用户名: 密码: 验证码:
基于群智能的移动机器人任务规划与故障诊断研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多机器人任务规划是根据分配准则将任务分派至各机器人,并按最佳规划路径执行任务,能使多移动机器人系统高效完成任务。由于任务的复杂性与多样性,若无统一协调与统筹规划,将导致机器人系统资源消耗过大,甚至执行时发生故障。因此,多机器人任务规划是复杂任务高效完成的基石,同时移动机器人传感器系统故障诊断是任务成功规划的保障。
     在建立机器人团队控制平台的基础上,本文深入研究多移动机器人的任务探测方法,建立了任务失败概率最小的分配模型,设计了求解该分配模型的当代学习自适应离散粒子群算法。提出了求解多机器人任务规划方法及动态增量任务规划的策略,成功用于MORCS-2机器人团队中,有效解决了负载均衡的规划问题。同时,为了对机器人系统完成任务提供有效保障,研究了移动机器人传感器系统的故障诊断,并通过MORCS-1传感器系统进行了有效性的验证。论文主要工作及创新性成果如下:
     针对多机器人协作均分任务探测问题,研究一种均分点蚁群算法。利用多组蚂蚁群协作搜索策略,设计了一种蚁群算法的求解结构。根据任务均衡探测的原则定义了评价函数,避免了机器人最大负载过重问题。最后利用2-opt技术解决各子周游路径的交叉,获得了总规划路径较优解。实验结果表明,该算法可获得任务均衡探测的较优解,能解决多机器人系统中大规模任务均衡探测问题。
     针对多机器人执行任务失败概率最小的分配问题,综合考虑机器人任务完成效率、机器人能力以及任务性质等因素,建立了多机器人任务分配的数学模型。并提出一种当代学习自适应混合离散粒子群算法求解该模型。该算法依据粒子多样性变化规律,引入自适应扰动算子,以保持种群进化能力。设计了当代学习因子以体现粒子当代学习能力,改进其运动方程,有效地提高算法的鲁棒性。通过融入近邻搜索变异策略,极大地提升算法的局部求精能力。经实验表明:当代学习自适应混合离散粒子群算法具有强寻优能力和鲁棒性,同时也验证了任务分配模型的合理性。
     将多机器人任务规划分解为任务分配与路由规划两部分,分别提出一种空间正交分配技术求解任务分配问题,设计异质交互式文化混合算法体系框架,解决最佳路由规划问题。其中任务分配根据三维空间建模原理,利用空间正交试验方法,以负载均衡为目标更新并确定吸引算子,降低计算复杂度。提出一种异质交互式仿生群协进化体系框架,包括基于佳点集遗传算法的上层知识空间、基于离散粒子群优化的底层主群空间、自上而下的影响机制和自下而上的接受机制。并利用佳点集初始化主群空间,使初始粒子群均匀分布于可行域中;定义了粒子进化模型和进化力指标,提高种群的多样性和算法稳定性。最后,将空间正交分配异质文化混合算法在MORCS-2机器人团队平台上得到了充分的验证。在此基础上,设计一种基于规则的贪婪策略求解随机增量任务重规划问题,使得在重分配后机器人负载仍保证均衡,通过TSPLIB中不同任务地图进行测试,验证了算法的合理性。
     在任务规划过程中若机器人航迹推算系统发生故障却未得到及时诊断,很大可能导致机器人任务执行失败。针对此类移动机器人航迹推算系统的故障诊断问题,提出一种多模态进化Rao-Blackwellized粒子滤波器(multi-modality evolutionary Rao-Blackwellized particle filter, MERBPF)算法。该算法利用粒子滤波器估计机器人故障状态,采用卡尔曼滤波精确计算运动状态,有效地降低高维状态空间复杂度。为解决由粒子贫乏引起的不一致性问题,根据粒子多样性加入扰动因子,融入交叉种群与变异种群优化策略。以专家规则判定运动状态所对应的ERBPF,构造了复杂逻辑表述方法。通过实验表明,在强过程噪声情况下,MERBPF表现出较高的鲁棒性,降低了机器人航迹推算系统故障诊断的误诊率。
Multi-robot mission planning assign tasks to each robot under the allocation criteria, and plan task execution order in accordance with the optimal path requirement, which could complete tasks efficiently by mobile-robot system. Because of tasks'complexity and diversity, if robots don't coordinate together, it may lead to excessive consumption of robotic system costs, or even result in robots malfunction. Therefore, multi-robot mission planning is the cornerstone of the completion of complex tasks. Meanwhile robot-sensor system fault diagnosis is the basic guarantee for successful mission planning.
     Based on the establishment of heterogeneous robot team control platform, this paper carries on a in-depth study of multi-robot system tasks detection method, establishes a task allocation model according to the minimum probability of mission failure, and designs a optimization algorithm to solve the allocation model. On this basis, this paper puts forward a strategy for multi-robot task planning methods solving and dynamic incremental mission planning. This strategy is used in MORCS-2 robot team, which has achieved apparent accomplishment. At the same time, in order to ensure the proper completion of the planned tasks, this paper carries on the fault diagnosis study of robot sensor system. Main research work and innovative achievements are as follows:
     An equal division point ant colony algorithm (EDPACA) is proposed to solve the multi-robot collaboration mission exploration. the algorithm is designed by a novel solution construction through multi-group ants search cooperatively strategy and a more reasonable evaluation function is define which consider sufficiently equal allocation exploration mission, and avoid a max-consuming robot overload. At last, the crossover problems of sub-circular paths are solved by 2-opt method. The experiment results show that the proposed algorithm is available to gain better solution, and solved multi-robot system a large-scale of tasks balance exploration problem.
     Aiming to multi-robot collaborative tasks allocation problem for the smallest failure probability, tasks allocation mathematical model is established firstly, which considers three factors comprehensively:the efficiency of executing mission, the ability of robot and the nature of the mission. Current learning Discrete Particle Swarm Optimization Algorithm (CLDPSO) is proposed to solve this model. Adaptive perturbation factor is introduced according to the population heterogeneity to keep particle swarm evolutional capability. Based on the excellent performance of particle swarm society learning ability and individual learning ability in DPSO, we propose a new conception current learning factor to improve the DPSO kinetic equation, and the robost of CLDPSO is better. Finally nearby neighbor mutant strategy is added to increase local search capabilities. The experiment results show that CLDPSO has strong optimization ability and robustness, meanwhile the rationality of the task allocation model is verified
     Multi-robot mission planning divides into task allocation and route planning subdivision, we design spatial orthogonal cluster algorithm for multi-robot task assignment problem, and propose novel system architecture of heterogeneous interactive cultural hybrid algorithm to solve the best route planning problem. The tasks assignment problem adopts 3-D space model, utilizes spatial orthogonal test technology. The attractor position are updated according to load balance objective function, this approach is high validity but lower complexity. Heterogeneous interactive cultural hybrid algorithm firstly initializes population space using good-point-set in order to make particles swarm uniform distribution in feasible region. Secondly, novel evolution model and particle evolution ability indexes are redefined, which increase particles swarm diversity and improve algorithm stability. At last the results are shown that SOCHCHA is superior and significant. Meanwhile, we practice SOCHCHA on MORCS-2 robot-team platform which exhibits the algorithm practicability. On this basis, a rule-based greedy algorithm for stochastic incremental task re-planning is designed, which makes mobile-robot load balance after re-planning, the algorithm is reasonable which is verified by using different TSPLIB mission maps.
     During mission planning process, if mobile-robots dead reckoning system breaks down, and don't diagnose it on time, which may lead to fail for robot execution tasks. A multi-modality Rao-Blackwellized evolutionary particle filter (MERBPF) algorithm is devised for those fault diagnosis problems. Particle filter is utilized to estimate robot fault state and Kalman Filter is used to calculate accurately kinetic state, so as to drop the complexity of high-dimensional state space. The inconsistency from particle degeneration problem is solved by integrating swarms'intercross and mutation strategy, and adding disturbance factors accoding to diversity. Robot moving states are determined by expert rules reasoning mechanism and monitored by each different ERBPF. Finally the multi-modality ERBPF are formed which express complex logic clearly. MERBPF maintains a strong robustness even under the strong process noise. Meanwhile MERBPF reduces diagnostic errors rate for fault diagnosis of robot's dead reckoning system.
引文
[1]蔡鹤皋.机器人将是21世纪技术发展的热点.中国机械工程,2000,11(1-2):58-61
    [2]原魁,李园,房立新.多移动机器人系统研究发展近况.自动化学报,2007,33(8):785-794
    [3]蔡自兴,陈白帆,王璐等.异质多移动机器人协同技术研究的进展,智能系统学报,2007,2(3):1-7
    [4]谭民,王硕,曹志强.多机器人系统.北京:清华大学出版社,2005.6-10
    [5]苏连成.基于多移动机器人协作的任务规划及定位方法研究:[硕士学位论文].青岛:山东科技大学,2003:14-15
    [6]Sun Wei, Dou Lihua, Fang Hao,etc. Task allocation for multi-robot cooperative hunting behavior based on improved auction algorithm. In:Cheng D. Zh., Li Ch, eds. Proceedings of the 27th Chinese Control Conference, Kunming, China,2008.435-440
    [7]Li Ping, Yang Yi-Ming, Kang Hui. Task allocation based on market and limited-task tree for multi-robot system, In:Proceedings of the 20th Chinese Control and Decision Conference, Yantai, China,2008.909-913
    [8]Viguria, A., Maza, I., Ollero, A.,S+T:An algorithm for distributed multi-robot task allocation based on services for improving robot cooperation, In:Proceedings of IEEE International Conference on Robotics and Automation, Pasadena, California 2008.3163-3168
    [9]Gerkey B, Mataric M. Sold! Auction methods for multi-robot coordination. IEEE Trans, on Robotics and Automation.2002:18(5),758-768
    [10]Golfarelli M, Maio D, Rizzi S. Multi-agent path planning based on task-swap negotiation. In:Proceedings of the 25th UK Planning and Scheduling SIG Workshop, 1997.69-82.
    [11]Liu L, Wang L, Zheng Z Q, et al. A learning market based layered multi-robot architecture In:Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway, USA.2004.3417-3422
    [12]龙涛.多UCAV协同任务控制中分布式任务分配与任务协调技术研究:[博士学位论文].长沙:国防科学技术大学,2006.39-79
    [13]Stentz and M. B. Dias. Free market architecture for coordinating multiple robots. Technical Report, CMU-RI-TR-99-42, Robotics Institute, Carnegie Mellon University, 1999
    [14]M. B. Dias and A. Stentz, A market approaches to multi-robot coordination, Technical Report, CMU-RI-TR-O1-26, Robotics Institute, Carnegie Mellon University,2001
    [15]柳林,季秀才,郑志强.基于市场法及能力分类的多机器人任务分配方法.机器人,2006:28(3),337-343
    [16]Chandler, P.R., Rasmussen. S.R. Task allocation for wide area search munitions via iterative network flow. In:Proceedings of AIAA Guidance, Navigation and Control Conference and Exhibit. Monterey, California,2002.4586
    [17]Hong, B., Prasanna, V.K., Distributed adaptive task allocation in heterogeneous computing environments to maximize throughput, In:Proceedings of the 18th International Parallel and Distributed Processing Symposium, Santa Fe, New Mexico, 2004.52
    [18]Schumacher, C., Chandler, P.R., Rasmussen, S.J., Walker, D. Task allocation for wide area search munitions with variable path length, In:Proceedings of the American Control Conference, Denver, Colorado USA, vol.4,2003.3472-3477
    [19]Chandler P R.,M. Pachter. Complexity in UAV cooperative control, In: Proceedings of the American Control Conference, Anchorage, AK,2002.5-10
    [20]Fu J.GM., Bandyopadhyay, T., Ang, M.H., Local Voronoi decomposition for multi-agent task allocation, In:Proceedings of the IEEE International Conference on Robotics and Automation, Kobe, Japan,2009.1935-1940
    [21]Archibald J.K., Hill J.C., Johnson F.R., Stirling W.C. Satisfying negotiations. IEEE Transactions on Systems, Man, and Cybernetics, Part C:Applications and Reviews,2006.36(1),4-18
    [22]Hanna, H., Decentralized approach for multi-robot task allocation problem with uncertain task execution,In:Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,Alberta, Canada,2005.535-540
    [23]L. F. Bertuccelli. Robust planning for heterogeneous UAVs in uncertain environments SM thesis, MIT Department of Aeronautics and Astronautics,2004
    [24]Correll, N., Parameter estimation and optimal control of swarm-robotic systems: A case study in distributed task allocation, In:Proceedings of the IEEE International Conference on Robotics and Automation, Pasadena, California,2008.3302-3307
    [25]L.E.Parker. L-ALLICANCE:Task-oriented multi-robot learning in behavior-based systems. Advanced Robotics.1997,11(4):305-322
    [26]L.E.Parker. Alliance:architecture for fault tolerant multi-robot cooperation. IEEE Trans. on Robotics and Automation,1998:14(2),220-240
    [27]Tsalatsanis, A., Yalcin, A., Valavanis, K.P., Optimized task allocation in cooperative robot teams, In:Proceedings of the 17th Mediterranean Conference on Control and Automation, Thessaloniki, Greece,2009.270-275
    [28]Antonelli, Gianluca. Arrichiello, Filippo. Chiaverini, Stefano. The entrapment/ escorting mission for a multi-robot system:theory and experiments, In:Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, ETH Zurich, Switzerland,2007.1-6
    [29]Mitchell A P. A cooperative co-evolutionary approach to function optimization. Parallel problem solving from nature, Jerusalem, Israel, Springer-Verlag,1994. 249-257
    [30]Murphy Lisetti, Irish, Tardif, Gage. Emotion-based control of cooperating heterogeneous mobile robots.IEEE Transactions on Robotics and Automation,2002. 18(5):744-757
    [31]Yang Yongming, Zhou Changjiu, Tian Yantao.Swarm robots task allocation based on response threshold model, In:Proceedings of the 4th International Conference on Autonomous Robots and Agents, Wellington, New Zealand,2009. 171-176
    [32]Zheng Taixiong, Yang Liangyi, Optimal ant colony algorithm based multi-robot task allocation and processing sequence scheduling, In:Proceedings of the 7th World Congress on Intelligent Control and Automation, Chongqing,China,2008.5693-5698
    [33]Zhang Yu, Liu Shuhua, Liu Jie, et al,Large-scale multi-robot task allocation based on ant colony algorithm. In:Proceedings of the Chinese Control and Decision Conference, Yantai, China,2008.2141-2146
    [34]余伶俐,蔡自兴.基于当代学习离散粒子群的多机器人高效任务分配算法研究.计算机应用研究.2009,26(5):1691-1694
    [35]Berman, S., Halasz, A., Hsieh, M.A., Kumar, V., Optimized stochastic policies for task allocation in swarms of robots. IEEE Transactions on Robotics, 2009,25(4):927-937
    [36]赵敏,分布式多类型无人机协同任务分配研究及仿真:[硕士学位论文].南京:南京理工大学,2009.43-50
    [37]霍霄华,多UCAV动态协同任务规划建模与滚动优化方法研究:[博士学位论文].长沙:国防科技大学,2007.20-39
    [38]Tian Yan-Tao, Yang Mao, Qi Xin-Yue,et al. Multi-robot task allocation for fire-disaster response based on reinforcement learning, In:Proceedings of the International Conference on Machine Learning and Cybernetics, Baoding, Hebei, China,Vol 4,2009.2312-2317
    [39]Bhattacharya, P., Gavrilova, M.L., Roadmap-based path planning-using the voronoi diagram for a clearance-based shortest path. Robotics & Automation Magazine,2008:15(2),58-66
    [40]Yuan Xiaobu. Yang S.X. Multi-robot coordination with balanced task allocation and optimized path planning. In:Proceedings of the IEEE International Conference on Robotics and Biomimetics, Sanya,China,2007.1007-1011
    [41]Bennewitz M., Burgard W., Thrun S., Optimizing schedules for prioritized path planning of multi-robot systems. In:Proceedings of the IEEE International Conference on Robotics and Automation, Seoul, Korea,2001.271-276
    [42]Sud A., Andersen E., Curtis S., Lin M.C. Manocha, D. Real-time path planning in dynamic virtual environments using multiagent navigation graphs. IEEE Transactions on Visualization and Computer Graphics.2008,14(3):526-538
    [43]Aydin K.K., Kocaoglan E., A knowledge-based system for redundancy resolution and path planning using self-motion topology of redundant manipulators. In:Proceedings of the 7th International Conference on Tools with Artificial Intelligence.1995.282-285
    [44]Mora Marta C., Tornero Josep. Path planning and trajectory generation using multi-rate predictive artificial potential fields. In:Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France,2008.2990-2995
    [45]Juidette H., Youlal H., Fuzzy dynamic path planning using genetic algorithms. Electronics Letters.2000:36(4),374-376
    [46]Vascak J., Rutrich M.. Path planning in dynamic environment using fuzzy cognitive maps. In:Proceedings of the 6th International Symposium on Applied Machine Intelligence and Informatics, Herzany, Slovakia,2008.5-9
    [47]Li H.. Yang S.X.. Biletskiy Y. Neural network based path planning for a multi-robot system with moving obstacles. In:Proceedings of the IEEE International Conference on Automation Science and Engineering, Washington DC, U.S.A.2008. 163-168
    [48]Hong Qu, Yang, S.X., Willms, A.R., Zhang Yi. Real-time robot path planning based on a modified pulse-coupled neural network model, IEEE Transactions on Neural Networks,2009,20(11):1724-1739
    [49]Zhang Yong. Zhang Lin. Zhang Xiaohua. Mobile robot path planning base on the hybrid genetic algorithm in unknown environment. In:Proceedings of the 8th International Conference on Intelligent Systems Design and Applications, Taiwan 2008.661-665
    [50]张捍东,郑睿,岑豫皖.移动机器人路径规划技术的现状与展望.系统仿真学报,2005,17(2):439-443
    [51]孙树栋,林茂.基于遗传算法的多移动机器人协调路由规划.自动化学报,2000,26(5):672-676
    [52]Zixing Cai, Zhihong Peng. Cooperative co-evolutionary adaptive genetic algorithm in path planning of cooperative multi-robot robot systems. Journal of Intelligent and Robotic Systems,2002,33(1):61-71
    [53]樊晓平,罗熊,易晟等.复杂环境下基于蚁群优化算法的机器人路径分配.控制与决策,2004:19(2),166-170
    [54]朱庆保.全局未知环境下多机器人运动蚂蚁导航算法.软件学报,2006:17(9),1890-1898
    [55]袁杨,陈雄.基于群集智能算法的移动机器人路由规划研究.计算机工程与应用,2007:43(5),52-55
    [56]MacMillan T.R., Gerber C.E., Sackett J.M. Holden, P.D. Knowledge based route planning. In:Proceedings of the Aerospace and Electronics Conference, Naecon,1990. 1001-1007
    [57]Yang, S.X., Yanrong Hu, Meng, M.Q.-H.,A knowledge based ga for path planning of multiple mobile robots in dynamic environments, In:Proceedings of the IEEE Conference on Robotics, Automation and Mechatronics, Bangkok, Thailand, 2006.1-6
    [58]张冀,王兵树,邸剑等,传感器多故障诊断的信息融合方法研究,中国电机工程学报,2007,27(16):104-108
    [59]柳玉甜.未知环境中移动机器人故障诊断技术的研究:[博士学位论文].杭州:浙江大学,2007,19-20
    [60]Guang Lu, Jihua Huang, Masayoshi Tomizuka, Vehicle lateral control under fault in front and/or rear sensors:California Partners for Advanced Transit and Highways Path. Research Reports:2004 http://repositories.cdlib.org/its/path/reports/ UCB-ITS-PRR-2004-36
    [61]Fischer, D., Borner, M., Schmitt, J., Isermann, R. Fault detection for lateral and vertical vehicle dynamics. Control Engineering Practice,2007,15(3):315-324
    [62]Gao, Z.,Ding, S.X., Ma, Y. Robust fault estimation approach and its application in vehicle lateral dynamic systems. Optimal Control Applications and Methods,2007, 28(3):143-156
    [63]Douglas, R. K., Speyer, D. L., et al. Fault detection and identification with application to advanced vehicle control systems, California PATH Research Report UCB-ITS-PRR-97-26.1997
    [64]Garg, V. Fault detection in nonlinear systems:an application to automated highway systems, Ph. D. Dissertation, University of California at Berkeley.1995
    [65]Rajamani, R. Howell, A.S. Chieh Chen, A complete fault diagnostic system for automated vehicles operatingin a platoon, IEEE Transactions on Control Systems Technology,2001,9(4):553-564
    [66]Howell A. S., Hedrick, J. K. Multiple fault diagnosis as applied to automated vehicle control. American Society of Mechanical Engineers, Dynamic Systems and Control Division,1999, v 67:615-621
    [67]Unger, Iris, Isermann, Rolf. Fault tolerant sensors for vehicle dynamics control. In:Proceedings of the American Control Conference, Minneapolis, MN, United States, 2006.3948-3953
    [68]Rajamani R., Howell A.S., Chen C., Hedrick J.K, Tomizuka M. A complete fault diagnostic system for automated vehicles operating in a platoon. IEEE Transactions on Control Systems Technology,2001,9(4):553-564
    [69]Halbe, I. Model-based fault-detection of vehicle dynamics sensors. At-Automati sierungstechnik 2007,55(6):322-329
    [70]Crossman, J. A., H. Guo, et al.Automotive signal fault diagnostics-Part Ⅰ: Signal fault analysis, signal segmentation, feature extraction and quasi-optimal feature selection. IEEE Transactions on Vehicular Technology,2003,52(4):1063-1075
    [71]Murphey Yi Lu, Crossman Jacob A., Chen ZhiHang, Cardillo John. Automotive fault diagnosis-Part Ⅱ:A distributed agent diagnostic system. IEEE Transactions on Vehicular Technology,2003,52(4):1076-1098
    [72]柳玉甜,蒋静坪.多运动状态下的移动机器人故障诊断方法.仪器仪表学报,2007:28(9),1660-1667
    [73]王建国,吴恭兴,赵福龙等.水下机器人故障诊断方案.电机与控制学报,2008,12(2):202-205
    [74]段琢华,蔡自兴,于金霞.不完备多模型混合系统故障诊断的粒子滤波算法.自动化学报.2008:34(5),581-587
    [75]段琢华,蔡自兴,于金霞.移动机器人软故障检测与补偿的自适应粒子滤波算法.中国科学E辑,2008:38(4),565-578
    [76]段琢华,蔡自兴,于金霞.未知环境中移动机器人故障诊断与容错控制技术综述.机器人,2005,27(4):373-379
    [77]B.Werger, M. J. Mataric. Broadcast of local eligibility for multi-target observation. Distributed autonomous Robotic Systems, http://eprints. kfupm.edu.sa/ 28794/1/28794.pdf,2000.347-356
    [78]A. Gage. Multi-robot task allocation using affect. Univ. South Florida, USA, 2004
    [79]唐世明,张启先.冗余度机器人容错控制研究.机械工程学报,2000,36(7):34-38
    [80]俞建成,张艾群,王晓辉.7000米载人潜水器推进器故障容错控制分配研究.机器人,2006,28(5):519-524
    [81]周东华,胡艳艳,动态系统的故障诊断技术,自动化学报,2009(6):748-758
    [82]Lingli Yu, Zixing Cai. An Advanced Fuzzy Immune PID-type Tracking Controller of a Nonholonomic Mobile Robot. In:Proceedings of the IEEE International Conference on Automation and Logistics, Jinan, China 2007,66-71
    [83]邹小兵.移动机器人原型的控制系统设计与环境建模研究:[博士学位论文].长沙:中南大学,2005
    [84]A.Mishkin, J.Morrison, T.Nguyen, H.Stone, B.Cooper, and B.Wilcox. Experiences with operations and autonomy of the mars pathfinder microrover, In: Proceedings of the IEEE Aerospace Conference,1998.337-351
    [85]S.Thrun, W.Burgard and D.Fox. A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping. In:Proceedings of IEEE International Conference on Robotics and Automation. San Francisco.2000:321-328
    [86]R.Murphy. Rescue robotics for homeland security. Communications of the ACM, special issue on Homeland Security,2004,27(3):66-69
    [87]D.Hougen. A miniature robotic system for reconnaissance and surveillance. In: Proceedings of the IEEE International Conference on Robotics and Automation, San Francisco, CA, USA,2000.501-507
    [88]张建畅,基于移动机械手的危险化学反应器泄漏监控与修补系统技术研究:[博士学位论文].天津:河北工业大学,2008
    [89]Marco Dorigo, Vittorio Maniezzo and Alberto Colorni, Ant system:optimization by a colony of cooperating agents. IEEE Transactions on systems man and cybernetics-Part B:Cybernetics,1996,26(1):29-41
    [90]Marco Dorigo, Luca Maria Gambardella, Ant colony system:a cooperative learning approach to the traveling salesmen problem. IEEE Transactions on evolutionary computation.1997, 1(1):53-65
    [91]段海滨,蚁群算法原理及其应用.北京:科学出版社,2005.35-36
    [92]叶志伟,郑肇葆.蚁群算法中参数α、β、ρ设置的研究——以TSP问题为例.武汉大学学报(信息科学版),2004,(7).597-601
    [93]胡小兵,蚁群优化原理、理论及其应用研究:[博士学位论文].重庆:重庆大学,2004
    [94]杨淑莹.模式识别与智能计算—-Matlab技术实现.北京:电子工业出版社.2008:319-330
    [95]Pan Junjie, Wang Dingwei. An ant colony optimization algorithm for multiple traveling salesman problems. In:Proceedings of the International Conference on Innovative Computing Information and Control, Beijing,2006.210-213
    [96]余伶俐,蔡自兴,刘晓莹,高平安.均分点蚁群算法在群集机器人任务规划中的应用研究.高技术通讯.2009,19(10),1054-1060
    [97]夏娜.分布式智能系统中联盟机制研究:[博士学位论文].合肥:合肥工业大学,2005
    [98]李兵,蒋慰孙.混沌优化方法及其应用.控制理论与应用,1997,14(4):613-615
    [99]夏娜,蒋建国,魏星等.改进型蚁群算法求解单任务Agent联盟.计算机研究与发展.2005,42(5):734-739
    [100]李婷,赖旭芝,吴敏.基于双种群粒子群优化新算法的最优潮流求解.中南大学学报(自然科学版),2007,38(1):133-137
    [101]Kennedy, J., Eberhart, R. C. A discrete binary version of the particle swarm algorithm, In:Proceedings of the World Multi conference on Systemic, Cybernetics and Informatics. Piscataway,1997.4104-4109
    [102]Clerc, M., Discrete Particle Swarm Optimization. New Optimization Techniques in Engineering Springer-Verlag,2004
    [103]黄岚,王康平,周春光等,粒子群优化算法求解旅行商问题.吉林大学学报(理学版),2003,41(4):477-480
    [104]肖健梅,李军军,王锡淮,改进微粒子群优化算法求解旅行商问题.计算机工程与应用,2004,(35):50-52
    [105]王翠茹,张江维,王明等,改进粒子群优化算法求解旅行商问题.华北电力 大学学报,32(6),2005:57-59
    [106]高尚,韩斌,吴小俊,等求解旅行商问题的混合粒子群优化算法.控制与决策,2004,19(11):1286-1289
    [107]钟一文,蔡荣英,求解二次分配问题的离散粒子群优化算法.自动化学报,2007,33(8):871-874
    [108]钟一文,杨建刚,宁正元,求解TSP问题的离散粒子群优化算法.系统工程理论与实践,2006,19(6):88-94
    [109]高海兵,周驰,高亮,广义粒子群优化模型.计算机学报,2005,28(12):1980-1987
    [110]吕强,汤贤铭,愈金寿,基于信息素机制的离散粒子群算法及其应用.系统仿真学报,2008,20(2):395-398
    [111]蔡荣英,李丽珊,林晓宇,钟一文.求解旅行商问题的自学习粒子群优化算法.计算机工程与设计.2007,28(2):261-263
    [112]钟一文,宁正元,蔡荣英,詹仕华.一种改进的离散粒子群优化算法.小型微型计算机系统,2006,27(10):1893-1896
    [113]高尚,杨静宇.武器-目标分配问题的粒子群优化算法.系统工程与电子技术,2005,27(7):1250-1253
    [114]余伶俐,蔡自兴.改进混合离散粒子群的多种优化策略算法.中南大学学报,2009,40(4):1047-1053
    [115]余伶俐,蔡自兴,高平安,刘晓莹.当代学习自适应混合离散粒子群算法研究小型微型计算机系统,2009,30(9):1800-1804
    [116]张铃,张钹.佳点集遗传算法.计算机学报,2001,24(9):917-922
    [117]华罗庚,王元.数论在近似分析中的应用.北京:科学出版社,1978.83-85
    [118]Jiang M, Luo Y P, Yang S Y. Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm. Information Processing Letters,2007,102(1):8-16
    [119]Liang Y, Zhou C, Wang Z, et al. An equivalent genetic algorithm based on extended strings and its convergence analysis. Information Sciences,2001,138(1-4): 119-135
    [120]Georg S. MP-TESTDATA-The TSPLIB symmetric traveling salesman problem instances[EB/OL].http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html, 1995/2008
    [121]Shi X H, Liang Y C, Lee H P, et al. Particle swarm optimization-based algorithms for TSP and generalized TSP. Information Processing Letters,2007,103(5): 169-176
    [122]董肇君,系统工程与运筹学.北京:国防工业出版社,2007,35-36
    [123]Georgiy M. Levchuk, Yuri N. Levchuk, Jie Luo, Krishna R. Pattipati and David L. Kleinman. Normative design of organizations part I:mission planning. IEEE Trans. on Systems, Man, and Cybernetics-Part A:Systems and Humans,2002,32(3): 346-359
    [124]余伶俐,蔡自兴.基于异质交互式文化混合算法的机器人探测任务规划.机器人.2009,31(2):137-145
    [125]Seongkeun Park, Jae Pil Hwang,Euntai Kim,etc. A new evolutionary particle filter for the prevention of sample impoverishment. IEEE Trans, on Evolutionary Computation,2009,13(4):801-809
    [126]Gongyuan Zhang, Yongmei Cheng, Feng Yang, Quan Pan, Particle filter based on PSO, In:Proceedings of the International Conference on Intelligent Computation Technology and Automation,Changsha, China,2008,121-124
    [127]郭剑辉,赵春霞,陆建峰等.Rao-Blackwellised粒子滤波SLAM的一致性研究.系统仿真学报,2008,20(23):6401-6405
    [128]张琪,胡昌华,乔玉坤,蔡艳宁.基于随机摄动粒子滤波器的故障预报算法.控制与决策,2009,24(2):284-288
    [129]段琢华,蔡自兴,于金霞,邹小兵.基于粒子滤波器的移动机器人惯导传感器故障诊断.中南大学学报(自然科学版),2005,36(4):642-647
    [130]段琢华.基于自适应粒子滤波器的移动机器人故障诊断理论与方法研究:[博士学位论文].长沙:中南大学,2007:36-37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700