用户名: 密码: 验证码:
高通量筛选肿瘤预防药物技术平台的建立及中医药应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“应用天然或人工合成的化合物去阻断、逆转或预防侵袭性肿瘤的发生”,即肿瘤的化学预防(Chemoprevention)。国际癌症中心曾指出,在复杂多样的致癌因素中,80%~90%的人类肿瘤是由化学致癌物引起的。化学致癌物可损伤细胞DNA,使基因发生突变,从而引起肿瘤。肿瘤预防研究的目的之一就是寻找高效、低毒的药物。由于化学药品的毒副作用以及人们认识到“回归大自然”的重要性,天然药物在肿瘤预防中所起到的作用,日益受到重视。我国有着宝贵、丰富的中药资源,如何高通量地从中药中筛选出预防肿瘤的有效成分,已成为一个迫切需要解决的瓶颈问题。
     目前,国内外应用于药物筛选的模型大致分为三类:整体动物水平模型、组织器官水平模型和细胞分子水平模型。前两种模型往往消耗样品量大,要使用大量的实验动物,劳动强度高,耗时耗力,并且一次试验筛选样品量有限,不适合成分复杂的中药有效活性成分的筛选。细胞分子水平的药物筛选模型具有材料用量少、省时高效、药物作用机制比较明确、可实现大规模的筛选等特点,但在分子和细胞水平上对化学预防剂的有效鉴别的研究还相当缺乏,通过建立转基因细胞模型对预防肿瘤中药进行高通量筛选的研究,国内外均未见报道。
     本研究旨在建立一种简便易行、高度敏感和高效率的筛选肿瘤预防药物的细胞模型,并用于从现有中药中筛选预防肿瘤的有效成分。
     1.应用重组PCR技术,以质粒pRL-TK为模板,获得重组TK启动子,并在其基本启动子上游引入Sac I酶切位点。将TK启动子片段克隆入pMD18-T载体中,构建载体pMD-TK。用Sal I和BamH I对质粒pMD-TK和pEGFP进行双酶切,将TK启动子连接到载体pEGFP中构建载体pTK-GFP。再以质粒pTK-GFP为模板扩增TK目的片段,用Vsp I和BamH I对扩增出的TK目的片段和载体pEGFP-N1进行酶切,将TK启动子连接到载体pEGFP-N1上,构建真核报告载体pTK-GFP/neo。人工合成的4个ARE序列,经退火磷酸化后逐个连接到载体pTK-GFP/neo上。首次在国内分别构建了真核报告载体pARE-TK- GFP/neo、p2ARE-TK-GFP/neo、p3ARE-TK-GFP/neo和p4ARE-TK-GFP/neo。
     2.真核报告载体pTK-GFP/neo、pARE-TK-GFP/neo、p2ARE-TK-GFP/neo和p4ARE-TK-GFP/neo用脂质体转染HepG2细胞,24 h后在荧光显微镜下观察到4种细胞都发出绿色荧光,说明启动子的选择是较为合适的。接着用600μg/mL G418筛选出阳性细胞克隆。首次在国内构建了无ARE调控的细胞模型HepG2-TK-GFP和不同ARE重复序列调控的细胞模型HepG2-ARE-TK-GFP、HepG2-2ARE-TK-GFP、HepG2-3ARE-TK-GFP和HepG2-4ARE-TK-GFP。
     3. HepG2-TK-GFP、HepG2-ARE-TK-GFP、HepG2-2ARE-TK-GFP和HepG2- 4ARE-TK-GFP细胞扩增后,经胰酶消化,接种入黑色96孔细胞培养板,每孔细胞数为5×104个,培养24 h后,除对照孔外,各孔加入终浓度为100μM的tBHQ,并设5个重复。24小时后用PBS洗涤,再加入100μg/mL EB 200μL室温下染色20 min,再用PBS洗涤1次后加入200μL PBS,用多功能荧光酶标仪检测细胞的GFP和EB荧光强度,求其相对发光度。结果HepG2-4ARE-TK-GFP细胞的GFP诱导表达水平最高,为HepG2-TK-GFP细胞的6倍,选用该细胞中对GFP具有最高表达水平和最低基础水平的克隆做后续实验。
     4.将HepG2-TK-GFP和HepG2-4ARE-TK-GFP细胞扩增后,接种入黑色96孔细胞培养板,培养24 h后加入不同浓度(0(DMSO对照)、12.5、25、50、100、200μM)的阳性受试物PDTC和tBHQ。每浓度设5个重复,作用24 h后用PBS洗涤,加入EB染色,用多功能荧光酶标仪检测细胞的GFP和EB荧光强度。结果显示PDTC和tBHQ对HepG2-TK-GFP细胞的GFP荧光均无诱导作用,其荧光强度呈不规则变化,各浓度组之间差异不显著(P>0.05);PDTC诱导的HepG2-4ARE-TK-GFP细胞中的GFP荧光随着PDTC浓度的升高,荧光表达水平呈先上升后下降的趋势,具有一定的剂量效应关系。在浓度为50μM时诱导效果最好,与对照组比较差异有显著性(P<0.05);tBHQ诱导的HepG2-4ARE-TK-GFP细胞中的GFP荧光随着tBHQ浓度的升高,荧光表达水平持续上升,各组(12.5, 25, 50, 100, 200μM)与对照组比较差异都有显著性(P<0.05),且具有一定的剂量效应关系。从而证实本实验所构建的这种转基因细胞模型可用来筛选不同结构性质的化学预防剂。
     5.以质粒pDsRed2-N1为模板扩增红色荧光蛋白及启动子片段克隆入载体pMD18-T上,构建载体pMD-DsRed。用Ade I和BspT I对载体pMD-DsRed和p4ARE-TK-GFP/neo进行双酶切,将目的红色荧光蛋白及启动子片段连接到载体p4ARE-TK-GFP/neo上,构建真核报告载体p4ARE-TK-GFP/DsRed/ neo。该载体用脂质体转染HepG2细胞,并用G418筛选出阳性细胞克隆。首次构建了以GFP为第一信号,以红色荧光蛋白为第二信号的细胞模型HepG2-4ARE-TK-GFP/DsRed。将该细胞接种入黑色96孔培养板,培养24 h后加入不同浓度(0(DMSO对照)、12.5、25、50、100、200μM)的阳性受试物PDTC和tBHQ。所得结果与HepG2-4ARE-TK-GFP细胞模型中的结果基本一致,证实对转基因细胞模型HepG2-4ARE-TK-GFP的完善是成功的,使筛选更简单、更方便、更准确。
     6.首次利用HepG2-4ARE-TK-GFP细胞模型对22种中药单体、3种中药有效部位、复方六味地黄胶囊、四君子汤以及组成两方的各单味中药的提取物进行了筛选,结果中药单体中穿心莲内酯、黄芩苷、大黄酸、大黄素、槲皮素、大豆苷元、熊果酸、白藜芦醇显示结果为阳性,且都具有一定的剂量效应关系,提示8种单体能诱导Ⅱ相酶表达起到化学预防作用;三种有效部位中半枝莲总黄酮注射液和黄芪注射液显示结果为阳性,提示其阻断癌前病变和抗突变的作用可能是通过诱导Ⅱ相酶表达实现的;复方六味地黄胶囊和四君子汤的显示结果为阳性,单味中药提取物中熟地黄、人参、白术显示结果为阳性。其中复方六味地黄胶囊效果优于该方中的单味中药熟地黄,提示其诱导效果可能是因为复方产生了新的成分或是各成分的联合诱导了该模型中GFP的表达。
“The application of natural or synthetic compounds to block, reverse or prevent the occurrence of invasive tumors”, as known as chemoprevention, is an effective strategy. Among the diverse carcinogenic factors, the International Agency for Research on Cancer indicated that 80-90% of the development of human tumors are caused by chemical carcinogens. Chemical carcinogens can damage cell DNA to result in gene mutation, and then eventually lead to tumor development. One of the research objectives for chemoprevention is to discover effective drugs with low toxicity. Due to the toxic side effects of artificial chemical drugs, the importance of natural treatment and natural medicine in cancer prevention has gained more and more attention. China has valuable resources for traditional medicine. It has become an urgent need to investigate how to perform high-throughput screening for active preventive ingredients in Chinese herbal medicine.
     World widely, drug screening models can be generally divided into three types: animal model, tissue and organ model, and cellular and molecular model. The first two models tend to consume a large amount of samples and to use a large number of laboratory animals. They are labour intensive and time consuming. Also, the number of samples being screened each time can be limited and these two models are not suitable for screening for complex active ingredients in Chinese medicine. The drug screening model at the cellular and molecular level has several properties: less sample consumption, high efficiency, understandable drug mechanism, and large sample size screening. However, there is limited research with regard to chemopreventive drug screening at the cellular and molecular level. To our knowledge, we are the first group to report on high-thoughput screening for chemopreventive Chinese medicine through transgenic cell model.
     This paper aims to establish a simple, highly sensitive and efficient tumor preventive agents screening model to screen for active ingredients in traditional Chinese medicine for cancer prevention.
     1. The TK promoter was amplified from plasmid pRL-TK by recombinant PCR and the Sac I enzyme restriction site was created. The TK promoter segments were cloned into pMD18-T vector to construct pMD-TK. The plasmids of pMD-TK and pEGFP were double digested with Sal I and BamH I. The TK promoter was connected to the correspondent restriction sites of the vector pEGFP to yield the vector pTK-GFP. The plasmid pTK-GFP was used as a template to amplify TK segments by PCR. The amplified TK segments and vector pEGFP-N1 were digested using Vsp I and BamH I. The TK promoter was ligated to the vector pEGFP-N1 to construct the eukaryotic reporter vector of pTK-GFP/neo. Four synthetic ARE sequences were inserted into the vector pTK-GFP/neo after annealing phosphorylation to regulate the expression of GFP. So the four eukaryotic vectors, pARE-TK-GFP/neo, p2ARE-TK-GFP/neo, p3ARE-TK-GFP / neo and p4ARE-TK- GFP/neo, were constructed respectively first in China.
     2. The eukaryotic reporter vectors pTK-GFP/neo, pARE-TK-GFP/neo, p2ARE-TK- GFP/neo and p4ARE-TK-GFP/neo were transfected into HepG2 cells respectively. After 24 hours of incubation, the green fluorescence was obvious under the fluorescent microscope for the four types of cells, indicating that the choice of promoter was appropriate. First time in China, the clones resistant to 600μg/ml G418 were isolated to construct the ARE free cell model of HepG2-TK-GFP for the negative control and different ARE repeated sequence control cell models of HepG2-ARE-TK-GFP, HepG2-2ARE-TK-GFP, HepG2-3ARE-TK-GFP and HepG2-4ARE-TK-GFP.
     3. After HepG2-TK-GFP, HepG2-ARE-TK-GFP, HepG2-2ARE-TK-GFP and HepG2- 4ARE-TK-GFP were amplified, they were digested by trypsin and seeded into wells of a black 96-well plate with 5×104 cells in each well. After the incubation for 24 hours, in addition to the control wells, each well was added tBHQ with a concentration of 100μM. Each type of cell was repeated for five times. After a 24-h exposure to the compounds, the medium was removed and 100μg / ml EB 200μl was added to stain the cells for 20 minutes at room temperature. The cells were then washed with PBS once and 200μl PBS was added into each well prior to measuring flurescence. Measurement of GFP or EB fluorescence was performed using a fluorescence microplate reader respectively. The induced GFP expression level was the highest in HepG2-4ARE-TK-GFP cells and it was about 6 times compared to HepG2-TK-GFP. The clone cells with the highest GFP expression level and lowest level were used to do the follow-up experiments.
     4. After HepG2-TK-GFP and HepG2-4ARE-TK-GFP cell proliferation and inoculation into the black 96 well plates for 24 hours, different concentrations (0 (DMSO control), 12.5,25,50,100,200μM) of positive tested compounds PDTC and tBHQ were added in. Each concentration was repeated for five times. After 24 hours of incubation, the cells were washed with PBS and stained with EB, fluorescence intensity of GFP and EB was measured by the fluorescence microplate reader. The results indicated that the GFP fluorescence of HepG2-TK-GFP cells was not induced by PDTC and tBHQ. The fluorescence intensity were irregular and the differences between concentrations were not significant (P>0.05). As the GFP fluorescence intensity increased with PDTC concentration in PDTC-induced HepG2-4ARE-TK -GFP cells, the fluorescence expression was first increased and then decreased showing a dose-response relationship. At the concentration of 50μM, inducing effect had a high peak value and it was significantly different from the control (P<0.05). As the GFP fluorescence intensity increased with the tBHQ concentration in tBHQ-induced HepG2-4ARE-TK -GFP cells, the fluorescence expression continued to increase. There were significant differences between the experimental groups (12.5, 25, 50, 100, 200μM) and the control group (p<0.05) showing a dose-response relationship. Therefore, this transgenic cell model can be used to screen chemical compounds with different structural properties.
     5. A red fluorescent protein and promoter fragment was cloned into the vector pMD18-T from pDSRed2-N1 to construct the vector pMD-DsRed. The vectors pMD-DsRed and p4ARE-TK-GFP/neo were digested by Ade I and BspT1. The red fluorescent protein and promoter fragments were cloned into the vector p4ARE-TK-GFP/neo to construct the eukaryotic reporter vector p4ARE-TK- GFP/DsRed / neo. This vector was transfected into HepG2 cells. Positive cell clones were screened by G418 to construct the cell model HepG2-4ARE-TK-GFP/DsRed using GFP as the first signal and red fluorescent protein as the second signal. The cells were inoculation into the black 96 well plates for 24 hours and different concentrations (0 (DMSO control), 12.5,25,50,100,200μM) of positive tested compounds PDTC and tBHQ were added in. The results were consistent with the conclusions made for the HepG2-4ARE-TK-GFP cell model. Therefore, the transgenic cell model of HepG2-4ARE-TK-GFP/DsRed was successfully established and screening will become easier, more convenient and more accurate.
     6. The HepG2-4ARE-TK-GFP cell model was used to screen for 22 kinds of traditional Chinese medicine monomers, three types of active ingredients in Chinese medicine, Liu Wei Di Huang Capsule, Si Jun Zi Decoction, and ten single herb extracts. The results showed that andrographolide in Chinese medicine monomers, baicalin, rhein, emodin, quercetin, daidzein, ursolic acid, resveratrol were tested positive showing a dose-response relationship. Eight monomers could induce phase II enzymes expressions therefore played a chemopreventive role. Three effective parts of the total flavonoids in Scutellaria barbata and astragalus infection showed positive results, suggesting that their roles in blocking precancerous lesions and resistance to mutations may be achieved by the induction of phase II enzymes. The results for Liu Wei Di Huang capsule and Si Jun Zi Decoction were positive. Among single Chinese medicine extractions, the results were positive for Rehmannia glutinosa, ginseng, and Atractylodes. The effect of Liu Wei Di Huang capsule was better than the single herb Rehmannia glutinosa in the capsule, suggesting that the induced GFP expression in the model may be due to the new component produced or a combination of the compounds. This indicates that some natural chemopreventive agents was not less effective compared to some known synthetic chemical agents and more importantly, the side effect of these natural agents may be much smaller.
引文
[1] Marcy J Balunas , Douglas Kinghorn. Drug discovery from medicinal plants[J]. Life Sciences,2005,78(5):431-441
    [2]周勇,陈国平.基因工程技术与药物筛选[J].中国医院药学杂志,2000,20(6):359.
    [3]王东晓,曹瑞山,刘屏.基因工程技术在药学领域中的应用[J].解放军药学学报,2003,19(1):50-53.
    [4]孙哲,吕秋军.基于检测报告基因的药物筛选方法研究进展[J].中国药学杂志,2000,35(8):507.
    [1] Adams J, Kelso R, Cooley L. The kelch repeat superfamily of proteins: propellers of cell function[J]. Trends Cell Biol ,2000,10:17–24.
    [2] Chi Chen,An.Tony Kong.Dietary Chemopreventive compounds and ARE/EpRE signaling A gene expression signature for oxidant stress/reactive[J].Free Radical Biology & Medicine,2004,36(12):1505–1516.
    [3] Kettern B. Protection role of glutathione and glutathione in mutagenesis and carcinogenesis[J].Mutat Res,1998,202(2):343-363.
    [4] Wolf,CR.Chemoprevention:increased potential to bear fruit[J]. Proc. Natl. Acad. Sci.USA,2001,98(6):2941–2943.
    [5] Yee Liu Chua,Dawei Zhang,Urs Boelsterli,et al. Oltipraz induced phase 2 enzyme response conserved in cells lacking mitochondrial DNA[J]. Biochemical and Biophysical Research Communications,2005,337:375-381
    [6] Zhuo-xiao Cao,Yun-bo Li. The chemical inducibility of mouse cardiac antioxidants and phase 2 enzymes in vivo[J]. Biochemical and Biophysical Research Communications,2004,317(5):1080-1088
    [7] Yun-bo Li,Zhuo-xiao Cao,Hong Zhu. Upregulation of endogenous antioxidants and phase 2 enzymes by the red wine polyphenol,resveratrol in cultured aortic smooth muscle cells leads to cytoprotection against oxidative and electrophilic stress[J]. Pharmacological Research,2006,53(4):6-15
    [8] McMahon M, Itoh K,Yamamoto M, Hayes JD. Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression[J]. J. Biol. Chem. 2003, 278:21592–21600.
    [9] W.David Holtzclaw,Albena T,Dinkova-Kostova et al.Protection against electrophileand oxidative stress by induction of phase 2 genes: the quest for the elusive sensor that responds to inducers[J]. Advan.Enzyme Regul,2004,44:335.
    [10] Ah-Ng Tony Kong, Rong Yu, Vidya Hebbar et al Signal transduction events elicited by cancer prevention compounds[J].Mutation Research, 2001,480:231.
    [11] Mi-Kyoung Kwak, Nobunao Wakabayashi,Thomas W.Kensler. Chemoprevention through the Keap1–Nrf2 signaling pathway by phase 2 enzyme inducers[J].Mutation Research,2004,555:133.
    [12] Hayes JD,Ellis EM,Neal GE,et al. Cellular response to cancer chemopreventive agents: contribution of the antioxidant responsive element to the adaptive response to oxidative and chemical stress[J].Biochemical Society Symposium,1999,64(5):141-168
    [13] Alberts D,Colvin O M,Conney A H,et al. Prevention of cancer in the next millennium: report of the chemoprevention working group to the American Association for Cancer Research[J]. Cancer Research,1999,59(2):4743-4758
    [14] KetternB.Protection role of glutathione and glutathione in mutagenesis and carcinogenesis[J]. MutatRes. 1998,202:343
    [15] Taniguchi N, I'sukada Y, Mukuo Ii,et al. Effect of hepatocarcinogenic azo dyes on glutathione and related enzymes in rat liver[J]. Gann, 2001,65:381
    [16]仲琳,张运,张梅,等.应用重组PCR技术构建人单核细胞趋化蛋白-1cDNA的突变体- hμMCP-1(7ND) [J].中国病理生理杂志,2005,21(12):2452-2456.
    [17]王莹,周智爱,李震等.利用重组PCR技术构建大肠杆菌肠毒素LTB-ST1融合基因[J].上海农业学报,2001,17(1):39-44.
    [18]张梅,司履生,王一理.应用重组PCR技术构建人单链白细胞介素12融合基因[J].免疫学杂志,2001,17(1):22-26.
    [19]张梅,司履生.重组PCR——种快速体外基因重组技术[A].西安医科大学学报, 2001, 22 (3):270-270.
    [20]陈红兵,许杨.应用体外重组PCR技术构建鸡单链抗体基因的研究[J].中国预防兽医学报,2003,25(3):175-178
    [21] Elizebeth C. Turner, B. Therese K. Transcriptional regulation of the human prosta- cyclin receptor gene is dependent on Sp1, PU.1 and Oct-1 in megakaryocytes and endothelial cells. J of Mol Biol , 2009,386(3):579-597.
    [22] Vieira j,O'Hearn PM. Use of the red fluorescent protein as a marker of Kaposi's sarcoma-associated herpesvirus lytic gene expression[J]. Virology,2004,325(2):225-240
    [23] March JC,Rao GS Bentley WE. Biotechnological applications of green fluorescent protein[J]. Appl Microbiol Biotechnol,2003,62(4):303-315
    [24] Phippard D,Manning AM. Screening for inhibitors of transcription factors using luciferase reporter gene expression in transfected cells[J]. Methods Mol Biol, 2003,225:19-23
    [25] Ozawa T,Nonami S,Sato M,et al. A fluorescent indicator for detecting protein-protein interactions in vivo based on protein splicing[J]. Anal Chem, 2000, 72(21):5151-5157
    [26] Gómez-Hens A,Aguilar-Caballos MP. Modern analytical approaches to high- throughput drug discovery [J]. TrAC Trends in Analytical Chemistry,2007,26(3):171-182
    [27] Tanimura A,Nezu A,Morita T,et al. Fluorescent biosensor quantitative realtime measurements of inositol 1,4,5-trisphosphate in single living cells[J]. J Biol Chem,2004,279(37):38095-38098
    [28] Casey JL,COley AM,Tilley LM,et al. Green fluorescent antibodies:novel in vitro tools[J]. Protein Eng,2000,13(6):445-452
    [29] Ward WW,Bokman SH. Reversible denaturation of Aequorea green fluorescent protein:physical separation and characterization of the renatured protein[J]. Biochemistry,1982,21(19):4535-4540
    [30]李杰,任宏伟,黄洁虹等.外源报告基因EGFP在盐藻中实现瞬时表达[J].中国生物化学与分子生物学报,2003,6(3):338-342
    [31]杨志祥,糜漫天,张乾勇等.一种视黄酸可控的绿色荧光蛋白表达研究[J].肿瘤,2003,23(3):180-182
    [32]杨晓慧,孙葆忱.腺相关病毒介导绿色荧光蛋白基因对体外培养IPE细胞的转染和表达[J].眼科研究,2003,4(2):160-162
    [33]李小月,何金生,沈继龙,等.增强型绿色荧光蛋白真核表达载体的构建和表达[J].中国寄生虫病防治杂志,2005,18(1):12-15
    [34]邓晓红,许予明,张苏明,等.绿色荧光蛋白作为供体细胞标记物的可行性[J].郑州大学学报(医学版),2004,39(3):401-403
    [35]吴沛桥,巴晓革,胡海,等.绿色荧光蛋白GFP的研究进展及应用[J].生物医学工程研究,2009,28(1):83-86
    [36] Breshears MA,Black DH,Ritchey JW,Eberle R. Construction and in vivo detection of an enhanced green fluorescent protein-expressing strain of Saimiriine herpesvirus 1(SaHV-I) [J].Arch Virol,2003,148(2):311-327
    [37] Felske A, Vandieken V, Paining BV, et al. Molecular quantification of genes encoding for green-fluorescent proteins[J]. J Microbiol Methods, 2003, 52(3): 297-304
    [38]于红,赵磊,张文卿等.建立以EGFP为报告基因检测HSV感染的细胞株[J].中华微生物学和免疫学杂志,2004,24(10):838
    [1]张志琪,张延妮,田振军.药物筛选模型和技术及其在中药活性成分研究中的应用[J].中国中药杂志,2008,28(10):907-910
    [2] J.萨姆布鲁克,D. W.拉塞尔著,黄培堂等译.分子克隆实验指南[M].北京:科学出版社,2002,1181-1185
    [3] Holtzclaw WD,Dinkova-Kostova AT,Talalay P. Protection against electrophile and oxidative stress by induction of phase 2 genes:the quest for the elusive sensor that responds to inducers[J]. Advances in Enzyme Regulation,2004,44:335.
    [4] Shen G, JeongWS,Hu R,et al.Regulation of Nrf2,NF-kappaB, and AP-1 signaling pathways by chemopreventive agents[J].AntioxidantRedoxSignal, 2005,7(11-12): 1648-63.
    [5] John S. Thompson,Reto Asmis,Judith Glass,et al. P53 status influences regulat- ion of HSPs and ribosomal proteins by PDTC and radiation[J]. Biochemical and Biophysical Research Communications,2006,343(2):435-442
    [6] Sei-Jung Leea,Kye-Taek Lim.150 kDa glycoprotein isolated from Solanum nigrum Linne stimulates caspase-3 activation and reduces inducible nitric oxide production in HCT-116 cells[J]. Toxicology in Vitro,2006,20(7):1088-1097
    [7] Hayes JD,Ellis EM,Neal GE,et al. Cellular response to cancer chemopreventive agents: contribution of the antioxidant responsive element to the adaptive response to oxidative and chemical stress[J]. Biochem Soc Symp,1999,64:141
    [1] Matz MV,Fradkov AF,Labas YA,et al.Fluorescent proteins from nonbioluminescent Anthozoa species[J].Nat Biotechnol, 1999, 17(10):969-973.
    [2] Yanushevich YG, Staroverov DB, Savitsky AP,et al. A strategy for the generation of non-aggregating mutants of Anthozoa fluorescent proteins[J].FEBS Lett, 2002, 511(1-3):11-14.
    [1] Wang XM, Mao J, Chen YY,et al. The study of hepatic precancerous lesion and the supperssive effect of herbal compound 861 on it during experimental hepatocarcinogenesis[J].J Clin Exp Med, 2003, 2(4):218-220.
    [2] Sato Y,Suzaki S,Nishikawa T,et al. Phytochemical flavones isolated from Scutellaria barbata and antibacterial activity against methicillin-resistant Staphylococcus aureus[J].Journal Ethnopharmacology,2000,72: 483-488.
    [3]赵凤鸣,王明艳,吴丽丽,等.四君子汤六味地黄汤抗突变作用机理的实验研究[J].中医药学刊,2003,21(2):231-235.
    [1]陈国强,徐娅蓓,郭萌.药物靶标和创新药物:机遇与挑战[J].国外医学(生理、病理科学与临床分册),2004,24(3):206
    [2]国家药品监督管理局信息中心.国外药讯.重视天然产物的价值[Z],2002, 3
    [3]屠鹏飞,郭洪祝,果德安.中药与天然药物活性成分研究及新药的发现[J].北京大学学报(医学版),2002,34(5):531-518
    [4] Newman DJ, Cragg GM, Snader KM. Natural product as sources of new drugs over the period 1981-2002[J].J Nat Prod,2003,66(1):1022-1037
    [5] Philip Gribbon, Andreas Sewing. Fluorescence readouts in HTS: no gain without pain[J]? Drug Discovery Today,2003,8(22):1035-1043
    [6]王春梅,乔延江.细胞模型发展现状及应用于中药研究的探讨[J].世界科学技术-中医药现代化,2004,6(3):29.
    [7]张惠君,陈鸿英.现代生物学技术在中药药效研究中的应用[J].天津药学,2006,18(1):41~43.
    [8]孙哲,吕秋军.基于检测报告基因的药物筛选方法研究进展[J].中国药学杂志.2000.35(8):507
    [9]夏玉凤.以gfp为报告基因研究蛋白亚细胞定位[J].生物技术通报,2006(,2):11-13
    [10]于西佼.报告基因及其在生物膜研究中的应用[J].国外医学口腔医学分册2006,33(1):15-17
    [11]沙新平.报告基因系统的研究进展[J].国外医学临床生物化学与检验学分册,2003,24(l):26-28
    [12] Jansson JK. Marker and reporter genes: illuminating tools for environmental microbiologists[J]. Curr Opin Microbiol,2003,6(3):310-316
    [13] Amone MI,Dmochowski IJ,Gache C. Using reporter genes to study cis-regulatory elements[J]. Methods Cell Biol,2004,74:621-652
    [14] Basu C,Kausch AP,Chandlee JM. Use of betaglucuronidase reporter gene for geneexpression analysis in turfgrasses[J]. Biochem Biophys Res Commun,2004,20(1):7-10
    [15]陈维贤,张君,张娟,等.带GFP的启动子鉴定质粒的构建及在HCV启动子鉴定中的应用[J].重庆医科大学学报,2005,30(6):773-776
    [16] Vieira j,O'Hearn PM. Use of the red fluorescent protein as a marker of Kaposi's sarcoma-associated herpesvirus lytic gene expression[J]. Virology,2004,325(2):225-240
    [17] March JC,Rao GS Bentley WE. Biotechnological applications of green fluorescent protein[J]. Appl Microbiol Biotechnol,2003,62(4):303-315
    [18] Phippard D,Manning AM. Screening for inhibitors of transcription factors using luciferase reporter gene expression in transfected cells[J]. Methods Mol Biol, 2003,225:19-23
    [19] Ozawa T,Nonami S,Sato M,et al. A fluorescent indicator for detecting protein-protein interactions in vivo based on protein splicing[J]. Anal Chem, 2000, 72(21):5151-5157
    [20] Jones J,Heim R,Hare E,et al. Development and application of a GFP-FRET intracellular caspase assay for drug screening[J]. J Biomol Screen, 2000,10,5(5):307-318
    [21] Kain SR. Green fluorescent protein (GFP): applications in cell-based assays for drug discovery[J].Drug Disc Tod,1999,4(7):304.
    [22] Adams J, Kelso R, Cooley L. The kelch repeat superfamily of proteins: propellers of cell function[J]. Trends Cell Biol ,2000,10:17–24.
    [23] Robert M Moriarty, Rajesh Naithani , Jerome Kosmeder, et al. Cancer chemopreventive activity of sulforamate derivatives[J]. European Journal of Medicinal Chemistry,2006,(41):121-124
    [24] Yee Liu Chua,Dawei Zhang,Urs Boelsterli,et al. Oltipraz induced phase 2 enzyme response conserved in cells lacking mitochondrial DNA[J]. Biochemicaland Biophysical Research Communications,2005,337:375-381
    [25] Zhuo-xiao Cao , Yun-bo Li. The chemical inducibility of mouse cardiac antioxidants and phase 2 enzymes in vivo[J]. Biochemical and Biophysical Research Communications,2004,317(5):1080-1088
    [26] Yun-bo Li,Zhuo-xiao Cao,Hong Zhu. Upregulation of endogenous antioxidants and phase 2 enzymes by the red wine polyphenol,resveratrol in cultured aortic smooth muscle cells leads to cytoprotection against oxidative and electrophilic stress[J]. Pharmacological Research,2006,53(4):6-15
    [27] Itoh K, Ishii T, Wakabayashi N, et al. Regulatory mechanisms of cellar response to oxidative stress[J]. Free Radic Res, 1999,31(4):319-324.
    [28] Dhakshinamoorthy S, Long DJ 2nd, Jaiswal AK. Antioxidant regulation of genes encoding enzymes that detoxify xenobiotics and carcinogens[J]. Curr Top Cell Regul, 2000,36:201-216.
    [29] Radominska-Pandya A,Czernik PJ,Little JM,et al.Structural and functional studies of UDP-glucuronosylferase[J]. Drug Metab Rev,1999, 31:817.
    [30] Lee JM,Wu MT, Lee YC, et al. Association of GSTP1 polymorphism and survival for esophageal cancer[J]. Clin Cancer Res,2005, 11(13): 4749-4753.
    [31] Perera FP,Mooney LA, Stampfer M, et al.Associations between carcinogen-DNA damage, glutathione S-transferase genotypes, and risk of lung cancer in the prospective Physicians' Health Cohort Study[J]. Carcinogenesis, 2002, 23(10): 1641-1646.
    [32]陈丽君.谷胱甘肽S-转移酶基因家族的研究进展[J].皖南医学院学报,2003,22(2):144–146.
    [33]杨海灵,聂力嘉,朱圣庚,等.谷胱甘肽硫转移酶结构与功能研究进展[J].成都大学学报(自然科学版),2006,25(1):19-24.
    [34] Sun B,Fukuhara M,Kinoshita T,et al. Differential induction of isozymes of drug metabolizing enzymes by butylated hydroxy toluene in mice and Chinesehamsters[J].food chemical toxicol,1996,34:595-601.
    [35] Smith MT. Benzene, NQO1, and genetic susceptibility to cancer[J]. Proc Natl Acad Sci USA, 1999, 96 :7624-7626.
    [36] Krajinovic M,Labuda D,Richer C,et al. Susceptibility to childhood acute lymphoblastic leukemia: influence of CYP1A1, CYP2D6, GSTM1 and GSTT1 genetic polymorphisms[J]. Blood, 1999, 93 (5): 1496-1501
    [37] Wagener FA, daSilva JL,Farley T, et al. Differential effects of heme oxygenase isoforms on heme mediation of endothelial intracellular adhesion molecule 1 expression[J]. J Pharmacol Exp Ther, 1999, 291(1): 416-423.
    [38] Torti FM, Torti SV. Regulation of ferritin genes and protein[J]. Blood, 2002, 99(10): 3505-3516.
    [39] Baranano DE,Wolosker H, Bae BI, et al. A mammalian iron ATPase induced by iron[ J]. J Biol Chem, 2000, 275 (20):15166-15173.
    [40] Clark JE, Foresti R, Sarathchandra P, et al. Heme oxygenase-1-derived bilirubin ameliorates postischemic myocardial dysfunction[J].Am J Physiol Heart Circ Physiol, 2000, 278(2): 643-651.
    [41] Zámocky M, Koller F. Understanding the structure and function of catalase:Clues from molecular evolution and in vitro mutagenesis[J]. Progress in Biophysics and Molecular Biology, 1999, 72(1):19-66.
    [42]王坤.实用诊断酶学[M].重庆:科学技术文献出版社重庆分社,1989:273.
    [43] Itoh K, Chiba T, Takahashi S, et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements[J]. Biochem Biophys Res Commun, 1997,236(2):313-322.
    [44] Yates MS, Kensler TW. Chemopreventive promise of targeting the Nrf2 pathway[J]. Drug News Perspect, 2007,20(2):109-117.
    [45] Satoh T, Okamoto SI, Cui J, et al. Activation of the Keap1/Nrf2 pathway for neuroprotection by electrophilic phase II inducers[J]. Proc Natl Acad Sci USA,2006,103(13):768-773.
    [46] Rushmore TH, Morton MR, Pickett CB. The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity[J]. J Biol Chem, 1991,266(18):11632-11639.
    [47] Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway[J]. Annu Rev Pharmacol Toxicol, 2007, 47(2):89-116.
    [48] Young-Sam Keum,Edward D Owuor,Bok-Ryang Kim,et al. Involvement of Nrf2 and JNK1 in the activation of antioxidant responsive element (ARE) by chemopreventive agent phenethyl Isothiocyanate (PEITC) [J]. Pharmaceutical Research,2003,20(9):1351-1356
    [49] Minerva RG,Kwak MK,Dolan PM,et al.Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice[J].Proc Natl Acad Sci USA,2001,98(6):3410-3415
    [50] Morimitsu Y,Nakagawa Y,Hayashi K,et al.A sulforaphane analogue that potently activates the Nrf2-dependent detoxification pathway[J]. J Biol Chem, 2002,277(5):3456- 3463
    [51] Lee JM,Calkins MJ,Chan K,et al.Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis[J]. J Biol Chem,2003, 278(14):12029-12038
    [52] Thimmulappa RK,Mai KH,Srisuma S,et al.Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray[J]. Cancer Res,2002,62(18):5196-5203
    [53] Zhang Y, Gonzalez V, Xu MJ. Expression and regulation of glutathione S-transferase P1-1 in cultured human epidermal cells[J]. J Dermatol Sci, 2002,30(3): 205-214.
    [54] Liu XP, Goldring CEP, Copple IM, et al. Extract of Ginkgo biloba induces the phase 2 genes through Keap1-Nrf2-ARE signalling pathway[J]. Life Sci, 2007, 80(17): 1586-1591.
    [55] Nioi P, McHahon M, Itoh K, et al. Identification of a novel Nrf2-regulated antioxidant response element (ARE) in the mouse NAD(P)H:quinone oxidoreductase 1 gene:reassessment of the ARE consensus sequence[J]. Biochem J, 2003,374(10): 337-348.
    [56] Toru N, Yusuke I, Maki I, et al. Curcumin activates human glutathione S-transferase P1 expression through antioxidant response element[J]. Toxicology Letters, 2007,170(3):238-247.
    [57] Anil KJ. Nrf2 signaling in coordinated activation of antioxidant gene expression [J]. Free Radical Biology and Medicine, 2004,36(10): 1199-1207.
    [58] Hye-Youn C, Sekhar PR, Andrea D, et al. Gene expression profiling of NRF2- mediated protection against oxidative injury[J]. Free Radical Biology and Medicine, 2005,38(3):325-343.
    [59] Nguyen T, Rushmore TH, Pickett CB. Transcriptional regulation of a rat liver glutathione S-transferase Ya subunit gene. Analysis of the antioxidant response element and its activation by the phorbol ester 12-Otetrade-canoylphorbol-13- acetate[J]. J Biol Chem, 1994, 269
    [60] Moi P, Chan K, Asunis I, et al. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region[J]. Proc Natl Acad Sci USA, 1994,91(21):9926-9930.
    [61] Shibata T,Ohta T,Tong KI,et al.Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy[J]. Proc Natl Acad Sci USA,2008,105(36):13568-13573
    [62] Yu X, Kensler T. Nrf2 as a target for cancer chemoprevention[J].Mutat Res,2005,591(1-2): 93-102
    [63] Nioi P, Nguyen T, Sherratt PJ,et al. The carboxy-terminal Neh3 domain of Nrf2 is required for transcriptional activation[J]. Mol Cell Biol, 2005,25(24): 10895-10906
    [64] Katoh Y, Itoh K, Yoshida E,et al. Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription[J]. Genes Cells, 2001,6(10): 857-868
    [65] McMahon M, Thomas N, Itoh K,et al. Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron[J]. J Biol Chem, 2004,279(30): 31556-31567
    [66] Chan K, Lu R, Chang JC, et al. NRF2, a member of the NFE2 family of transcription factors, is not essential for murine erythropoiesis, growth, and development[J]. Proc Natl Acad Sci USA, 1996,93(24):13943-13948.
    [67] Itoh K, Chiba T, Takahashi S, et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements[J].Biochem Biophys Res Commun, 1997,236(2):313-322.
    [68] Ramos-Gomez M, Kwak M, Dolan PM, et al. Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice[J]. Proc Natl Acad Sci USA, 2001,98(6):3410- 3415.
    [69] Kwak MK, Itoh K, Yamamoto M, et al. Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents: role of antioxidant response element-like sequences in the nrf2 promoter[J]. Mol Cell Biol,2002,22(4): 2883-2892.
    [70] McMahon M, Itoh K, YamamotoM, et al. Keap1-dependent proteasomal degradation of transcription factor nrf2 contributes to the negative regulation ofantioxidant response element-driven gene expression[J]. J Biol Chem,2003, 278(24): 21592-21600.
    [71] Kobayashi M, ltoh K, Suzuki T,et al. Identification of the interactive interface and phylogenic conservation of the Nrf2-Keap1 system[J]. Genes Cells, 2002,7(8): 807-820
    [72] Dinkova-Kostova AT,Holtzclaw WD,Cole RN,et al. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants[J].Proc Natl Acad Sci USA,2002,99(18): 11908-11913
    [73] Singh A,Misra V,Thimmulappa RK,et al.Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer[J]. PLoS Med,2006,3(10):420
    [74] Zipper LM, Mulcahy RT. The Keap1 BTB/POZ dimerization function is required to sequester Nrf2 in cytoplasm[J]. J Biol Chem,2002,277(39): 36544-36552
    [75] Kang MI, Kobayashi A, Wakabayashi N,et al. Scaffolding of Keap1 to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 genes[J]. Proc Natl Acad Sci USA, 2004,101(7): 2046-2051
    [76] Hong F, Freeman ML, Liebler DC. Identification of sensor cysteines in human Keap1 modified by the cancer chemopreventive agent sulforaphane[J]. Chem Res Toxicol,2005,18(12):1917-1926.
    [77] Li W, Jain MR, Chen C, et al. Nrf2 Possesses a redox-insensitive nuclear export signal overlapping with the leucine zipper motif[J]. J Biol Chem, 2005,280(31): 28430-28438.
    [78] Lee JS,Surh YJ.Nrf2 as a novel molecular target for chemoprevention[J].Cancer Lett,2005,224(2):171-184
    [79] Cullinan SB, Diehl JA. PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress[J]. J Biol Chem, 2004,279(19):20108-20117
    [80] Mi-Kyoung K, Thomas W. Kensler. Targeting NRF2 signaling for cancer chemoprevention [J]. Toxicol and Appl Pharmacol, 2010,244(1): 66-76
    [81] Kwak MK, Itoh K, Yamamoto M,et al. Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents: role of antioxidant response element-like sequences in the nrf2 promoter[J].Mol Cell Biol, 2002,22(9): 2883-2892
    [82] Karapetian RN, Evstafieva AG, Abaeva IS,et al. Nuclear oncoprotein prothymosin alpha is a partner of Keap1:implications for expression of oxidative stress-protecting genes [J]. Mol Cell Biol,2005,25(3): 1089-1099
    [83] Strachan GD, Morgan KL, Otis LL,et al. Fetal Alz-50 clone 1 interacts with the human orthologue of the Kelch-like Ech-associated protein[J]. Biochemistry, 2004,43(38): 12113-12122
    [84] Ishikawa M, Numazawa S, Yoshida T. Redox regulation of the transcriptional repressor Bach1[J]. Free Radic Biol Med, 2005,38(10): 1344-1352
    [85] Padmanabhan B,Tong KI,Ohta T,et al.Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer[J].Mol Cell,2006,21(5):689-700
    [86] Ramos-Gomez M, Dolan PM, Itoh K, et al. Interactive effects of nrf2 genotype and oltipraz on benzo[a]pyrene DNA adducts and tumor yield in mice[J]. Carcinogenesis, 2003,24(3):461-467.
    [87] Fahey JW, Haristoy X, Dolan PM, et al. Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[a]pyrene-induced stomach tumors[J]. Proc Natl Acad Sci USA, 2002,99(11): 7610-7615.
    [88] Mi-Kyoung K, Nobunao W, Thomas WK. Chemoprevention through the Keap1– Nrf2 signaling pathway by phase 2 enzyme inducers[J]. Mutat Res-Fund Mol M, 2004,555(1-2):133-148.
    [89] Scott AR, Lauren MA, Curtis D. Klaassen. Oleanolic acid activates Nrf2 andprotects from acetaminophen hepatotoxicity via Nrf2-dependent and Nrf2-independent processes [J]. Bio Pharmacol, 2009,77(7): 1273-1282.
    [90] Cho HY, Jedlicka AE, Reddy SPM, et al. Role of NRF2 in protection against hyperoxic lung injury in mice[J].Cell Mol Biol, 2002,26(2):175-182.
    [91] Chan JY, Kwong M. Impaired expression of glutathione synthetic enzyme genes in mice with targeted deletion of the Nrf2 basic-leucine zipper protein[J]. Biochim Biophys Acta, 2000,1517(1):19-26.
    [92] Aoki Y, Sato H, Nishimura N,et al. Accelerated DNA adduct formation in the lung of the Nrf2 knockout mouse exposed to diesel exhaust[J]. Toxicol Appl Pharmacol, 2001,173(3): 154-160
    [93] Marcy J Balunas , Douglas Kinghorn. Drug discovery from medicinal plants[J]. Life Sciences,2005,78(5):431-441
    [94]唐明武.大肠癌化学预防的研究进展[J].肿瘤防治研究. 2003,30(2):167-169
    [95] Sanjay Gupta. Prostate cancer chemoprevention: current status and future prosp- ects[J]. Toxicol and Appl Pharmacol,2007,224(3):369-376
    [96] Kakizoe T.Chemoprevention of cancer-focusing on clinical trials[J].Jpn J Clin Oncol,2003,33(9):421-442

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700