applied Physics Letters,2009,95(12): 123502.
    [86]Lee J M, Cheong W S, Hwang C S, et al. Low-Frequency Noise in Amorphous Indium-Gallium-Zinc-Oxide Thin-Film Transistors[J]. IEEE Electron Device Letters,2009,30(5):505-507.
    [87]Lee J M, Cho I T, Lee J H, et al. Comparative study of electrical instabilities in top-gate InGaZnO thin film transistors with A12O3 and Al2O3/SiNx gate dielectrics[J]. Applied Physics Letters,2009,94(22):222112.
    [88]Lim J H, Shim J H, Choi J H, et al. Solution-processed InGaZnO-based thin film transistors for printed electronics applications[J]. Applied Physics Letters,2009,95(1):012108.
    [89]Lim W, Douglas E A, Kim S H, et al. High mobility InGaZnO4 thin-film transistors on paper[J]. Applied Physics Letters,2009,94(7):072103.
    [90]Lim W, Jang J H, Kim S H, et al. Interface dependent electrical properties of amorphous InGaZnO4 thin film transistors[J]. Journal of Vacuum Science & Technology B,2009,27(1):126-129.
    [91]Park S K, Kim Y H, Han J I. All solution-processed high-resolution bottom-contact transparent metal-oxide thin film transistors[J]. Journal of Physics D-Applied Physics,2009,42(12):125102.
    [92]Sato A, Abe K, Hayashi R, et al. Amorphous In-Ga-Zn-O coplanar homojunction thin-film transistor[J]. Applied Physics Letters,2009,94(13):133502.
    [93]Sato A, Shimada M, Abe K, et al. Amorphous In-Ga-Zn-O thin-film transistor with coplanar homojunction structure[J]. Thin Solid Films,2009,518(4):1309-1313.
    [94]Su N C, Wang S J, Chin A. High-Performance InGaZnO Thin-Film Transistors Using HfLaO Gate Dielectric[J]. IEEE Electron Device Letters,2009,30(12):1317-1319.
    [95]Yuan L Y, Fang G J, Zou X, et al. Optical and electrical characterization of alpha-InGaZnO thin film fabricated by pulsed laser deposition for thin film transistor applications[J]. Journal of Physics D-Applied Physics,2009,42(21):215301.
    [96]Aoi T, Oka N, Sato Y, et al. DC sputter deposition of amorphous indium-gallium-zinc-oxide (a-IGZO) films with H,O introduction[J]. Thin Solid Films,2010,518(11):3004-3007.
    [97]Lee S Y, Chang S, Lee J S. Role of high-k gate insulators for oxide thin film transistors[J]. Thin Solid Films, 2010,518(11):3030-3032.
    [98]Kang D, Lim H, Kim C, et al. Amorphous gallium indium zinc oxide thin film transistors: Sensitive to oxygen molecules[J]. Applied Physics Letters,2007,90:192101.
    [99]Chung HJ, Jeong J H, Ahn T K, et al. Bulk-Limited Current Conduction in Amorphous InGaZnO Thin Films[J]. Electrochemical and Solid-State Letters,2008,11(3):H51-H54.
    [100]Suresh A, Muth J F. Bias stress stability of indium gallium zinc oxide channel based transparent thin film transistors[J]. Applied Physics Letters,2008,92:033502.
    [101]Kim G H, Ahn B D, Shin H S, et al. Effect of indium composition ratio on solution-processed nanocrystalline InGaZnO thin film transistors[J]. Applied Physics Letters,2009,94(23):233501.
    [102]Park J S, Kim T W, Stryakhilev D, et al. Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors[J]. Applied Physics Letters,2009,95(1):013503.
    [103]林明通,余峰张志林.氧化锌基薄膜晶体管最新研究进展[J].光电子技术,2008,28(04):217-231.
    [104]Dehuff N L, Kettenring E S, Hong D, et al. Transparent thin-film transistors with zinc indium oxide channel layer[J]. Journal of Applied Physics,2005,97(6):064505.
    [105]Yaglioglu B, Yeom H Y, Beresford R, et al. High-mobility amorphous In2O3-10 wt%ZnO thin film transistors[J]. Applied Physics Letters,2006,89(6):062103.
    [106]Barquinha P, Pimentel A, Marques A, et al. Influence of the semiconductor thickness on the electrical properties of transparent TFTs based on indium zinc oxide[J]. Journal of Non-Crystalline Solids,2006, 352(9-20):1749-1752.
    [107]Barquinha P, Pimentel A, Marques A, et al. Effect of UV and visible light radiation on the electrical performances of transparent TFTs based on amorphous indium zinc oxide[J]. Journal of Non-Crystalline Solids,2006,352(9-20):1756-1760.
    [108]Kim Y H, Kim W K, Han J I. Transparent zinc-indium-oxide-based thin-film transistors using an organic gate dielectric layer[J]. Journal of the Korean Physical Society,2006,49(3):1221-1224.
    [109]Barquinha P, Goncalves G, Pereira L, et al. Effect of annealing temperature on the properties of IZO films and IZO based transparent TFTs[J]. Thin Solid Films,2007,515(24):8450-8454.
    [110]Martins R, Barquinha P, Ferreira I, et al. Role of order and disorder on the electronic performances of oxide semiconductor thin film transistors[J]. Journal of Applied Physics,2007,101(4):044505.
    [111]Song J I, Park J S, Kim H, et al. Transparent amorphous indium zinc oxide thin-film transistors fabricated at room temperature[J]. Applied Physics Letters,2007,90(2):022106.
    [112]Wang Y L, Ren F, Lim W, et al. Room temperature deposited indium zinc oxide thin film transistors[J]. Applied Physics Letters,2007,90(23):232103.
    [113]Fortunato E, Barquinha P, Pimentel A, et al. Amorphous IZO TTFTs with saturation mobilities exceeding 100 cm(2)/Vs[J]. Physica Status Solidi-Rapid Research Letters,2007,1(1):R34-R36.
    [114]Choi C G, Seo S J, Bae B S. Solution-processed indium-zinc oxide transparent thin-film transistors[J]. Electrochemical and Solid State Letters,2008,11(1):H7-H9.
    [115]Fortunato E, Barquinha P, Goncalves G, et al. High mobility and low threshold voltage transparent thin film transistors based on amorphous indium zinc oxide semiconductors[J]. Solid-State Electronics,2008,-52(3):443-448.
    [116]Lim W, Wang Y L, Ren F, et al. Indium zinc oxide thin films deposited by sputtering at room temperature[J]. Applied Surface Science,2008,254(9):2878-2881.
    [117]Paine D C, Yaglioglu B, Beiley Z, et al. Amorphous IZO-based transparent thin film transistors[J]. Thin Solid Films,2008,516(17):5894-5898.
    [118]Wang Y L, Covert L N, Anderson T J, et al. RF characteristics of room-temperature-deposited, small gate dimension indium zinc oxide TFTs[J]. Electrochemical and Solid State Letters,2008, 11(3):H60-H62.
    [119]Chen C K, Hsieh H H, Shyue J J, et al. The Influence of Channel Compositions on the Electrical Properties of Solution-Processed Indium-Zinc Oxide Thin-Film Transistors[J]. Journal of Display Technology,2009, 5(12):509-514.
    [120]Choi J H, Han U B, Lee K C, et al. Transfer characteristics and bias-stress stability of amorphous indium zinc oxide thin-film transistors[J]. Journal of Vacuum Science & Technology B,2009,27(2):622-625.
    [121]McDowell M G, Hill I G. Influence of Channel Stoichiometry on Zinc Indium Oxide Thin-Film Transistor Performance[J]. IEEE Transactions on Electron Devices,2009,56(2):343-347.
    [122]Yoon S M, Yang S H, Jung S W, et al. Solution-Processed Zinc Indium Oxide Transparent Nonvolatile Memory Thin-Film Transistors with Polymeric Ferroelectric Gate Insulator[J]. Electrochemical and Solid State Letters,2010,13(5):H141-H143.
    [123]Liu P T, Chou Y T, Teng L F. Charge pumping method for photosensor application by using amorphous indium-zinc oxide thin film transistors[J]. Applied Physics Letters,2009,94(24):242101.
    [124]Liu P T, Chou Y T, Teng L F. Environment-dependent metastability of passivation-free indium zinc oxide thin film transistor after gate bias stress[J]. Applied Physics Letters,2009,95(23):233504.
    [125]Gorrn P, Holzer P, Riedl T, et al. Stability of transparent zinc tin oxide transistors under bias stress[J]. Applied Physics Letters,2007,90:063502.
    [126]Gorrn P, Lehnhardt M, Riedl T, et al. The influence of visible light on transparent zinc tin oxide thin film transistors[J]. APPLIED PHYSICS LETTERS,2007,91:193504.
    [127]Presley R E, Hong D, Chiang H Q, et al. Transparent ring oscillator based on indium gallium oxide thin-film transistors[J]. Solid-State Electronics,2006,50:500-503.
    [128]Chiang H Q, Hong D, Hung C M, et al. Thin-film transistors with amorphous indium gallium oxide channel layers[J]. Journal of vaccum science and technology B,2006,24(6):2702-2705.
    [129]Fortunato E M C, Pereira L M N, Barquinha P M C, et al. High mobility indium free amorphous oxide thin film transistors - art. no.222103[J]. Applied Physics Letters,2008,92(22):22103-22103.
    [130]Ryu M K, Yang S, Park S H K, et al. High performance thin film transistor with cosputtered amorphous Zn-In-Sn-O channel:Combinatorial approach[J]. Applied Physics Letters,2009,95(7):072104.
    [131]Lee D H, Han S Y, G S Herman, et al. Inkjet printed high-mobility indium zinc tin oxide thin film transistors[J]. Journal of Materials Chemistry,2009,19(20):3135-3137.
    [132]Grover M S, Hersh P A, Chiang H Q, et al. Thin-film transistors with transparent amorphous zinc indium tin oxide channel layer[J]. Journal of Physics D-Applied Physics,2007,40(5):1335-1338.
    [133]Tetsuka H, Shan Y J, Tezuka K, et al. Transparent amorphous conductive Cd-In-Sb-O thin films for flexible devices[J]. Vacuum,2006,80(9):1038-1041.
    [134]Lavareda G, Carvalho C N, Fortunato E, et al. Transparent thin film transistors based on indium oxide semiconductor[J]. Journal of Non-Crystalline Solids,2006,352(23-25):2311-2314.
    [135]Yao Q J, Li D J. Indium oxide thin film transistors via reactive sputtering using metal targets[J]. Physica Status Solidi a-Applications and Materials Science,2008,205(2):389-391.
    [136]Vygranenko Y, Wang K, Chaji R, et al. Stability of indium-oxide thin-film transistors by reactive ion beam assisted deposition[J]. Thin Solid Films,2009,517(23):6341-6344.
    [137]Chiang H Q, Hong D, Hung C M, et al. Thin-film transistors with amorphous indium gallium oxide channel layers[J]. Journal of Vacuum Science & Technology B,2006,24(6):2702-2705.
    [138]Presley R E, Munsee C L, Park C H, et al. Tin oxide transparent thin-film transistors[J]. JOURNAL OF PHYSICS D: APPLIED PHYSICS,2004,37:2810-2813.
    [139]Chang Y J, Lee D H, Herman G S, et al. High-performance, spin-coated zinc tin oxide thin-film transistors[J]. Electrochemical and Solid State Letters,2007,10(5):H135-H138.
    [140]Jackson W B, Herman G S, Hoffman R L, et al. Zinc tin oxide transistors on flexible substrates[J]. Journal of Non-Crystalline Solids,2006,352(9-20):1753-1755.
    [141]Hong D, Chiang H Q, Wager J F. Zinc tin oxide thin-film transistors via reactive sputtering using a metal target [J]. J. Vac. Sci. Technol. B 2006,24(5):L23-L25.
    [142]Jackson W B, Hoffman R L, Herman G S. High-performance flexible zinc tin oxide field-effect transistors[J]. Applied Physics Letters,2005,87(19):193503.
    [143]Bourlange A, Payne D J, Egdell R G, et al. Growth of In2O3(100) on Y-stabilized ZrO2(100) by O-plasma assisted molecular beam epitaxy[J]. Applied Physics Letters,2008,92(9):092117.
    [144]Fan J C C, Goodenough J B. X-Ray Photoemission Spectroscopy Studies of Sn-Doped Indium-Oxide Films[J]. Journal of Applied Physics,1977,48(8):3524-3531.
    [145]Granqvist C. G, Hultaker A. Transparent and conducting ITO films: new developments and applications[J]. Thin Solid Films,2002,411(1):1-5.
    [146]Ohta H, Orita M, Hirano M, et al. Highly electrically conductive indium-tin-oxide thin films epitaxially grown on yttria-stabilized zirconia (100) by pulsed-laser deposition[J]. Applied Physics Letters,2000, 76(19):2740-2742.
    [147]Kim Y S, Park Y C, Ansari S G, et al. Influence of O2 admixture and sputtering pressure on the properties of ITO thin films deposited on PET substrate using RF reactive magnetron sputtering[J]. Surface & Coatings Technology,2003,173(2-3):299-308.
    [148]Sandoval-Paz M G, Ramez-Bon R. Indium tin oxide films deposited on polyethylene naphthalate substrates by radio frequency magnetron sputtering[J]. Thin Solid Films,2009,517(8):2596-2601.
    [149]Bender M, Seelig W, Daube C, et al. Dependence of oxygen flow on optical and electrical properties of DC-magnetron sputtered ITO films[J]. Thin Solid Films,1998,326(1-2):72-77.
    [150]George J, Menon C S. Electrical and optical properties of electron beam evaporated ITO thin films[J]. Surface & Coatings Technology,2000,132(1):45-48.
    [151]Pokaipisit A, Udomkan N, Limsuwan P. Nanostructure, and properties of indium tin oxide (ITO) films produced by electron beam evaporation[J]. Modern Physics Letters B,2006,20(17):1049-1058.
    [152]Fallah H R, Ghasemi M, Hassanzadeh A, et al. The effect of annealing on structural, electrical and optical properties of nanostructured ITO films prepared by e-beam evaporation[J]. Materials Research Bulletin, 2007,42(3):487-496.
    [153]Raoufi D. Morphological characterization of ITO thin films surfaces[J]. Applied Surface Science,2009, 255(6):3682-3686.
    [154]Sawada Y, Low-cost deposition of highly-conducting indium-tin-oxide transparent films by chemical process; spray CVD and dip coating, in Advanced Materials Processing Ⅱ, M.O. Lai and L. Lu, Editors.2003. p. 23-26.
    [155]Kim Y S, Park Y C, Ansari S G, et al. Effect of substrate temperature on the bonded states of indium tin oxide thin films deposited by plasma enhanced chemical vapor deposition[J]. Thin Solid Films,2003, 426(1-2):124-131.
    [156]Biswas P K, De A, Dua L K, et al. Surface characterization of sol-gel derived indium tin oxide films on glass[J]. Bulletin of Materials Science,2006,29(3):323-330.
    [157]De A, Biswas P K, Manara J. Study of annealing time on sol-gel indium tin oxide films on glass[J]. Materials Characterization,2007,58(7):629-636.
    [158]Kim H, Horwitz J S, Kushto G P, et al. Transparent conducting Zr-doped In2O3 thin films for organic light-emitting diodes[J]. Applied Physics Letters,2001,78(8):1050-1052.
    [159]Hest M F A M, Dabney M S, Perkins J D, et al. Titanium-doped indium oxide: A high-mobility transparent conductor[J]. Applied Physics Letters,2005,87(3):032111.
    [160]Gupta R K, Ghosh K, Mishra S R, et al. Opto-electrical properties of Ti-doped In2O3 thin films grown by pulsed laser deposition[J]. Applied Surface Science,2007,2S3(24):9422-9425.
    [161]Kim H J, Bae J W, Kim J S, et al. Properties of amorphous tin-doped indium oxide thin films deposited by O-2/Ar mixture ion beam-assisted system at room temperature[J]. Surface & Coatings Technology,2000, 131(1-3):201-205.
    [162]Yoshida Y., Gessert T A, Perkins C L, et al. Development of radio-frequency magnetron sputtered indium molybdenum oxide[J]. Journal of Vacuum Science & Technology A,2003,21(4):1092-1097.
    [163]Yoshida Y, Wood D M, Gessert T A, et al. High-mobility, sputtered films of indium oxide doped with molybdenum[J]. Applied Physics Letters,2004,84(12):2097-2099.
    [164]Ginley D, Roy B, Ode A, et al. Non-vacuum and PLD growth of next generation TCO materials[J]. Thin Solid Films,2003,445(2):193-198.
    [165]Warmsingh C, Yoshida Y, Readey D W, et al. High-mobility transparent conducting Mo-doped In2O3 thin films by pulsed laser deposition[J]. Journal of Applied Physics,2004,95(7):3831-3833.
    [166]Sun S Y, Huang J L, Lii D F. Effects of oxygen contents on the electrical and optical properties of indium molybdenum oxide films fabricated by high density plasma-evaporation[J]. Journal of Vacuum Science & Technology A,2004,22(4):1235-1241.
    [167]Delahoy A E, Guo S Y. Transparent and semitransparent conducting film deposition by reactive-environment, hollow cathode sputtering[J]. Journal of Vacuum Science & Technology A,2005,23(4):1215-1220.
    [168]Meng Y, Yang X L, Chen H X, et al. A new transparent conductive thin film In2O3:Mo[J]. Thin Solid Films,2001,394(1-2):219-223.
    [169]Li X F, Zhang Q, Miao W N, et al. Transparent conductive oxide thin films of tungsten-doped indium oxide[J]. Thin Solid Films,2006,515(4):2471-2474.
    [170]Kohan A F, Ceder G, D Morgan, et al. First-principles study of native point defects in ZnO[J]. Physical Review B,2000,61(22):15019-15027.
    [171]Kaidashev E M, Lorenz M, Wenckstern H, et al. High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition[J]. Applied Physics Letters,2003, 82(22):3901-3903.
    [172]Minami T, Nanto H, Takata S. Highly conductive and transparent zinc-oxide films prepared by RF magnetron sputtering under an applied external magnetic-field[J]. Applied Physics Letters,1982, 41(10):958-960.
    [173]Minami T. New n-type transparent conducting oxides[J]. Mrs Bulletin,2000,25(8):38-44.
    [174]Haug F J, Geller Z S, Zogg H, et al. Influence of deposition conditions on the thermal stability of ZnO:A1 films grown by rf magnetron sputtering[J]. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films,2001,19(1):171-174.
    [175]Sato H, Minami T, Takata S. Highly transparent and conductive group-IV impurity-doped ZnO thin-films prepared by radio-frequency magnetron sputtering [J]. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films,1993, 11(6):2975-2979.
    [176]Gordon R G, Liang H F. Surface reactions in the chemical vapor deposition of highly transparent and conductive fluorine-doped zinc oxide. Abstracts of Papers of the American Chemical Society,1998,216: U718-U718.
    [177]Gordillo G, Paez B, Jacome C, et al. Characterization of SnO2 thin films through thermoelectric power measurements[J]. Thin Solid Films,1999,342(1-2):160-166.
    [178]Proscia J, Gordon R G. Properties of fluorine-doped tin oxide-films produced by atmospheric-tressure chemical vapor-deposition from tetramethyltin, bromotrifluoromethane and oxygen [J]. Thin Solid Films, 1992,214(2):175-187.
    [179]Lewis B G, Paine D C. Applications and processing of transparent conducting oxides[J]. Mrs Bulletin,2000, 25(8):22-27.
    [180]Gordon R G. Criteria for choosing transparent conductors[J]. Mrs Bulletin,2000,25(8):52-57.
    [181]Veluchamy P, Tsuji M, Nishio T, et al. A pyrosol process to deposit large-area SnO2:F thin films and its use as a transparent conducting substrate for CdTe solar cells[J]. Solar Energy Materials and Solar Cells,2001, 67(1-4):179-185.
    [182]Dali S E, Jayachandran M, Chockalingam M J. New transparent electronic conductor, MgIn2O4 spinel[J]. Journal of Materials Science Letters,1999,18(11):915-917.
    [183]Edwards D D, Mason T O, Goutenoire F, et al. A new transparent conducting oxide in the Ga2O3-In2O3-SnO2 system[J]. Applied Physics Letters,1997,70(13):1706-1708.
    [184]Minami T, Kakumu T, Shimokawa K, et al. New transparent conducting ZnO-In2O3-SnO2 thin films prepared by magnetron sputtering[J]. Thin Solid Films,1998,317(1-2):318-321.
    [185]Cava R J, Phillips J M, Kwo J, et al. GaInO3 - a new transparent conducting oxide [J]. Applied Physics Letters,1994,64(16):2071-2072.
    [186]Tang C W, Vanslyke S A. Organic Electroluminescent Diodes[J]. Applied Physics Letters,1987, 51(12):913-915.
    [187]Mason M G, Hung L S, Tang C W, et al. Characterization of treated indium-tin-oxide surfaces used in electroluminescent devices[J]. Journal of Applied Physics,1999,86(3):1688-1692.
    [188]Lin Y J, Chen Y M, Wang Y C. Effects of KrF excimer laser irradiation on surface work function of indium-tin-oxide[J]. Journal of Applied Physics,2005,97(8):083702.
    [189]Le Q T, Nuesch F, Rothberg L J, et al. Photoemission study of the interface between phenyl diamine and treated indium-tin-oxide[J]. Applied Physics Letters,1999,75(10):1357-1359.
    [190]刘德武,朱文清,吴有智,等.高频放电处理ITO电极对有机电致发光器件性能的影响[J].上海大学学报(自然科学版),2004,10(6):551-554.
    [191]Tadayyon S M, Griffiths K, Norton P R, et al. Work function modification of indium-tin-oxide used in organic light emitting devices[J]. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 1999,17(4):1773-1778.
    [192]Chen T H, Wu T J, Chen J Y, et al. Effects of metal-doped indium-tin-oxide buffer layers in organic light-emitting devices[J]. Journal of Applied Physics,2006,99(11):114515.
    [193]Hsu C M, Chen I F, Lee J W. Surface Ni-doped ITO films for OLED application.2004: Proc. of SPIE, 5214:291-299.
    [194]Minami T. Transparent and conductive multicomponent oxide films prepared by magnetron sputtering[J]. Journal of Vacuum Science & Technology A,1999,17(4):1765-1772.
    [195]Jiang X, Wong F L, Fung M K, et al. Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices[J]. Applied Physics Letters,2003,83(9):1875-1877.
    [196]Seo D J, Park S H. Structural, electrical and optical properties of In2O3:Mo films deposited by spray pyrolysis[J]. Physica B-Condensed Matter,2005,357(3-4):420-427.
    [197]Marks T J, Veinot J G C, Cui J, et al. Progress in high work function TCO OLED anode alternatives and OLED nanopixelation[J]. Synthetic Metals,2002,127(1-3):29-35.
    [198]Yaglioglu B, Yeom H Y, Beresford R, et al. High-mobility amorphous In2O3-10 wt %ZnO thin film transistors[J]. Applied Physics Letters,2006,89(6):062103.
    [199]Wu W F, Chiou B S, Hsieh S T. Effect of Sputtering Power on the Structural and Optical-Properties of Rf Magnetron-Sputtered Ito Films[J]. Semiconductor Science and Technology,1994,9(6):1242-1249.
    [200]Machado G, Guerra D N, Leinen D, et al. Indium doped zinc oxide thin films obtained by electrodeposition[J]. Thin Solid Films,2005,490(2):124-131.
    [201]Moulder J F, Stickle N F, Sobol P E, Bomben K D, in:J. Chastain, R.C. King (Eds.). Handbook of X-ray Photoelectron Spectroscopy, PHI,1995.
    [202]Safi I. Recent aspects concerning DC reactive magnetron sputtering of thin films: A review[J]. Surface & Coatings Technology,2000,127(2-3):203-219.
    [203]Hamberg I C, Granqvist G. Evaporated Sn-doped In2O3 films - basic optical-properties and applications to energy-efficient windows [J]. Journal of Applied Physics,1986,60(11):R123-R159.
    [204]Choi J H, Khang D Y, Myoung J M. Fabrication and characterization of ZnO nanowire transistors with organic polymer as a dielectric layer[J]. Solid State Communications,2008,148(3-4):126-130.
    [205]Li X F, Miao W N, Zhang Q, et al. Preparation of molybdenum-doped indium oxide thin films using reactive direct-current magnetron sputtering[J]. Journal of Materials Research,2005,20(6):1404-1408.
    [206]李喜峰,缪维娜,张群,等.高迁移率透明导电In2o3:Mo薄膜[J].真空科学与技术学报,2005,25(2):142-146.
    [207]Newhouse P F, Park C H, Keszler D A, et al. High electron mobility W-doped In2O3 thin films by pulsed laser deposition[J]. Applied Physics Letters,2005,87(11):112108.
    [208]Gupta R K, Ghosh K, Mishra S R, et al. High mobility W-doped In2O3 thin films: Effect of growth temperature and oxygen pressure on structural, electrical and optical properties[J]. Applied Surface Science, 2008,254(6):1661-1665.
    [209]Kwon K H, Kim C I, Yun S J, et al. Etching properties of Pt thin films by inductively coupled plasma[J]. Journal of Vacuum Science and Technology A,1998,16(5):2772-2776.
    [210]Ryu J H, Bang S Y, Kim W S, et al. Microstructure and optical properties of nanocrystalline CaWO4 thin films deposited by pulsed laser ablation in room temperature[J]. Journal of Alloys and Compounds,2007, 441(1-2):146-151.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700