用户名: 密码: 验证码:
成人退变性脊柱侧凸有限元模型的建立及后路三维矫形生物力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究应用计算机辅助工程(Computer Aided Engineering,CAE)软件,建立了基于志愿者个体化CT图像的成人退变性脊柱侧凸三维有限元模型,并对模型进行了有效性验证和材料参数的优化;在此基础上,仿真模拟成人退变性脊柱侧凸后路三维矫形手术,探讨目前临床上争论比较多的退变性脊柱侧凸近端融合椎以及远端融合椎如何选择的问题。
     目的应用CAE软件,建立基于志愿者个体化CT图像的成人退变性脊柱侧凸三维有限元模型。
     方法选择1例61岁女性成人退变性脊柱侧凸志愿者作为研究对象。取仰卧位,应用螺旋CT从T1上缘至尾骨以1mm间距进行连续扫描,获得Dicom格式CT图像522张。导入逆向工程软件Mimics10.01,建立包括胸-腰-骶尾椎和胸廓等结构的完整脊柱侧凸三维几何模型。对模型进行几何清理,然后导入有限元前处理软件HyperMesh 8.0划分有限元实体网格,并参照文献添加椎间盘及韧带结构单元,生成完整的成人退变性脊柱侧凸三维有限元模型。
     结果建立了完整的成人退变性脊柱侧凸三维有限元模型,包括胸-腰-骶尾椎、椎间盘、胸廓及脊柱所有韧带、关节结构。模型共采用4种单元类型,14种材料性质;划分节点136398个,四面体单元509819个,壳单元95835个,线缆单元680个和杆单元132个。
     结论成功构建了基于志愿者个体化CT图像的成人退变性脊柱侧凸三维有限元模型,模型完整、逼真地还原了被模拟对象的脊柱特点。
     目的通过与X线片以及以往体外(尸体)实验对比,验证所建立的成人退变性脊柱侧凸三维有限元模型的有效性。
     方法(1)有限元模型与研究对象的几何相似性验证:将建立的模型与仰卧位X线片对比,了解模型与实际相符合的程度。(2)分段加载实验验证:在建立的模型中分别提取T1-T4、T5-T8、T9-T12以及T1-L1节段,参照同类体外(尸体)实验对有限元节段模型进行约束加载,并将加载结果与各自参照的体外实验结果进行比较,验证模型的有效性。
     结果(1)各椎体中心位置,以及矢状面、冠状面上各弯的角度,有限元模型与仰卧位X线片之间均有很好的一致性;(2)T1-T4、T5-T8、T9-T12以及T1-L1各段有限元模型加载结果与各自参照的历史体外(尸体)实验结果基本吻合。
     结论从几何外形以及分段加载实验,验证了所建立的成人退变性脊柱侧凸模型的可靠性和有效性,为下一步生物力学模拟研究奠定了基础。
     目的通过参数优化,让有限元模型的形态和材料属性均实现个体化,使之具有个体特异的生物力学属性。
     方法(1)模拟仰卧位左右侧屈试验:通过约束和加载力量,将有限元模型中的上下端椎位置与临床侧屈试验所得位置相吻合,然后再对模型中椎体序列形成的Cobb角弧度进行评判,并将计算的结果与临床试验对照;(2)按照正交试验设计进行三因素三水平分析,对不同节段的椎间盘材料属性进行参数优化;(3)利用优化后模型模拟左右侧屈和站立试验,将计算结果和临床实验进行对照。
     结果对于该脊柱侧凸患者而言,腰段椎间盘的材料属性对于脊柱柔韧性的影响最大;当胸弯、腰弯和下腰弯的椎间盘材料属性的系数分别为8、0.2和1时,计算机模拟的结果与真实情况最为接近。材料参数优化后的模型,其生物力学行为和实际临床结果有更好的一致性。
     结论通过参数优化,明显改善了模型的仿真特性,提高了对脊柱侧凸手术治疗效果的预测率。为进一步对脊柱侧凸的手术策略研究提供理论支持。
     目的利用已建立并优化的成人退变性脊柱侧凸有限元模型,模拟后路三维矫形手术,并比较不同置钉方案的矫形效果。探讨退变性脊柱侧凸近端融合椎以及远端融合椎该如何选择。
     方法分别建立螺钉及矫形棒等椎弓根螺钉固定系统的三维有限元模型,然后用有限元的方式实现去旋转矫形过程,着重分析手术矫形过程中螺钉应力值变化情况以及各椎体位移改变情况,以获得成人退变性腰椎侧凸从凸侧进行三维矫形的生物力学变化规律。根据临床报道的退变性脊柱侧凸近端融合椎和远端融合椎的选择策略,分别设置不同的置钉方案,在生物力学属性完全吻合的有限元模型上对比不同矫形操作中椎体成角及位移,螺钉应力变化及分散程度,比较术后冠状面,矢状面及横截面的矫形效果,综合考虑不同矫形策略的手术效果,提出优化手术的治疗方案。
     结果(1)探索出一套成人退变性腰椎侧凸从凸侧矫形的有限元仿真建模方法,实现了后凸型侧凸患者,90°去旋转操作的模拟;(2)四种矫形方案的冠状面Cobb角以及矢状面腰椎前凸角无明显差别。上端融合至T10的矫形方案与融合至L1的矫形方案相比,融合节段与非融合节段之间有更好的过渡,顶椎区去旋转作用以及向中线纠正的能力更强。下端融合至S1的矫形方案与融合至L5的矫形方案相比,下端椎螺钉应力较高,而L5/S1椎间盘的应力则较低。
     结论(1)在成人退变性脊柱侧凸有限元模型上,进行了去旋转矫形手术的模拟。搭建了一个新的具有个体化生物力学特性的脊柱侧凸有限元分析平台。(2)对于Cobb角较小、脊柱平衡性以及柔韧性相对较好的成人退变性脊柱侧凸患者,短节段融合也能取得满意的效果。
In current study, we established, validated and optimized a complete three-dimensional finite element model of adult degenerative scoliosis based on the individual CT images, by using computer aided engineering (CAE) softwares. On the basis of above, we simulated posterior three-dimensional correction surgery using this finite element model to investigate correction effectiveness with different upper instrumented vertebra (UIV) and lowest instrumented vertebra (LIV).
     Objective Using CAE softwares, to build three-dimensional finite element model of adult degenerative scoliosis based on the individual CT images.
     Methods A 61-year-old female adult degenerative scoliosis patient was included as volunteer for current study. CT transverse scanning in supine position was done from T1 to caudal end in lmm layer interval, to obtain 522 CT dicom images. All CT images were imported into Mimics 10.01 to form qualified three-dimensional geometric model after geometry clean, including all thoraco-lumbar-sacral vertebrae and thoracic cage, which was further delivered to HypherMesh 8.0 to build 3D finite element model by mesh partition and quality control. A variety of material parameters were given to different mesh according to references.
     Results A complete three-dimensional finite element model of adult degenerative scoliosis was built successfully, including all thoraco- lumbar-sacral spine and thoracic cage, using 4 mesh types and 14 kinds of material parameters, in consist of 136398 nodes,509819 tetrahedron elements,95835 shell elements,680 cable elements and 132 rod elements.
     Conclusions A complete three-dimensional finite element model of adult degenerative scoliosis in details, was built successfully based on individual CT images.
     Objective To validate the 3D finite element model of adult degenerative scoliosis built in chapter one, by contrast with in-vitro studies and the X-ray film.
     Methods (1) The 3D finite element model contrasted with supine X-ray film to investigate the geometrical similarity (2) Subsection validation:Segment T1-T4, T5-T8, T9-T12 and T1-L1 were extracted from the whole finite element model, and the four segments were respectively constrained and loaded referring to historical specimen biomechanical in-vitro studies.
     Results (1) The finite element model and supine X-ray film had very good consistency, not only in the position of the center of vertebral body, but also in the sagittal and coronal plane. (2) The segment simulation results were similar to their references respectively.
     Conclusions The three-dimensional finite element model of adult degenerative scoliosis were well validated by geometric appearance and segment validation, which was qualified for further biomechanical simulation study.
     Objective To personalize the geometric appearance of the finite element model and the material properties by parameter optimization.
     Methods (1) Simulation of the Left and right Bending test:made the upper and lower end vertebral of the finite element model coincide with the clinical trial, then compared the vertebral sequence and the Cobb angle. (2) Using the orthogonal experimental design analysis of three factors and three levels of intervertebral disc material property to optimize the parameters, and then achieve the biomechanical property of the individual. (3) Using the optimized model to simulate Left and right Bending test and Erect-supine test, then contrasted with the clinical results.
     Results For this patient, the material properties of lumbar disc had the biggest influence on spinal flexibility. When the parameters of the disc material properties of thoracic curve, lumbar curve and lower lumbar curve were respectively 8,0.2 and 1, the results of computer simulation were closest to the real conditions. After optimization, the biomechanical behavior of the finite element model and the actual clinical outcomes had better consistency.
     Conclusions Through the optimization of the parameters, the simulation features of the model was significantly improved. It was qualified for further biomechanical simulation study of the scoliosis surgery.
     Objective To simulate posterior correction surgery using the finite element model of adult degenerative scoliosis. Compare the differences between several pedicle screw placement strategies, to investigate correction effectiveness with different upper instrumented vertebra (UIV) and lowest instrumented vertebra (LIV).
     Methods Established the 3D finite element model of screws and rods. A numerical study was conducted by simulating the CD surgery and quantifying the biomechanical changes of intraoperative correction. An automated algorithm simulated all the main steps of the CD surgery. For each step, vertebral kinematics was exported, especially the stress variation of pedicle screw, as well as the displacement of vertebral body, to fully understand the complexity of three-dimensional correction. According to the clinical reports of proximal and distal fusion strategy, we compared several screw placement strategies using computer simulation program based on the finite element model. Comparison of vertebral displacement, rotation, angle changes and the stress variation of pedicle screws, it could help to optimize the surgical treatment.
     Results (1) In this study, we simulated the 90°rotation operation for the patient with scoliosis and kyphosis, explored a finite element simulating method of correction from the convex side for adult degenerative lumbar scoliosis. (2) There was no significant difference in the correction of Cobb angle and lumbar lordosis between the four orthopedic strategies. Compared with fusion to L1, fusion to T10 was more powerful to correct the scoliosis towards the center line, had stronger ability of derotation, and the segments between fusion and non-fusion had a better transition in the strategy of fusion to T10. Compared with fusion to L5, the lowest screw stress of fusion to S1 was much higher, while the L5/S1 intervertebral disc stress was lower.
     Conclusion (1) Simulate the derotation maneuver in the finite element model of adult degenerative scoliosis. Build a new and personalized finite element analysis platform for scoliosis. (2) For the adult degenerative scoliosis patients with small Cobb angle, good spinal balance and good flexibility, short segment fusion can also achieve satisfactory results.
引文
[1]Grubb SA, Lipscomb HJ, Coonrad RW. Degenerative adult onset scoliosis[J]. Spine,1988,13(3):241-245.
    [2]Schwab F, Dubey A, Gamez L, et al. Adult scoliosis:prevalence, SF-36, and nutritional parameters in an elderly volunteer population [J]. Spine,2005,30 (9):1082-1085.
    [3]Kobayashi T, Atsuta Y, Takemitsu M, et al. A prospective study of de novo scoliosis in a community based cohort[J]. Spine,2006,31(2):178-182.
    [4]Braun JT, Hoffman M, Akyuz E, et al. Mechanical Modulation of Vertebral Growth in the Fusionless Treatment of Progressive Scoliosis in an Experimental Model[J]. Spine,2006,31(12):1314-1320.
    [5]Braun JT, Ogilvie JW, Akyuz E, et al. Creation of an Experimental Idiopathic-Type Scoliosis in an Immature Goat Model Using a Flexible Posterior Asymmetric Tether[J]. Spine,2006,31(13):1410-1414.
    [6]Braun JT, Akyuz E. Prediction of Curve Progression in a Goat Scoliosis Model[J]. J Spinal Disord Tech,2005,18:272-276.
    [7]Hideyuki A, Shunji M, Junzoh K, et al. etiology of idiopathic scoliosis:a computational study. Clinical Orthopaedics and Related Research,1998,357:229-236.
    [8]Villemure I, Aubin CE, Dansereau J, et al. Biomechanical simulations of the spine deformation process in adolescent idiopathic scoliosis from different pathogenesis hypotheses.Eur Spine J,2004,13:83-90.
    [9]胡明涛,韦兴,赵红平,等.后路椎弓根螺钉系统治疗特发性腰椎侧凸的有限元分型.医用生物力学,2007,22(4):367-372.
    [10]杨晓明,顾苏熙,李明,等.特发性脊柱侧凸椎体楔形变有限元模型分析.中国矫形外科杂志.2008,16(19):3941-5941.
    [11]余慧琴,顾苏熙,李明,等.脊柱侧凸三维有限元模型的建立及其意义.医用生物力学,2008,23(2):136-139.
    [12]汪正宇,刘祖德,王哲,等.青少年特发性脊柱侧凸有限元模型的建立及其意义.生物医学工程杂志,2008,25(5):1084-1088
    [13]汪正宇,刘祖德,王哲,等.脊柱侧凸有限元模型的建立和参数优化.北京生物医学工程杂志,2008,27(1):28-30.
    [14]汪学松,吴志宏,王以朋,等.三维有限元法构建青少年特发性脊柱侧弯 模型.中国组织工程研究与临床康复杂志,2008,12(44):8610-8614.
    [15]Kim HJ, Chun HJ, Kang KT,et al. A validated finite element analysis of nerve root stress in degenerative lumbar scoliosis. Med Biol Eng Comput,2009, 47(6):599-605.
    [1]Gignac D, Aubin CE, Dansereau J, et al. Optimization method for 3D bracing correction of scoliosis using a finite element model[J]. Eur Spine J,2000,9(3):185-190.
    [2]Braun JT, Hoffman M, Akyuz E, et al. Mechanical Modulation of Vertebral Growth in the Fusionless Treatment of Progressive Scoliosis in an Experimental Model[J]. Spine,2006,31(12):1314-1320.
    [3]Braun JT, Ogilvie JW, Akyuz E, et al. Creation of an Experimental Idiopathic-Type Scoliosis in an Immature Goat Model Using a Flexible Posterior Asymmetric Tether[J]. Spine,2006,31(13):1410-1414.
    [4]Braun JT, Akyuz E. Prediction of Curve Progression in a Goat Scoliosis Model[J]. J Spinal Disord Tech,2005,18:272-276.
    [5]Lowe T, Berven SH, Schwab FJ, et al. The SRS classification for adult spinal deformity:building on the King/Moe and Lenke classification systems[J]. Spine,2006,31(19S):S119-25.
    [6]Goel VK, Monroe BT, Gilbertson LG, et al. Interlaminar shear stresses and laminae separation in a disc:finite element analysis of the L3-L4 motion segment subjected to axial compressive loads[J]. Spine,1995,20:689-98.
    [7]Chen CS, Cheng CK, Liu CL, et al. Stress analysis of the disc adjacent to interbody fusion in lumbar spine[J]. Med Eng Phys,2001,23:483-491.
    [8]Polikeit A, Ferguson SJ, Nolte LP, et al. Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages:finite element analysis[J]. Eur Spine J,2002,12:413-20.
    [9]Yoganadan N, KumaresanS, VooL, et al. Finite element applications in human cervical spine modeling[J].Spine,1996,21(15):1824-1834.
    [10]Turner MS, Clough RW, Martin HC, et al. Stiffness and deflection analysis of complex structure[J]. J Aero Sci,1956,23:805.
    [11]Brekelmans WA, Poort HW, Slooff TJ. A new method to analyse the mechanical behaviour of skeletal parts[J].Acta Orthop Scand,1972,43:301-317.
    [12]Rybicki EF, Simonen FA, Weis EB Jr. On the mathematical analysis of stress in the human femur[J]. J Biomech,1972,5:203-215.
    [13]Belytsehko T, Kulak RF, Sehultz AB, et al. Finite element stress analysis of an intervertebral disc[J]. J Biomech,1974,7:277-285.
    [14]LiuY k, Ray G, Hirsch. The resistance of the lumbar spine to direct shear [J]. Orthop Clin north Am,1975,6:277.
    [15]Andriacchi TP, Schultz AB, Belytschko T,et al. Milwaukee brace correction of idiopathic scoliosis:a biomechanical analysis and a restrospective study[J].J Bone Joint Surg Am,1976,58(6):806-815.
    [16]Viviani GR, Ghista DN, Lozada PJ, et al. Biomechanical analysis and simulation of scoliosis surgical correction[J].Clin Orthop Relat Res,1986 Jul;(208):40-47.
    [17]Guo LX, Teo EC, Lee KK, et al. Vibration characteristics of the human spine under axial cyclic loads:effect of frequency and damping[J]. Spine, 2005,30(6):631-637.
    [18]潘炜娟,张保卫,叶少波,等.牙齿与桩核三维有限元建模的初步探讨[J].口腔颌面修复学杂志,2000,1(3):1432-144.
    [19]夏荣.有限元法及其进展[J].中国口腔种植学杂志,1997,2(3):96-100.
    [20]魏斌.牙颌系统三维有限元建模方法的进展[J].口腔材料器械杂志,2002,11(2):86-87.
    [21]Aubin CE. Scoliosis study using finite element models. Stud Health Technol Inform 2002,91:309-313.
    [22]Kadoury S,Cheriet F,Dansereau J, et al. Three-dimensional reconstruction of the scoliotic spine and pelvis from uncalibrated biplanar X-ray images[J].J Spinal Disord Tech,2007,20(2):160-167.
    [23]Poulin F, Aubin CE, Stokes IA, et al. Biomechanical modeling of instrumentation for the scoliotic spine using flexible elements:a feasibility study[J].Ann Chir,1998,52(8):761-767.
    [24]Perie D, Aubin CE, Petit Y, et al. Boston brace correction in idiopathic scoliosis:a biomechanical study[J]. Spine,2003,28(15):1672-1677.
    [25]Aubin CE,Dansereau J,De Guise JA,et al. A study of biomechanical coupling between spine and rib cage in the treat-ment by orthosis of scoliosis [J].Ann Chir,1996,50(8):641-650.
    [26]汪正宇,刘祖德,王哲等.脊柱侧凸有限元模型的建立和参数优化[J].北京 生物医学工程,2008,27(1):28-32.
    [27]余慧琴,顾苏熙,李明等.脊柱侧凸三维有限元模型的建立及其意义[J].医用生物力学,2008,23(2):136-139.
    [28]Stokes IA, Laible JP. Three-dimensional osseo-ligamentous model of the thorax representing initiation of scoliosis by a symmeric growth[J]. J Biomech,1990, 23:589-595.
    [29]Garceau P, Beausejour M, Cheriet F, et al. Investigation of muscle recruitment patterns in scoliosis using a biomechanical finit element model[J]. Stud Health Technol Inform,2002,88:331-335.
    [30]Goto M, Kawakami N, Azegami H, et al. Buckling and bone modeling as factors in the development of idiopathic scoliosis[J]. Spine,2003,28:364-370.
    [31]Villemure I, Aubin CE, Dansereau J, et al. Simulation of progressive deformities in adolescent idiopathic scoliosis using a biomechanical model integrating vertebral growth modulation[J]. J Biomech Eng,2002,124(6):784-790.
    [32]Perie D, Sales De, Gauzy J, et al. Biomechanical evaluation of Cheneau-Toulouse-Munster brace in the treatment of scoliosis using optimisation approach and finite element method[J]. Med Biol Eng Comput,2002,40(3):296-301.
    [33]Perie D, Aubin CE, Petit Y, et al. Personalized biomechanical simulations of orthotic treatment in idiopathic scoliosis[J]. Clin Biomech,2004,19(2):190-195.
    [34]Lafage V, Dubousset J, Lavaste F, et al.3D finite element simulation of Cotrel-Dubousset correction[J]. Comput Aided Surg,2004,9(12):17-25.
    [35]Stokes IA, Gardner-Morse M. Three-dimensional simulation of Harrington distraction instrumentation for surgical correction of scoliosis[J]. Spine,1993, 18(16):2457-2464.
    [36]Lafon Y, Lafage V, Dubousset J, et al. Intraoperative three-dimensional correction during rod rotation technique[J]. Spine,2009,34(5):512-519
    [37]Lafon Y, Steib JP, Skalli W, et al. Intraoperative three dimensional correction during in situ contouring surgery by using a numerical model[J]. Spine, 2010,35(4):453-459.
    [38]Dumas R, Lafage V, Lafon Y, et al. Finite element simulation of spinal deformities correction by in situ contouring technique[J]. Comput Methods Biomech Biomed Engin,2005,8(5):331-337.
    [39]Kim HJ, Chun HJ, Kang KT,et al. A validated finite element analysis of nerve root stress in degenerative lumbar scoliosis. Med Biol Eng Comput, 2009,47(6):599-605.
    [1]Busscher I, van Dieen JH, Kingma I, et al. Biomechanical characterristics of different regions of the human spine:an in vitro study on multilevel spinal segments[J].Spine,2009,34(26):2858-2864.
    [2]Watkins R 4th, Watkins R 3rd, Williams L, et al. Stability provided by the sternum and rib cage in the thoracic spine[J]. Spine,2005,30(11):1283-1286.
    [3]Yamamoto I, Panjabi MM, Crisco T, et al. Three-dimensional Movements of the whole lumbar spine and lumbosacral joint[J]. Spine,1989,14(11):1256-1260.
    [4]Viviani GR, Ghista DN, Lozada PJ, et al. Biomechanical analysis and simulation of scoliosis surgical correction[J]. Clin Orthop Relat Res,1986,208:40-47.
    [5]Stokes IA, Gardner-Morse M. Three-dimensional simulation of Harrington distraction instrumentation for surgical correction of scoliosis[J]. Spine,1993, 18(16):2457-2464.
    [6]Patwardhan AG, Gavin TM, Bench WH, et al. Biomechanical comparison of the Milwaukee brace (CTLSO) and the TLSO for treatment of idiopathic scoliosis[J]. Journal of Prosthetics and Orthotics,1996,8(4):115-122.
    [7]Hideyuki A, Shunji M, Junzoh K, et al. Etiology of idiopathic scoliosis:a computational study[J]. Clinical Orthopaedics and Related Research,1998,357: 229-236.
    [8]Gignac D, Aubin CE, Labelle H. Optimization method for 3D bracing correction of scoliosis using a finite element model[J]. Eur Spine J,2000,9:185-190.
    [9]Grealou L, Aubin CE, Labelle H. Rib cage surgery for the treatment of scoliosis A biomechanical study[J]. Journal of Orthopaedic Research,2002,20: 1121-1128.
    [10]汪正宇,刘祖德,王哲,等.脊柱侧凸有限元模型的建立和参数优化[J].北京生物医学工程,2008,27(1):28-32.
    [11]汪正宇,刘祖德,王哲,等.青少年特发性脊柱侧凸有限元模型的建立及其意义[J].生物医学工程杂志,2008,25(5):1084-1085.
    [12]汪学松,吴志宏,王以朋,等.三维有限元法构建青少年特发性脊柱侧弯模型[J].中国组织工程研究与临床康复,2008,12(44):8610-8614.
    [13]王哲,汪正宇,王冬梅,等.基于CT图像的侧凸脊柱胸腰段及骶骨整体三维有限元模型的建立[J].计算机应用技术,2007,34(4):24-26.
    [14]Rohlmann A, Richter M, Zander T, et al. Effect of different surgical strategies on screw forces after correction of scoliosis with a VDS implant[J]. Eur Spine J,2006,15:457-464.
    [15]Nie WZ, Ye M, Liu ZD, et al. The patient-specific brace design and biomechanical analysis of adolescent idiopathic scoliosis[J]. J Biomech Eng. 2009,131(4):041007
    [1]Petit Y, Aubin CE, Labelle H. Patient-specific mechanical properties of a flexible multi-body model of the scoliotic spine[J]. Med Biol Eng Comput, 2004,42(1):55-60.
    [2]Nachemson A. The load on lumbardisks in different positions of the body[J]. Clin Orthop,1964,45:107-122.
    [3]Schultz A, Andersson G, Ortengren R, et al. Loads on the lumbar spine validation of a biomechanical analysis by measurements of intradiscal pressures and myoelectric signals[J]. J Bone Joint Surg(Am),1982,64:713-720.
    [4]Villemure I, Aubin CE, Dansereau J, et al. Biomechanical simulations of the spine deformation procession adolescent idiopathic scoliosis from different pathogenesis hypotheses [J]. Eur Spine J,2004,13:83-90.
    [5]Stokes IA, Laible JP. Three-dimensional osseo-ligamentous model of the thorax representing initiation of scoliosis by a symmeric growth[J]. J Biomech,1990, 23:589-595.
    [6]Vanderby R Jr, Daniele M, Patwardhan A, et al. A method for the identification of in-vivo segmental stiffness properties of the spine[J]. J Biomech Eng,1986,108(4):312-316.
    [7]Ghista DN, Viviani GR, Subbaraj K, et al. Biomechanical basis of optimal scoliosis surgical correction[J]. J Biomech,1988,21:77-88.
    [8]Lafage V, Dubousset J, Lavaste F, et al.3D finite element simulation of Cotrel-Dubousset correction[J]. Comput Aided Surg,2004,9(12):17-25.
    [9]汪正宇,刘祖德,王哲等.脊柱侧凸有限元模型的建立和参数优化[J].北京生物医学工程,2008,27(1):28-32.
    [10]Cheung KM, Luk KD. Prediction of correction of scoliosis with use of the fulcrum bending radiograph[J]. J Bone Joint Surg Am,1997,79(8):1144-1150.
    [11]Little JP, Adam CJ. The effect of soft tissue properties on spinal flexibility in scoliosis:biomechanical simulation of fulcrum bending.Spine,2009,34(2):E76-82.
    [12]刘文卿,实验设计[M],北京:清华大学出版社,2005.
    [1]李明,候铁胜.脊柱侧凸三维矫形理论与技术[M].第二军医出版社,2001,2:10
    [2]Cotrel Y, Dubousset J, Guillaumat M. New universal instrumentation in spinal surgery[J]. Clin Orthop Relat Res,1988,227:10-23.
    [3]Lafage V, Dubousset J, Lavaste F, et al.3D finite element simulation of Cotrel-Dubousset correction[J]. Comput Aided Surg,2004,9(12):17-25.
    [4]Aubin CE, Petit Y, Stokes IA, et al. Biomechanical modeling of posterior instrumentation of the scoliotic spine[J]. Comput Methods Biomech Biomed Engin, 2003,6:27-32.
    [5]Lafon Y, Lafage V, Dubousset J, et al. Intraoperative three-dimensional correction during rod rotation technique [J]. Spine,2009,34(5):512-519
    [6]Suk SI, Lee CK, Kim WJ, et al. Segmental pedicle screw fixation in the treatment of thoracic idiopathic scoliosis[J]. Spine,1995,20:1399-1405.
    [7]Nachemson A. The load on lumbardisks in different positions of the body[J]. Clin Orthop,1964,45:107-122.
    [8]Schultz A, Andersson G, Ortengren R, et al. Loads on the lumbar spine validation of a biomechanical analysis by measurements of intradiscal pressures and myoelectric signals[J]. J Bone Joint Surg(Am),1982,64:713-720.
    [9]Villemure I, Aubin CE, Dansereau J, et al. Biomechanical simulations of the spine deformation procession adolescent idiopathic scoliosis from different pathogenesis hypotheses[J]. Eur Spine J,2004,13:83-90.
    [10]Harrington PR. Treatment of scoliosis:correction and internal fixation by spine instrumentation[J]. J Bone Joint Surg Am,1962,44:591-610.
    [11]Dunn HK. Spinal instrumentation. Part Ⅰ. Principles of posterior and anterior instrumentation[J]. Instr Course Lect,1983,32:192-202.
    [12]Luque ER. Sagmental spinal instrumentation for the correction of scoliosis [J].Clin Orthop Ralat Res,1982,163:192-198.
    [13]Lenke LG, Bridwell KH, Blanke K, et al. Radiographic results of arthrodesis with Cotrel-Dubousset instrumentation for the treatment of adolescent idiopathic scoliosis. A five to ten-year follow up study[J]. J Bone Joint Surg Am, 1998,80(6):807-814.
    [14]Suk SI, Lee SM, Chung ER, et al. Determination of distal fusion level with segmental pedicle screw fixation in single thoracic idiopathic scoliosis[J]. Spine,2003,28(5):484-491.
    [15]Suk SI, Kim WJ, Lee SM, et al. Thoracic pedicle screw fixation in spinal deformities:are they really safe?[J]. Spine,2001,26(18):2049-2057.
    [16]Lee SM, Suk SI, Chung ER. Direct vertebral rotation:a new technique of three-dimensional deformity correction with segmental pedicle screw fixation in adolescent idiopathic scoliosis[J]. Spine,2004,29(3):343-349.
    [17]Lenke LG, Bridwell KH, Blanke K, et al. Analysis of pulmonary function and chest cage dimension changes after thoracoplasty in idiopathic scoliosis[J]. Spine,1995,20:1343-1350.
    [18]Gardner-Morse M, Stokes IA. Three-dimensional simulations of the scoliosis derotation maneuver with Cotrel-Dubousset instrumentation[J]. J Biomech, 1994,27(2):177-181.
    [19]Poulin F, Aubin CE, Stokes IA, et al. Biomechanical modeling of instrumentation for the scoliotic spine using flexible elements:a feasibility study [J].Ann Chir,1998,52(8):761-767.
    [20]胡明涛,韦兴,赵红平,等.后路椎弓根螺钉系统治疗特发性腰椎侧凸的有限元分型[J].医用生物力学,2007,22(4):367-372.
    [21]Bridwell KH. Selection of instrumentation and fusion levels for scoliosis: where to start and where to stop[J]. J Neurosurg Spine,2004, 1(1):1-8.
    [22]Shufflebarger H, Suk SI, Mardjetko S. Debate:determining the upper instrumented vertebra in the management of adult degenerative scoliosis:stopping at T10 versus L1 [J].Spine,2006,31(19 Suppl):185-194.
    [23]DeWald CJ, Stanley T. Instrumentation-related complications of multilevel fusions for adult spinal deformity patients over age 65:surgical considerations and treatment options in patients with poor bone quality[J]. Spine,2006,31(19 Suppl):144-151.
    [24]Kim YJ, Bridwell KH, Lenke LG, et al. An analysis of sagittal spinal alignment following long adult lumbar instrumentation and fusion to L5 or S1:can we predict ideal lumbar lordosis[J]. Spine,2006,31(20):2343-2352.
    [25]Kim YJ, Bridwell KH, Lenke LG, et al. Pseudarthrosis in primary fusions for adult idiopathic scoliosis:incidence, risk factors, and outcome analysis[J]. Spine,2005,30(4):468-474.
    [26]Suk SI, Kim JH, Lee SM, et al. Incidence of proximal adjacent failure in adult lumbar deformity correction[R]. SRS 38th Annual Meeting. Quebec, Canada:2003.
    [27]Swank S, Lonstein JE, Moe JH, et al. Surgical treatment of adult scoliosis:a review of two hundred and twenty-two cases[J]. J Bone Joint Surg Am,1981,63 (2):268.
    [28]Simmons ED, Huckell CB, Zheug Y. Proximal kyphosis,"Topping Off Syndrome", and retrolisthesis secondary to multilevel lumbar fusion in the elderly patients[R]. SRS Annual Meeting. Miami, USA:2005.
    [29]Kuklo TR. Principles for selecting fusion levels in adult spinal deformity with particular attention to lumbar curves and double major curves[J]. Spine,2006, 31(19 Suppl):132-138.
    [30]Kim YJ, Bridwell KH, Lenke LG, et al. Is the T9, T11, or L1 the more reliable proximal level after adult lumbar or lumbosacral instrumented fusion to L5 or S1[J].Spine,2007,32(24):2653-2661.
    [31]Cho KJ, Suk SI, Park SR,et al. Short fusion versus long fusion for degenerative lumbar scoliosis[J]. Eur Spine J,2008,17(5):650-656.
    [32]Bridwell KH, Edwards CC II, Lenke LG. The pros and cons to saving the L5-S1 motion segment in a long scoliosis fusion construct[J]. Spine,2003,28 (20s):234-242.
    [33]Polly DW Jr, Hmmill CL, Bridwell KH. Debate:to fuse or not to fuse to the sacrum, the fate of the L5-S1 disc[J]. Spine,2006,31(19 Suppl):179-184.
    [34]Kuhns CA, Bridwell KH, Lenke LG, et al. Thoracolumbar deformity arthrodesis stopping at L5:fate of the L5-S1 disc, minimum 5-year follow-up[J]. Spine,2007,32:2771-2776.
    [35]Cho KJ, Suk SI, Park SR, et al. Arthrodesis to L5 versus S1 in long instrumentation and fusion for degenerative lumbar scoliosis[J]. Eur Spine J,2009, 18(4):531-537.
    [36]Edwards CC Ⅱ, Bridwell KH, Patel A, et al. Long adult deformity fusions to L5 and the sacrum:a matched cohort analysis[J]. Spine,2004,29(18):1996-2005.
    [37]Edwards CC Ⅱ, Bridwell KH, Patel A, et al. Thoracolumbar deformity arthrodesis to L5 in adults:the fate of the L5-S1 disc [J]. Spine,2003,28 (18):2122-2131.
    [38]Aebi M. The adult scoliosis[J]. Eur Spine J,2005,14(10):925-948.
    [39]Joseph K, Joseph H, John E, et al. Complications in Long Fusion to the Sacrum for Adult Scoliosis[J]. Spine,2008,33(13):1478-1483.
    [40]Maeda T, Buchowski JM, Kim YJ, et al. Long adult spinal deformity fusion to the sacrum using rhBMP-2 versus autogenous iliac crest bone graft[J]. Spine,2009,34(20):2205-2212.
    [41]张宏其,邓盎,陈凌强,等.成人胸腰段或腰段脊柱侧凸合并Chiari畸形和脊髓空洞症的三维矫形及融合策略[J].中国矫形外科杂志,2009,17(23):1770-1774
    [1]Turner MS, Clough RW, Martin HC, et al. Stiffness and deflection analysis of complex structure[J]. J Aero Sci,1956,23:805
    [2]Brekelmans WA, Poort HW, Slooff TJ. A new method to analyse the mechanical behaviour of skeletal parts[J].Acta Orthop Scand,1972,43:301-317.
    [3]Rybicki EF, Simonen FA, Weis EB Jr. On the mathematical analysis of stress in the human femur[J].J Biomech,1972,5:203-215.
    [4]Belytsehko TB, Kulak RF, Sehultz AB, et al. Finite element stress analysis of an intervertebral disc[J]. J Biomech,1974,7:277-285.
    [5]LiuY k, Ray G, Hirsch. The resistance of the lumbar spine to direct shear[J]. Orthop Clin north Am,1975,6:277.
    [6]Andriacchi TP, Schultz AB, Belytschko T,et al. Milwaukee brace correction of idiopathic scoliosis:a biomechanical analysis and a restrospective study[J].J Bone Joint Surg Am,1976,58(6):806-815.
    [7]Viviani GR, Ghista DN, Lozada PJ, et al. Biomechanical analysis and simulation of scoliosis surgical correction[J].Clin Orthop Relat Res,1986 Jul;(208): 40-47.
    [8]Poulin F, Aubin CE, Stokes IA, et al. Biomechanical modeling of instrumentation for the scoliotic spine using flexible elements:a feasibility study [J].Ann Chir,1998,52(8):761-767.
    [9]Benameur S, Mignotte M, Parent S, et al.3D/2D registration and segmentation of scoliotic vertebrae using statistical models[J].Comput Med Imaging Graph,2003,27(5):321-337.
    [10]Le Bras A, Laporte S, Mitton D, et al.3D detailed reconstruction of vertebrae with low dose digital stereoradiography[J].Stud Health Technol Inform,2002,91:286-290.
    [11]Kadoury S,Cheriet F,Dansereau J,et al. Three-dimensional reconstruction of the scoliotic spine and pelvis from uncalibrated biplanar X-ray images[J].J Spinal Disord Tech,2007,20(2):160-167.
    [12]Pomero V, Mitton D, Laporte S, et al. Fast accurate stereora-diographic 3D-reconstruction of the spine using a combined geometric and statistic model[J]. Clin Biomech (Bristol,Avon),2004,19(3):240-247.
    [13]Perie D, Aubin CE, Petit Y, et al. Boston brace correction in idiopathic scoliosis:a biomechanical study[J]. Spine,2003,28(15):1672-1677.
    [14]Aubin CE, Dansereau J, De Guise JA, et al. A study of biom-echanical coupling between spine and rib cage in the treat-ment by orthosis of scoliosis[J]. Ann Chir,1996,50(8):641-650.
    [15]Aubin CE, Descrimes JL, Dansereau J, et al. Geometrical modeling of the spine and the thorax for the biomechanical analysis of scoliotic deformities using the finite element method[J]. Ann Chir,1995,49(8):749-761.
    [16]汪正宇,刘祖德,王哲等.脊柱侧凸有限元模型的建立和参数优化[J].北京生物医学工程,2008,27(1):28-32.
    [17]余慧琴,顾苏熙,李明等.脊柱侧凸三维有限元模型的建立及其意义[J].医用生物力学,2008,23(2):136-139.
    [18]Huynh AM, Aubin CE, Rajwani T, et al. Pedicle growth asymmetry as a cause of adolescent idiopathic scoliosis:a biomechanical study[J]. Eur Spine J, 2007,16(4):523-529.
    [19]van der Plaats A, Veldhuizen AG, Verkerke GJ, et al. Numerical simulation of asymmetrically altered growth as initiation mechanism of scoliosis[J]. Ann Biomed Eng,2007,35(7):1206-1215.
    [20]Carrier J, Aubin CE, Villemure I, et al. Biomechanical modelling of growth modulation following rib shortening or lengthening in adolescent idiopathic scoliosis[J].Med Biol Eng Comput,2004,42(4):541-548.
    [21]Stokes IA, Laible JP. Three-dimensional osseo-ligamentous model of the thorax representing initiation of scoliosis by a symmeric growth[J]. J Biomech,1990, 23:589-595.
    [22]Vanderby R Jr, Daniele M, Patwardhan A, et al. A method for the identification of in-vivo segmental stiffness properties of the spine[J]. J Biomech Eng,1986,108(4):312-316.
    [23]Ghista DN, Viviani GR, Subbaraj K, et al. Biomechanical basis of optimal scoliosis surgical correction[J]. J Biomech,1988,21:77-88.
    [24]Lafage V, Dubousset J, Lavaste F, et al.3D finite element simulation of Cotrel-Dubousset correction[J].Comput Aided Surg,2004,9(12):17-25.
    [25]Petit Y, Aubin CE, Labelle H. Patient-specific mechanical properties of a flexible multi-body model of the scoliotic spine[J]. Med Biol Eng Comput, 2004,42(1):55-60.
    [26]Duke K, Aubin CE, Dansereau J, et al. Biomechanical simulations of scoliotic spine correction due to prone position and anaesthesia prior to surgical instrumentation[J]. Clin Biomech(Bristol, Avon).2005; 20(9):923-931.
    [27]Cheung KM, Luk KD. Prediction of correction of scoliosis with use of the fulcrum bending radiograph[J]. J Bone Joint Surg Am,1997,79(8):1144-1150.
    [28]Little JP, Adam CJ. The effect of soft tissue properties on spinal flexibility in scoliosis:biomechanical simulation of fulcrum bending[J]. Spine,2009,34(2): E76-82.
    [29]Stokes IA, Gardner, Morse M. Analysis of the interaction between vertebral lateral deviation and axial rotation in scoliosis[J]. J Biomech,1991,24:753-759.
    [30]Azegami H, Murachi S, Kitoh J, et al. Etiology of idiopathic scoliosis. Computational study[J]. Clin Orthop Relat Res,1998,(357):229-236.
    [31]Garceau P, Beausejour M, Cheriet F, et al. Investigation of muscle recruitment patterns in scoliosis using a biomechanical finit element model[J]. Stud Health Technol Inform,2002,88:331-335.
    [32]Goto M, Kawakami N, Azegami H, et al. Buckling and bone modeling as factors in the development of idiopathic scoliosis[J]. Spine,2003,28:364-370.
    [33]Perie D, Hobatho MC, Baunin C,et al. Personalised mechanical properties of scoliotic vertebrae determined in vivo using tomodensitometry[J]. Comput Methods Biomech Biomed Engin,2002,5:161-165.
    [34]Villemure I, Aubin CE, Dansereau J, et al. Simulation of progressive deformities in adolescent idiopathic scoliosis using a biomechanical model integrating vertebral growth modulation[J]. J Biomech Eng,2002,124(6):784-790.
    [35]Villemure I, Aubin CE, Dansereau J, et al. Biomechanical simulations of the spine deformation process in adolescent idiopathic scoliosis from different pathogenesis hypotheses[J]. Eur Spine J,2004,13(1):83-90
    [36]Driscoll M, Aubin CE, Moreau A, et al. The role of spinal concave-convex biases in the progression of idiopathic scoliosis[J]. Eur Spine J,2009,18(2):180-187.
    [37]Aubin CE, Dansereau J, Labelle H. Biomechanical simulation of the effect of the Boston brace on a model of the scoliotic spine and thorax[J]. Ann Chir,1993,47(9):881-887.
    [38]Aubin CE, Dansereau J, De Guise JA, et al. A study of biomechanical coupling between spine and rib cage in the treat-ment by orthosis of scoliosis[J].Ann Chir,1996,50(8):641-650.
    [39]Gignac D, Aubin CE, Dansereau J, et al. Optimization method for 3D bracing correction of scoliosis using a finite element model[J]. Eur Spine J,2000,9(3):185-190.
    [40]Perie D, Sales De, Gauzy J, et al. Biomechanical evaluation of Cheneau-Toulouse-Munster brace in the treatment of scoliosis using optimisation approach and finite element method[J]. Med Biol Eng Comput,2002,40(3):296-301.
    [41]Perie D, Aubin CE, Petit Y, et al. Personalized biomechanical simulations of orthotic treatment in idiopathic scoliosis[J]. Clin Biomech,2004,19(2):190-195.
    [42]Perie D, Aubin CE, acroix M, et al. Biomechanical modeling of orthotic treatment of the scoliotic spine including a de-tailed representation of the brace-torso interface[J]. Med Biol Eng Comput,2004,42(3):339-344.
    [43]Liao YC, Feng CK, Tsai MW, et al. Shape Modification of the Boston Brace Using a Finite-Element Method With Topology Optimization[J]. Spine,2007, 32(26):3014-3019.
    [44]Clin J, Aubin CE, Parent S, et al. Comparison of the biomechanical 3D efficiency of different brace designs for the treatment of scoliosis using a finite element model. Eur Spine J.2010, [Epub ahead of print]
    [45]Torell G, Nachemson A, Haderspeck-Grib K, et al. Standing and supine Cobb measures in girls with idiopathic scoliosis[J]. Spine,1985,10(5):425-427.
    [46]Klepps SJ, Lenke LG, Bridwell KH, et al. Prospective comparison of flexibility radiographs in adolescent idiopathic scoliosis[J]. Spine,2001,26(21): E74-E79.
    [47]Behairy Y, Hauser D, Hill D, et al. Partial correction of Cobb angle prior to posterior spinal instrumentation[J]. Ann Saudi Med,2000,20(5-6):398-401.
    [48]Delorme S, Labelle H, Poitras B, et al. Pre-, intra-, and postoperative three-dimensional evaluation of adolescent idiopathic scoliosis[J]. J Spinal Disord,2000,13(2):93-101.
    [49]Duke K, Aubin CE, Dansereau J, et al. Computer simulation for the optimization of patient positioning in spinal deformity instrumentation surgery[J]. Med Biol Eng Comput,2008,46(1):33-41.
    [50]Belytsehko TB, Andriacchi TP, Schultz AB, et al. Analog studies of forces in the human spine:computational techniques[J]. J Biomech,1973,6(4):361-371.
    [51]Schultz AB, Hirsch C. Mechanical analysis of Harrington rod correction of idiopathic scoliosis[J]. J Bone Joint Surg Am,1973,55(5):983-992.
    [52]Stokes IA, Gardner-Morse M. Three-dimensional simulation of Harrington distraction instrumentation for surgical correction of scoliosis[J]. Spine,1993,18(16): 2457-2464.
    [53]Cotrel Y, Dubousset J. A new technic for segmental spinal osteosynthesis using the posterior approach[J]. Rev Chir Orthop Reparatrice Appar Mot,1984, 70(6):489-494.
    [54]Skalli W, Robin S, Lavaste F, et al. A biomechanical analysis of short segment spinal fixation using a three-dimensional geometric and mechanical model[J]. Spine,1993,18(5):536-545.
    [55]Gardner-Morse M, Stokes IA. Three-dimensional simulations of the scoliosis derotation maneuver with Cotrel-Dubousset instrumentation[J]. J Biomech, 1994,27(2):177-181.
    [56]Krismer M, Bauer R, Sterzinger W. Scoliosis correction by Cotrel-Dubousset instrumentation:the effect of derotation and three dimensional correction[J]. Spine,1992,17(8):S263-S269.
    [57]Moens P, Vanden Berghe L, Fabry G, et al. The Cortel-Dubousset device: prospective study on derotation[J]. Rev Chir Orthop Reparatrice Appar Mot,1995, 81(5):428-32.
    [58]Aubin CE, Petit Y, Stokes IA, et al. Biomechanical modeling of posterior instrumentation of the scoliotic spine[J]. Comput Methods Biomech Biomed Engin, 2003,6:27-32
    [59]Lafon Y, Lafage V, Dubousset J, et al. Intraoperative three-dimensional correction during rod rotation technique[J]. Spine,2009,34(5):512-519
    [60]Dumas R, Lafage V, Lafon Y, et al. Finite element simulation of spinal deformities correction by in situ contouring technique[J]. Comput Methods Biomech Biomed Engin,2005,8(5):331-337.
    [61]Lafon Y, Steib JP, Skalli W, et al. Intraoperative three dimensional correction during in situ contouring surgery by using a numerical model[J]. Spine, 2010,35(4):453-459.
    [62]Wang X, Aubin CE, Labelle H, et al. Biomechanical modelling of a direct vertebral translation instrumentation system:preliminary results[J]. Stud Health Technol Inform,2008,140:128-132.
    [63]Lalonde NM, Aubin CE, Pannetier R, et al. Finite element modeling of vertebral body stapling applied for the correction of idiopathic scoliosis:preliminary results[J]. Stud Health Technol Inform,2008,140:111-115.
    [64]Rohlmann A, Zander T, Burra NK, et al. Flexible non-fusion scoliosis correction systems reduce intervertebral rotation less than rigid implants and allow growth of the spine:a finite element analysis of different features of orthobiom[J]. Eur Spine J,2008,17(2):217-223.
    [65]Grealou L, Aubin CE, Labelle H. Rib cage surgery for the treatment of scoliosis:a biomechanical study of correction mechanisms[J].J Orthop Res,2002, 20(5):1121-1128.
    [66]Carrier J, Aubin CE, Trochu F, et al. Optimization of rib surgery parameters for the correction of scoliotic deformities using approximation models[J]. J Biomech Eng,2005,127(4):680-691.
    [67]Rohlmann A, Richter M, Zander T, et al. Effect of different surgical strategies on screw forces after correction of scoliosis with a VDS implant[J]. Eur Spine J,2006,15(4):457-464.
    [1]Sengupta DK, Herkowitz HN. Lumbar spinal stenosis:treatment strategies and indications for surgery [J]. Orthop Clin North Am,2003,34(2):281-295.
    [2]Jennis LG, An HS. Spine update:lumbar foraminal stenosis[J]. Spine, 2000,25(3):389-394.
    [3]Arnoldi CC, Brodsky AE, Cauchoix J, et al. Lumbar spinal stenosis and nerve root entrapment syndromes[J]. Clin Orthop Relat Res,1976,115:4-5.
    [4]Grubb SA, Lipscomb HJ. Diagnostic findings in painful adult scoliosis [J].Spine,1992,17(5):518-527
    [5]Bridwell KH. Degenerative Scoliosis. The Textbook of Spinal Surgery [M].Philadelphia:JB Lippin2 Cott,1997.728-741.
    [6]Simmons ED. Surgical treatment of patients with lumbar spinal stenosis with associated scoliosis[J]. Clin Orthop Relat Res,2001,384:45-53.
    [7]Liu H, Ishihara H, Kanamori M, et al. Characteristics of nerve root compression caused by degenerative lumbar spinal stenosis with scoliosis[J]. Spine J,2003,3(6):524-9.
    [8]Kuklo TR. Principles for selecting fusion levels in adult spinal deformity with particular attention to lumbar curves and double major curves[J]. Spine,2006,31(19 Suppl):132-138.
    [9]Aebi M. The adult scoliosis[J]. Eur Spine J,2005,14(10):925-948.
    [10]Gupta MC. Degenerative scoliosis:Options for surgical management[J]. Orthop Clin North Am,2003,34:269-279.
    [11]Faldini C, Pagkrati S, Grandi G, et al. Degenerative lumbar scoliosis: features and surgical treatment[J]. J Orthop Traumatol,2006,7(2):67-71.
    [12]史亚民,张光铂.如何掌握退变性脊柱侧凸的手术适应证[J].中国脊柱脊髓杂志,2006,16(3):178-179.
    [13]Weidenbaum M. Considerations for focused surgical intervention in the presence of adult spinal deformity[J]. Spine,2006,31(19 Suppl):139-143.
    [14]Shufflebarger H, Suk SI, Mardjetko S. Debate:determining the upper instrumented vertebra in the management of adult degenerative scoliosis:stopping at T10 versus L1[J]. Spine,2006,31(19 Suppl):185-194.
    [15]Lonstein JE. Scoliosis:surgical versus nonsurgical treatment[J]. Clin Orthop Relat Res,2006,443:248-59.
    [16]Oskouian RJ Jr, Shaffrey CI. Degenerative lumbar scoliosis[J]. Neurosurg Clin N Am,2006,17(3):299-315.
    [17]Daffner SD, Vaccaro AR. Adult degenerative lumbar scoliosis[J]. Am J Orthop,2003,32(2):77-82.
    [18]刘宪义,李淳德,李宏,等.退行性腰椎侧凸的手术治疗[J].中国脊柱脊髓杂志,2006,16(3):192-195.
    [19]DeWald CJ, Stanley T. Instrumentation-related complications of multilevel fusions for adult spinal deformity patients over age 65:surgical considerations and treatment options in patients with poor bone quality[J]. Spine,2006,31(19 Suppl): 144-151.
    [20]Kobayashi T, Atsuta Y, Takemitsu M, et al. A prospective study of de novo scoliosis in a community based cohort[J]. Spine,2006,31(2):178-182.
    [21]Glassman SD, Bridwell KH, Dimar JR, et al. The impact of positive sagittal balance in adult spinal deformity[J]. Spine,2005,30(18):2024-2029.
    [22]Bridwell KH. Selection of instrumentation and fusion levels for scoliosis: where to start and where to stop[J]. J Neurosurg Spine,2004, 1(1):1-8.
    [23]Edwards CC Ⅱ, Bridwell KH, Patel A, et al. Long adult deformity fusions to L5 and the sacrum:a matched cohort analysis[J]. Spine,2004,29(18):1996-2005.
    [24]Gremeaux V, Casillas JM, Fabbm Peray E, et al. Analysis of low back pain in adults with scoliosis[J]. Spine,2008,33(4):402-405.
    [25]Wu CH, Wong CB, Chen LH, el al. Instrumented posterior lumbar interbody fusion for patients with degenerative lumbar scoliosis[J]. J Spinal Disord Tech,2008,21:310-315.
    [26]Crandall DG, Revella J. Transforaminal lumbar interbody fusion versus anterior lumbar interbody fusion as an adjunct to posterior instrumented correction of degenerative lumbar scoliosis:three year clinical and radiographic outcomes[J]. Spine,2009,34(20):2126-2133.
    [27]Kim YB, Lenke LG, Kim YJ, et al. Surgical Treatment of Adult Scoliosis: is anterior apical release and fusion necessary for the lumbar curve?[J]. Spine,2008,33(10):1125-1132.
    [28]Good CR, Lenke LG, O'Leary PT, et al. Can Posterior-Only Surgery Provide Similar Radiographic and Clinical Results as Combined Anterior (Thoracotomy/ Thoracoabdominal)/Posterior Approaches for Adult Scoliosis[J]. Spine,2009,35 (2):210-218.
    [29]Gertzbein SD, Betz R, Clements D, et al. Semirigid instrumentation in the management of lumbar spinal conditions combined with circumferential fusion[J]. Spine,1996,21:1918-1925.
    [30]Kozak JA, O'Brien JP. Simultaneous combined anterior and posterior fusion. An independent analysis of a treatment for the disabled low-back pain patient[J]. Spine,1990,15:322-328.
    [31]Cho KJ, Suk SI, Park SR, et al. Short fusion versus long fusion for degenerative lumbar scoliosis[J]. Eur Spine J,2008,17(5):650-656.
    [32]Kim YJ, Bridwell KH, Lenke LG, et al. An analysis of sagittal spinal alignment following long adult lumbar instrumentation and fusion to L5 or S1:can we predict ideal lumbar lordosis[J]. Spine,2006,31(20):2343-2352.
    [33]Kim YJ, Bridwell KH, Lenke LG, et al. Pseudarthrosis in primary fusions for adult idiopathic scoliosis:incidence, risk factors, and outcome analysis[J]. Spine,2005,30(4):468-474.
    [34]Edwards CC Ⅱ, Bridwell KH, Patel A, et al. Thoracolumbar deformity arthrodesis to L5 in adults:the fate of the L5-S1 disc[J]. Spine,2003,28 (18):2122-2131.
    [35]Kim YJ, Bridwell KH, Lenke LG, et al. Pseudarthrosis in long adult spinal deformity instrumentation and fusion to the sacrum:prevalence and risk factor analysis of 144 cases[J]. Spine,2006,31(20):2329-2336.
    [36]Suk SI, Kim JH, Lee SM, et al. Incidence of proximal adjacent failure in adult lumbar deformity correction[R]. SRS 38th Annual Meeting. Quebec, Canada:2003.
    [37]Kim YJ, Bridwell KH, Lenke LG, et al. Is the T9, T11, or L1 the more reliable proximal level after adult lumbar or lumbosacral instrumented fusion to L5 or S1[J].Spine,2007,32(24):2653-2661.
    [38]Lattig F. Bone cement augmentation in the prevention of adjacent segment failure after multilevel adult deformity fusion[J]. J Spinal Disord Tech,2009,22(6): 439-43.
    [39]Polly DW Jr, Hmmill CL, Bridwell KH. Debate:to fuse or not to fuse to the sacrum, the fate of the L5-S1 disc[J]. Spine,2006,31(19 Suppl):179-184.
    [40]Bridwell KH, Edwards CC Ⅱ, Lenke LG. The pros and cons to saving the L5-S1 motion segment in a long scoliosis fusion construct[J]. Spine,2003,28(20s): 234-242.
    [41]Kuhns CA, Bridwell KH, Lenke LG, et al. Thoracolumbar deformity arthrodesis stopping at L5:fate of the L5-S1 disc, minimum 5-year follow-up[J]. Spine,2007,32:2771-2776.
    [42]Joseph K, Joseph H, John E, et al. Complications in Long Fusion to the Sacrum for Adult Scoliosis[J]. Spine,2008,33(13):1478-1483.
    [43]Tsuchiya K, Bridwell KH, Kuklo TR, et al. Minimum 5-year analysis of L5-S1 fusion using sacropelvic fixation (bilateral S1 and iliac screws) for spinal deformity[J]. Spine,2006,31(3):303-308.
    [44]Maeda T, Buchowski JM, Kim YJ, et al. Long adult spinal deformity fusion to the sacrum using rhBMP-2 versus autogenous iliac crest bone graft[J]. Spine,2009,34(20):2205-2212.
    [45]Cho KJ, Suk SI, Park SR, et al. Arthrodesis to L5 versus S1 in long instrumentation and fusion for degenerative lumbar scoliosis[J]. Eur Spine J,2009, 18(4):531-537.
    [46]Cho KJ, Suk SI, Park SR, et al. Complications in posterior fusion and instrumentation for degenerative lumbar scoliosis[J]. Spine,2007,32(20):2232-2237.
    [47]Akbamia BA, Ogilvie JW, Hammerber KW. Debate:degenerative scoliosis to operate or not to operate[J]. Spine,2006,31(19 Suppl):195-201.
    [48]Baron EM, Albert TJ. Medical complications of surgical treatment of adult spinal deformity and how to avoid them[J]. Spine,2006,31(19 Suppl):S106-S118.
    [49]Daubs MD, Lenke LG, Cheh G, et al. Adult spinal deformity surgery: complications and outcomes in patients over age 60[J]. Spine,2007,32(20):2238- 2244.
    [50]Pull Ter Gunne AF, van Laarhoven CJ, Cohen DB. Incidence of surgical site infection following adult spinal deformity surgery:an analysis of patient risk[J]. Eur Spine J,2010 Jan 12,[Epub ahead of print].
    [51]Pichelmann MA, Lenke LG, Good CR, et al. Revision Rates Following Primary Adult Spinal Deformity Surgery:Six Hundred Forty-Three Consecutive Patients Followed-Up to Twenty-Two Years Postoperative[J]. Spine,2010,35(2):219-226.
    [52]Mok JM, Cloyd JM, Bradford DS, et al. Reoperation after primary fusion for adult spinal deformity:rate, reason, and timing[J]. Spine,2009,34(8):832-9.
    [53]Bess S, Boachie-Adjei O, Burton D, et al. Pain and disability determine treatment modality for older patients with adult scoliosis, while deformity guides treatment for younger patients[J]. Spine,2009,34 (20):2186-2190.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700