用户名: 密码: 验证码:
异氟烷预处理对心脏换瓣术病人心肌基因表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:在确定异氟烷预处理能减轻心脏瓣膜置换术(cardiac valves replacement, CVR)病人术后心肌显微结构、降低血浆基质金属蛋白酶(metrix metalloproteinase, MMP)-9和血管假性血友病因子(von Willebrand factor, vWF)浓度的基础上,应用基因芯片技术,观察异氟烷预处理对CVR病人心肌基因表达的影响,构建相关基因表达改变框架,深入观察异氟烷预处理对CVR病人心肌保护机制,为CVR病人最适麻醉用药提供理论基础。
     方法:择期体外循环(cardiopulmonary bypass, CPB)下心脏二尖瓣和主动脉瓣联合瓣膜置换术成年病人,随机分为对照组和试验组。试验组在麻醉诱导后吸入1.1%-1.2%(呼气末浓度)的异氟烷30min,洗脱15min。对照组不吸入异氟烷,其余麻醉用药同试验组。分别于麻醉诱导后吸入异氟烷前(T0)、主动脉开放30min (T1)、关胸后(T2)、主动脉开放后6h(T3)、12h(T4)及24h(T5)应用Swan-Gans漂浮导管测心功能;分别于T0、T1、T3、T4和T5经桡动脉取血测血浆MMP-9和vWF浓度;于上腔静脉插管时(主动脉阻断前)和上腔静脉退管时(主动脉开放后)取部分右心耳组织观察其显微结构和检测两组差异表达基因。最后,利用实时荧光定量聚合酶链式反应(polymerase chain reaction, PCR)技术对基因检测结果进行验证。
     结果:和T0比较,试验组和对照组平均动脉压(mean arterial blood pressure, MABP)在T1-T4时降低(P<0.05或P<0.01),肺动脉阻塞压(pulmonary artery obstruction pressure, PAOP)在T2-T5时降低(P<0.05或P<0.01),体循环血管阻力(systemic vascular resistance,SVR)在T1-T5降低,左心室心搏做功指数(left ventricular-stroke work index, LVSWI)、心输出量(cardiac output, CO)和每博输出量(stroke volume, SV)在T1-T5时均升高(P<0.05或P<0.01);血浆MMP-9浓度对照组在T1-T4升高(P<0.01)、试验组在T1升高(P<0.01);血浆vWF浓度对照组在T1、T4和T5降低(P<0.05)、试验组在Tl-T5降低(P<0.05或P<0.01),以上差异均有统计学意义。和对照组比较,试验组PAOP在T5时降低(P<0.05),LVSWI和CO在T3-T5时升高(P<0.05或P<0.01),SV在T4-T5时升高(P<0.05),血浆MMP-9浓度在T3降低(P<0.01),vWF浓度在T1及T3降低(P<0.05),以上差异有统计学意义。光镜和电镜下可见试验组主动脉开放后心肌细胞显微结构损伤轻于对照组。基因芯片共检测出22条2倍及2倍以上差异表达基因。从基因编码的蛋白质细胞分布区域来看,有一半分布在细胞外区或细胞膜上。数量最多的是信号转导基因,共有9条,主要涉及蛋白激酶信号通路。将检测到的2倍及2倍以上差异表达基因从功能上分为以下几类:信号通路和信号转导、免疫功能、内环境稳态、细胞粘附、细胞外基质和细胞骨架、细胞凋亡及增加氧供。实时荧光定量PCR验证了NM 007350、NR 002196和BC042589三条基因。证实和对照组比较,实验组NM_007350表达下调,NR_002196和BC042589表达上调,与基因芯片检测结果一致。
     结论:1.异氟烷预处理可改善心脏联合瓣膜置换术病人术后24h心功能;2.异氟烷预处理可降低心脏联合瓣膜置换术病人主动脉开放后6h内血浆MMP-9和vWF浓度;3.异氟烷预处理可减轻心脏联合瓣膜置换术病人术后心肌细胞显微结构损伤;4.异氟烷预处理对心脏联合瓣膜置换术病人术后心肌基因表达有影响,可能涉及对信号通路和信号转导、免疫功能、内环境稳态、细胞粘附、细胞外基质和细胞骨架、细胞凋亡及增加氧供等基因转录的改变。
Objective On the basis of confirmation that myocardial microstructure can be improved as well as plasma level of metrix metalloproteinase(MMP)-9 and von Willebrand factor(vWF) can be decreased by isoflurane preconditioning after surgery in patients undergoing cardiac valves replacement(CVR), myocardial gene expression profiles affected by isoflurane preconditioning were detected with gene microarray, aiming to constructing the framework of related gene expression profiles and revealing the mechanisms of myocardial protection with isoflurane preconditioning and to providing the proper anesthetics usage in CVR surgery patient.
     Methods Patients with CVR surgery were randomly assigned to receive either isoflurane of 1.0 minimum alveolar concentration end-tidal(1.1%-1.2%) for 30 min followed by a 15-min washout period before the beginning of cardiopulmonary bypass(CPB)(study group) or not(control group). Cardiac function was assessed using a pulmonary artery catheter at the time after anesthetic induction as well as before inhalating isoflurane(T0), at 30 min after aortic clamp opening (T1), closion of thorax (T2), and at 6 h(T3),12 h(T4) and 24 h(T5) after aortic clamp opening, respectively. Blood samples were obtained at the time of To, T1, T3, T4, T5, respectively. Right atrial appendage was sampled for observation of myocardial microstructure and detection of gene expression profiles at the time when catheter of superior vena caval was inserted into precava and when the catheter was extracted respectively. At last, gene expression profiles that obtained in the study was verified with fluorescence quantitative real-time polymerase chain reaction(PCR).
     Results Comparing with To, in both study and test group, a significant decrease of mean arterial blood pressure (MABP) was detected at T1-T4(P<0.05或P<0.01), a significant decrease of mean pulmonary arterial pressure(PAOP) was detected at T2-T5(P<0.05或P<0.01), a significant decrease of systemic vascular resistance(SVR) was detected at T1-T5(P<0.05或P<0.01), a significant increase of left ventricular stroke work index(LVSWI), stroke volume(SV) and cardiac output(CO) were detected at T1-T5(P< 0.05 or P<0.01). Still comparing with To, plasma level of MMP-9 increased significantly at T1-T4 in control group and at T1 in study group, respectively. Plasma level of vWF decreased significantly at T1, T4 and T5 in control group and at T1-T5 in study group, respectively. Comparing with control group, PAOP decreased significantly at T5(P<0.05), LVSWI and CO increased significantly at T3-T5 (P<0.05 or P<0.01), SV increased significantly at T4-T5 in study group, and there was a significant decrease with MMP-9 level at T3 and vWF at T1 and T3 in study group(P<0.05) when comparing with control group. Myocardial microstructure was better in study group when comparing with control group. There were total 22 differential expression genes regulated up or down 2 fold or greater than 2 fold in study group when compared with control group detected with gene microarray. Half of these corresponding proteins locate extracellularly or in cell membrane. There were 9 genes that their functions involve in signaling pathways. The function of all these genes mainly involved in signaling pathway, immunity, homeostasis, cell adhesion, extracellular matrix and cell skeleton, apoptosis, oxygen delivery and so on, and the most amount of these genes was involved in signaling pathways. Then,3 of these 22 genes were detected with fluorescence quantitative real-time PCR and its results were coincident to that of gene microarray.
     Conclusion 1. Cardiac function can be improved by isoflurane preconditioning in 24 h of CVR surgery patient.2. Plasma level of MMP-9 and vWF can be decreased by isoflurane preconditioning in 6 h of CVR surgery patient.3. Myocardial microstructure can be improved by isoflurane preconditioning in CVR surgery patient.4. Myocardial gene expression profiles can be altered by isoflurane preconditioning in CVR surgery patient which maybe principally involved in signaling pathway, immunity, homeostasis, cell adhesion, extracellular matrix and cell skeleton, apoptosis, oxygen delivery and so on.
引文
[1]Franke A, Lante W, Fackeldey V, et al. Pro-inflammatory cytokines after different kinds of cardiothoracic surgical procedures:is what we see what we know? Eur J Cardiothorac Surg 28(4):569-575
    [2]Suleiman M-S, Zacharowski K, Angelini GD. Inflammatory response and cardioprotection during open-heart surgery:the importance of anaesthetics. Br J Pharmac,2008,153(8):21-33
    [3]Bignami E, Biondi-Zoccai G, Landoni G, et al. Volatile anesthetics reduce mortality in cardiac surgery. J Cardiothorac Vasc Anesth,2009,23(5):594-599
    [4]Yu CH, Beattie WS. The effects of volatile anesthetics on cardiac ischemic complications and mortality in CABG:a meta-analysis. Can J Anesth,2006, 53(9):906-918
    [5]Symons JA, Myles PS. Myocardial protection with volatile anaesthetic agents during coronary artery bypass surgery:a meta-analysis. Br J Anaesth,2006, 97(2):127-136
    [6]Warltier DC, al-Wathiqui MH, Kampine JP, et al. Recovery of contractile function of stunned myocardium in chronically instrumented dogs is enhanced by halothane or isoflurane. Anesthesiology,1988,69(4):552-565
    [7]Stadnicka A, Marinovic J, Bienengraeber M, et al. Impact of in vivo preconditioning by isoflurane on adenosine triphosphate-sensitive potassium channels in the rat heart. Anesthesiology,2006,104(3):503-510
    [8]Marinovic J, Bosnjak ZJ, Stadnicka A. Preconditioning by isoflurane induces lasting sensitivation of the cardiac sarcolemmal adenosine triphosphate-sensitive potassium channel by a protein kinase C-δ-mediated mechanism. Anesthesiology, 2005,103(3):540-547
    [9]An JZ, Stadnicka A, Kwok WM, et al. Contribution of reactive oxygen species to isoflurane-induced sensitization of cardiac sarcolemmal adenosine triphosphate-sensitive potassium channel to pinacidil. Anesthesiology,2004, 100(3):575-580
    [10]Stadnicka A, Kwok WM, Warltier DC, et al. Protein tyrosine kinase-dependent modulation of isoflurane effects on cardiac sarcolemmal KATP channel.Anesthesiology,2002,97(5):1198-1208
    [11]Ludwig LM, Tanaka K, Eells JT, et al. Preconditioning by isoflurane is mediated by reactive oxygen species generated from mitochondrial electron transport chain complex Ⅲ. Anesth Analg,2004,99(5):1308-1315
    [12]Chen CH, Liu K, Chan JY. Anesthetic preconditioning confers acute cardioprotection via upregulation of manganese superoxide dismutase and preservation of mitochondrial respiratory enzyme activity. Shock,2008,29(2): 300-308
    [13]Tanaka K, Weihrauch D, Kehl F, et al. Mechanism of preconditioning by isoflurane in rabbits:a direct role for reactive oxygen species. Anesthesiology, 2002,97(6):1485-1490
    [14]Novalija E, Kevin LG, Camara AK, et al. Reactive oxygen species precede the epsilon isoform of protein kinase C in the anesthetic preconditioning signaling cascade. Anesthesiology,2003,99(2):421-428
    [15]Novalija E, Kevin LG,Eells JT, et al. Anesthetic preconditioning improves adenosine triphosphate synthesis and reduces reactive oxygen species formation in mitochondria after ischemia by a redox dependent mechanism. Anesthesiology, 2003,98(5):1155-1163
    [16]Ludwig LM, Weihrauch D, Kersten JR., et al. Protein kinase C translocation and Src protein tyrosine kinase activation mediate isoflurane-induced preconditioning in vivo:potential downstream targets of mitochondrial adenosine triphosphate-sensitive potassium channels and reactive oxygen species. Anesthesiology,2004; 100(3):532-539
    [17]Tanaka K, Weihrauch D, Ludwig LM, et al. Mitochondrial adenosine triphosphate-regulated potassium channel opening acts as a trigger for isoflurane-induced preconditioning by generating reactive oxygen species. Anesthesiology,2003,98(4):935-943
    [18]Zaugg M, Lucchinetti E, Spahn DR, Pasch T, Schaub MC. Volatile anesthetic mimic cardial preconditioning by priming the activation of mitochondrial KATP channels via multiple signaling pathways. Anesthesiology,2002,97(1):4-14
    [19]Jiang MT, Nakae Y, Ljubkovic M, et al. Isoflurane activates human cardiac mitochondrial adenosine triphosphate-sensitive K+channels reconstituted in lipid bilayers. Anesth Analg,2007,105(4):926-932
    [20]Masui K, Kashimoto S, Furuya A, et al. Isoflurane and sevoflurane during reperfusion prevent recovery from ischaemia in mitochondrial KATP channel blocker pretreated hearts. Eur J Anaesthesiol,2006,23(2):123-129
    [21]Pravdic D, Sedlic F, Mio Y, et al. Anesthetic-induced preconditioning delays opening of mitochondrial permeability transition pore via protein kinase C-epsilon-mediated pathway. Anesthesiology,2009,111(2):267-274
    [22]Tampo A, Hogan CS, Sedlic F, et al. Accelerated inactivation of cardiac L-type calcium channels triggered by anaesthetic-induced preconditioning. Br J Pharmacol,2009,156(3):432-443
    [23]Raphael J, Rivo J, Gozal Y. Isoflurane-induced myocardial preconditioning is dependent on phosphatidylinositiol-3-kinase/Akt signaling. British Journal of Anaesthesia,2005; 95(6):756-763
    [24]da Silva R, Grampp T, Pasch T, Schaub MC, Zaugg M. Differential activation of mitogen-activated protein kinases in ischemic and anesthetic preconditioning. Anesthesiology,2004,100(1):59-69
    [25]Wang C, Weihrauch D, Schwabe DA, et al. Extracellular signal-regulated kinases trigger isoflurane preconditioning concomitant with upregulation of hypoxia-inducible factor-1alpha and vascular endothelial growth factor expression in rats. Anesth Analg,2006,103(2):281-288
    [26]Raphael J, Abedat S, Rivo J,Meir K, Beeri R, Pugatsch T, Zuo Z, Gozal Y. Volatile anesthetic preconditioning attenuates myocardial apoptosis in rabbits after regional ischemia and reperfusion via Akt signaling and modulation of Bcl-2 family proteins. J Pharmacol Exp Ther,2006,318(1):186-194
    [27]Jamnicki-Abegg M, Weihrauch DDVM, Pagel PS, Kersten JR, Bosnjak ZJ, Warltier DC, Bienengraeber MW. Isoflurane inhibits cardiac myocyte apoptosis during oxidative and inflammatory stress by activating Akt and enhancing Bcl-2 expression. Anesthesiology,2005,103(5):1006-1014
    [28]Venkatapuram S, Wang C, Krolikowski JG, et al. Inhibition of apoptotic protein p53 lowers the threshold of isoflurane-induced cardioprotection during early reperfusion in rabbits. Anesth Analg,2006,103(6):1400-1405
    [29]徐军美,杨昭云,常业恬,等.吸入麻醉药预处理对兔缺血再灌注心肌Bcl-2、Bax及p53基因表达的影响.中华麻醉学杂志,2003,23(8):596-599
    [30]徐军美,常业恬,曹德全,等.吸入麻醉药预处理对兔心肌缺血再灌注中心肌细胞凋亡的影响.中华麻醉学杂志,2002,22(8):483-485
    [31]Hu G, Salem MR, Crystal GJ. Role of adenosine receptors in volatile anesthetic preconditioning against neutrophil-induced contractile dysfunction in isolated rat hearts. Anesthesiology,2005,103(2):287-295
    [32]Hu G, Vasiliauskas T, Salem MR, et al. Neutrophils pretreated with volatile anesthetics lose ability to cause cardiac dysfunction. Anesthesiology,2003, 98(3):712-718
    [33]Weber NC, Kandler JC, Schlack W, et al. Intermitted pharmacologic pretreatment by xenon, isoflurane, nitrous oxide, and the opioid morphine prevents tumor necrosis factor [alpha]-induced adhesion molecule expression in human umbilical vein endothelial cells. Anesthesiology,2008,108(2):199-207
    [34]Hu G, Salem MR, Crystal GJ. Isoflurane and sevoflurane precondition against neutrophil-induced contractile dysfunction in isolated rat hearts. Anesthesiology, 2004,100(3):489-497
    [35]de Klaver M, Manning L, Palmer LA, et al. Isoflurane pretreatment inhibits cytokine-induced cell death in cultured rat smooth muscle cells and human endothelial cells. Anesthesiology,2002,97(1):24-32
    [36]Amour J, Brzezinska AK, Weihrauch D, et al. Role of heat shock protein 90 and endothelial nitric oxide synthase during early anesthetic and ischemic preconditioning. Anesthesiology,2009,110(2):317-325
    [37]Sergeev P, da Silva R, Lucchinetti E, Zaugg K, Pasch T, Schaub MC, Zaugg M. Trigger-dependent gene expression profiles in cardiac preconditioning:evidence for distict genetic programs in ischemic and anesthetic preconditioning. Anesthesiology,2004; 100(3):474-488
    [38]Lucchinetti E, da Silva R, Pasch T, Schaub MC, Zaugg M. Anaesthetic preconditioning but not postconditioning prevents early activation of the deleterious cardiac remodeling programme:evidence of opposing genomic responses in cardioprotection by pre-and postconditioning. Br J Anaesth,2005; 95(2):140-152
    [39]da Silva R, Lucchinetti E, Pasch T, et al. Ischemic but not pharmacological preconditioning elicits a gene expression profile similar to unprotected myocardium. Physiol Genomics,2004,20(1):117-130
    [40]Belhomme D, Peynet J, Louzy M, et al. Evidence for preconditioning by isoflurane in coronary artery bypass graft surgery [J]. Circulation,1999,100(19 Suppl):Ⅱ340-Ⅱ344
    [41]Ndoko SK, Tual L, Mamar BA, et al. Isoflurane,0.5 minimum alveolar concentration administered through the precardiopulmonary bypass period,reduces postoperative dobutamine requirements of cardiac surgery patients:a randomized study. J Cardioth Vasc Anesth,2007,21(5):683-689
    [42]Lee MC, Chen CH, Kuo MC, et al. Isoflurane preconditioning-induced cardio-protection in patients undergoing coronary artery bypass grafting. European Journal of Anaesthesiology,2006,23:841-847
    [43]Tritapepe L, Landoni G, Guarracino F, et al. Cardiac protection by volatile anaesthetics:a multicentre randomized controlled study in patients undergoing coronary artery bypass grafting with cardiopulmonary bypass. Eur J Anaesthesiol, 2007,24(4):323-331
    [44]Bignami E, Biondi-Zoccai G, Landoni G, et al. Volatile anesthetics reduce mortality in cardiac surgery. J Cardiothorac Vasc Anesth,2009,23(5):594-599
    [45]谭嵘,徐军美,冯华,等.异氟醚麻醉对体外循环心脏瓣膜置换术患者心肌的保护作用.中华麻醉学杂志,2005,25(4):316-318
    [46]曹德权,陈艳平,常业恬.异氟醚预处理对心脏瓣膜置换术病人血清一氧化氮与肌钙蛋白Ⅰ的影响.临床麻醉学杂志,2006,22(7):493-495
    [47]Ruel M, Bianchi C, Khan TA, et al. Gene expression profile after cardiopulmonary bypass and cardioplegic arrest. Cardiopulmonary Support and Physiology,2003,126:1521-1530
    [48]Voisine P, Ruel M, Khan TA, et al. Differences in gene expression profiles of diabetic and nondiabetic patients undergoing cardiopulmonary bypass and cardioplegic arrest. Circulation,2004,110[suppl Ⅱ]:Ⅱ-280-Ⅱ-286
    [49]Lucchinetti E, Hofer C, Bestmann L, et al. Gene regulatory control of myocardial energy metabolism predicts postoperative cardiac function in patients undergoing off-pump coronary artery bypass graft surgery:inhalational versus intravenous anesthetics. Anesthesiology,2007,106(3):444-457
    [50]Flaherty MP, Dawn B. Noncanonical Wntll signaling and cardiomyogenic differentiation. Trends Cardiovasc Med,2008,18(7):260-268
    [51]van de Schans VAM, Smits JFM, Blankesteijn WM. The Wnt/frizzled pathway in cardiovascular development and disease:friend or foe? Eur J Pharmac,2008, 585(2-3):338-345
    [52]Garr RJ, Krasuski RA, Eckart RE, et al. Peripheral blood levels of matrix metalloproteinases in patients referred for percutaneous balloon mirtral valve commissurotomy. J Heart Valve Dis,2006,15(3):369-374
    [53]Fondard O, Detaint D, Lung B, et al. Extracelllular matrix remodeling in human aortic valve disease:the role of matrix metalloproteinases and their tissue
    inhibitors. Eur Heart J,2005,26(13):1333-1341
    [54]Galley HF, Macaulay GD, Webster NR, et al. Matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1 and tumour necrosis factor a release during cardiopulmonary bypass. Anaesthesia,2002,57(7):659-662
    [55]Mizon-Gerard F, de Groote P, Lamblin N, et al. Prognostic impact of matrix metalloproteinase gene polymer-phisms in patients with heart failure according to the aetiology of left ventricular systolic dysfunction. Eur Heart J,2004,25(8): 688-693
    [56]Lin TC, Li CY, Tsai CS, et al. Neutrophil-mediated secretion and activation of matrix metalloproteinase-9 during cardiac surgery with cardiopulmonary bypass. Anesth Analg,2005,100(6):1554-1560
    [57]Wippermann J, Albes JM, Hartrumpf M, et al. Comparison of minimally invasive closed circuit extracorporeal circulation with conventional cardiopulmonary bypass and with off-pump technique in CABG patients: selected parameters of coagulation and inflammatory system. Eur J Cardiothorac Surg,2005,28(1):127-132
    [58]Laude K, Thuillez C, Richard V. Coronary endothelial dysfunction after ischemia and reperfusion:a new therapeutic target. Brazz J Med Res,2001, 34(1):1-7
    [59]Britsch S. The neuregulin-Ⅰ/ErbB signaling system in development and disease. Adv Anat Embryol Cell Biol,2007,190:1-65
    [60]Zhao YY, Sawyer DR, Baliga RR, et al. Neuregulins promote survival and growth of cardiac myocytes. J Biol Chem,1998,273(17):10261-10269
    [61]Pentassuglia L, Sawyer DB. The role of neuregulin-lbeta/ErbB signaling in the heart. Exp Cell Res,2009,315(4):627-637
    [62]Ky B, Kimmel SE, Safa RN, et al. Neuregulin-1 [beta] is associated with disease severity and adverse outcomes in chronic heart failure. Circulation,2009,120(4): 310-317
    [63]Okoshi K, Nakayama M, Yan XH, et al. Neuregulins regulate cardiac parasympathetic activity muscarinic modulation of β-adrenergic activity in myocytes from mice with neuregulin-1 gene deletion. Circulation,2004,110(6): 713-717
    [64]Lemmens K, Fransen P, Sys SU, et al. Neuregulin-1 induces a negative inotropic effect in cardiac muscle:role of nitric oxide synthase. Circulation,2004,109(3): 324-326
    [65]Woodard GE, Rosado JA. Natriuretic peptides in vascular physiology vand pathology. Int Rev Cell Mol Biol,2008,268():59-63
    [66]Fox AA, Collard CD, Shernan SK, et al. Natriuretic peptide system gene variants are associated with ventricular dysfunction after coronary artery bypass grafting. Anesthesiology,2009,110(4):738-747
    [67]Baliga RR, Pimental DR, Zhao YY, et al. NRG-1-induced cardiomyocyte hypertrophy. Role of PI-3-kinase, p70S6K, and MEK-MAPK-RSK. Am J Physiol, 1999,277(5 Pt 2):H2026-H2037
    [68]Yan BP. Current status of Rho-associated kinases(ROCKs) in coronary atherosclerosis and vasospasm. Cardiovasc Hematol Agents Med Chem,2009, 7(4):322-330
    [69]Toller WG, Kersten JR, Gross ER, et al. Isoflurane preconditions myocardium against infarction via activation of inhibitory guanine nucleotide binding proteins. Anesthesiology,2000,92(5):1400-1407
    [70]Smyth JW, Hong TT, Gao D, et al. Limited forward trafficking of connexin 43 reduces cell-cell coupling in stressed human and mouse myocardium. J Clin Invest,2010,120(1):266-279
    [71]Kevin LG, Novalija E. Anesthetic preconditioning decreases arrhythmias and improves regional conduction in isolated hearts. J Cardiothorac Vasc Anesth, 2008,22(2):217-224
    [72]Diolaiti D, Bernardoni R, Trazzi S, et al. Functional cooperation between TrkA and p75(NTR) accelerates neuronal differentiation by increased transcription of GAP-43 and p21(CIP/WAF) genes via ERK1/2 and AP-1 activities. Exp Cell Res, 2007,313(14):2980-2992
    [73]Ni W, Watts SW.5-hydroxytryptamine in the cardiovascular system:focus on the serotonin transporter(SERT). Clin Exp Pharmacol Physiol,2006,33(17): 575-583
    [74]PavoneL,Spina A, Muto RL, et al. Heart valve cardiomyocytes of mouse embryos express the serotonin transporter SERT. Biochem Biophys Res Commun,2008,377(2):419-422
    [75]Mekontso-Dessap A, Brouri F, Pascal O, et al.Deficiency of the 5-hydroxytryptamine transporter gene leads to cardiac fibrosis and valvulopathy in mice.Circulation,2006,113(1):81-89
    [76]Pavone LM, Mithbaokar P, Mastellone V, et al. Fate map of serotonin transporter-expressing cells in developing mouse heart. Genesis,2007,45(11): 689-695
    [77]Redies C, Vanhalst K, Roy F. delta-Protocadherins:unique structures and functions. Cell Mol Life Sci,2005,62(23):2840-2852
    [78]Pederson L, Ruan M, Westendorf JJ, et al. Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate-Proc Natl-Acad Sci USA,2008,105(52):20764-20769
    [79]Kersten C, Sivertsen EA, Hystad ME, et al. BMP-6 inhibits growth of mature human B cells; induction of Smad phosphorylation and upregulation of Idl. BMC Immunology,2005,6(1):9
    [80]Hong JH, Lee GT, Lee JH, et al. Effect of bone morphogenetic protein-6 on macrophages. Immunology,2009,128(1 Suppl):e442-e450
    [81]Watanabe Y, Kokubo H, Miyagawa-Tomita S, et al. Activation of Notchl signaling in cardiogenic mesoderm induces abnormal heart morphogenesis in mouse. Development,2006,133(9):1625-1634
    [82]Wang SH, Nan KJ, Wang YC. Endothelial cells promote the proliferation of lymphocytes partly through the Wnt pathway via LEF-1. Biochem Biophys Res Commun,2009,388(1):67-72
    [83]Zhao DM, Yu S, Zhou X, et al. Constitutive activation of Wnt signaling favors generation of memory CD8 T cells. J Immunol,2010,184(3):1191-1199
    [84]Gattinoni L, Zhong XS, Palmer DC, et al. Wnt signaling arrests effector T cell differentiation and generates CD8+memory stem cells. Nat Med,2009,15(7): 808-813
    [85]Pereira CP, Bachli EB, Schoedon G. The wnt pathway:a macrophage effector molecule that triggers inflammation. Curr Atheroscler Rep,2009,11(3):236-242
    [86]Shellenberger TD, Wang M, Gujrati M, et al. BRAK/CXCL14 is a potent inhibitor of angiogenesis and a chemotactic factor for immature dendritic cells. Cancer Res,2004,64(22):8262-8270
    [87]Tanegashima K, Suzuki K, Nakayama Y, et al. Antibody-assisted enhancement of bilolgical activities of CXCL14 in human monocytic leukemia-derived THP-1 cells and high fat diet-induced obese mice. Exp Cell Res,2010, Jan 18[Epub ahead of print]
    [88]Frandsen JL, Gunn B, Muratoglu S, et al. Salmonella pathogenesis reveals that BMP signaling regulates blood cell homeostasis and immune response in Drosophila. Proc Natl Acad Sci USA,2008,105(39):14952-14957
    [89]Vannahme C, Smyth N, Miosge N, et al. Characterization of SMOC-1, a novel modular calcium-binding protein in basement membranes. J Biol Chem,2002, 277(41):37977-37986
    [90]Wu BB, Crampton SP, Hughes CCW, et al. Wnt signaling induces matrix metalloproteinase expression and regulates T cell transmigration. Immunity, 2007,26(2):227-239
    [91]Kuramochi Y, Guo XX, Sawyer DB. Neuregulin activates erbB2-dependent src/FAK signaling and cytoskeletal remodeling in isolated adult rat cardiac myocytes. J Mol Cell Cardiol,2006,41(2):228-235
    [92]Kuske MDA, Johnson JP. Assignment of the human PHLDA1 gene to chromosome 12q15 by radiation hybrid mapping. Cytogenet Cell Genet,2000, 89(1-2):1
    [93]Niu J, Azfer A, Deucher MF, et al. Targeted cardiac expression of soluble Fas prevents the development of heart failure in mice with cardiac-specific expression of MCP-1. J Mol Cell Cardiol,2006,40(6):810-820
    [94]Toyoshima Y, Karas M, Yakar S, et al. TDAG51 mediates the effects of insulin-like growth factor 1(IGF-1) on cell survival. J Biol Chem,2004,279(24): 25898-25904
    [95]Chen RJ, Wu HC, Chang MH, et al. Leu27IGF2 plays an opposite role to IGFlto induce H9c2 cardiomyoblast cell apoptosis via Galphag signaling. J Mol Endocrinol,2009,43(6):221■230
    [96]Kuramochi Y, Cote GM, Guo XX, et al. Cardiac endothelial cells regulate reactive oxygen species-induced cardiomyocyte apoptosis through neuregulin-1β/erbB4 signaling. J Biol Chem,2004,279(49):51141-51147
    [97]Giraud MN, Fliick M, Zuppinger C, et al. Expressional reprogramming of survival pathways in rat cardiocytes by neuregulin-1β. J Appl Physiol,2005, 99(1):313-322
    [98]Liu L, Zhu J, Glass PS, et al. Age-associated changes in cardiac gene expression after preconditioning. Anesthesiology,2009,111(5):1052-1064
    [99]Onody A, Zvara A, Hackler L Jr, et al. Effect of classic preconditioning on the gene expression pattern of rat hearts:a DNA microarray study. FEBS Lett,2003, 536(1-3):35-40
    [100]李志坚.硬膜外麻醉复合全麻下换瓣术体外循环前后心肌基因表达谱的研究:[博士学位论文].湖南长沙:中南大学,2008
    [1]Warltier DC, al-Wathiqui MH, Kampine JP, et al. Recovery of contractile function of stunned myocardium in chronically instrumented dogs is enhanced by halothane or isoflurane. Anesthesiology,1988,69(4):552-565
    [2]Davis RF, Sidi A. Effect of isoflurane on the extent of myocardial necrosis and on systemic hemodynamics, regional myocardial blood flow, and regional myocardial metabolism in dogs after coronary artery occlusion.Anesth Analg, 1989,69(5):575-86
    [3]Belhomme D, Peynet J, Louzy M, et al. Evidence for preconditioning by isoflurane in coronary artery bypass graft surgery. Circulation,1999,100(19 Suppl):Ⅱ340-Ⅱ344
    [4]Bignami E, Biondi-Zoccai G, Landoni G, et al. Volatile anesthetics reduce mortality in cardiac surgery. J Cardiothorac Vasc Anesth,2009,23(5):594-599
    [5]Landoni G, Bignami E, Oliviero F, et al. Halogenated anaesthetics and cardiac protection in cardiac and non-cardiac anaesthesia. Ann Card Anaesth,2009 an-Jun,12(1):4-9
    [6]Landoni G, Fochi O, Trri G. Cardiac protection by volatile anaesthetics:A review. Current Vascular Pharmacology,2008,6(2):108-111
    [7]Pratt PF Jr, Wang C, Weihrauch D, et al. Cardioprotection by volatile anesthetics:new applications for old drugs. Curr Opin Anaesthesiol.2006. 19(4):397-403
    [8]Wakeno-Takahashi M, Otani H, Nakao S, et al. Adenosine and a nitric oxide donor enhances cardioprotection by preconditioning with isoflurane through mitochondrial adenosine triphosphate-sensitive K+channel-dependent and-independent mechanisms. Anesthesiology,2004,100(3):515-24
    [9]Hu G, Salem MR, Crystal GJ. Role of adenosine receptors in volatile anesthetic preconditioning against neutrophil-induced contractile dysfunction in isolated rat hearts. Anesthesiology,2005,103(2):287-295
    [10 Ludwig LM, Tanaka K, Eells JT, et al. Preconditioning by isoflurane is mediated by reactive oxygen species generated from mitochondrial electron transport chain complex III. Anesth Analg,2004,99(5):1308-15
    [11]Tanaka K, Weihrauch D, Kehl F, et al. Mechanism of preconditioning by isofluranein rabbits:a direct role for reactive oxygen species,2002,97(6): 1485-90
    [12]An JZ, Stadnicka A, Kwok WM, et al. Contribution of reactive oxygen species to isoflurane-induced sensitization of cardiac sarcolemmal adenosine triphosphate-sensitive potassium channel to pinacidil. Anesthesiology,2004, 100(3):575-580
    [13]Tanaka K, Weihrauch D, Ludwig LM, et al. Mitochondrial adenosine triphosphate-regulated potassium channel opening acts as a trigger for isoflurane-induced preconditioning by generating reactive oxygen species. Anesthesiology,2003,98(4):935-943
    [14]Zaugg M, Lucchinetti E, Spahn DR, Pasch T, Schaub MC. Volatile anesthetics mimic cardiac preconditioning by priming the activation of mitochondrial K(ATP) channels via multiple signaling pathways. Anesthesiology.2002. 97(1):4-14
    [15]Ludwig LM, Weihrauch D, Kersten JR, Pagel PS, Warltier DC. Protein kinase C translocation and Src protein tyrosine kinase activation mediate isoflurane-induced preconditioning in vivo:potential downstream targets of mitochondrial adenosine triphosphate-sensitive potassium channels and reactive oxygen species. Anesthesiology.2004.100(3):532-9
    [16]Fujimoto K, Bosnjak ZJ, Kwok WM. Isoflurane-induced facilitation of the cardiac sarcolemmal K(ATP) channel. Anesthesiology.2002.97(1):57-65
    [17]Obal D, Weber NC, Zacharowski K, et al. Role of protein kinase C-epsilon (PKCepsilon) in isoflurane-induced cardioprotection. Br J Anaesth.2005. 94(2):166-73
    [18]Aizawa K, Turner LA, Weihrauch D, Bosnjak ZJ, Kwok WM. Protein kinase C-epsilon primes the cardiac sarcolemmal adenosine triphosphate-sensitive potassium channel to modulation by isoflurane. Anesthesiology.2004.101(2): 381-9
    [19]Stadnicka A, Kwok WM, Warltier DC, et al. Protein tyrosine kinase-dependent modulation of isoflurane effects on cardiac sarcolemmal KATP channel. Anesthesiology,2002,97(5):1198-1208
    [20]Page C, Doubell AF. Mitogen-activated protein kinase (MAPK) in cardiac tissues. Mol Cell Biochem.1996.157(1-2):49-57
    [21]Clerk A, Michael A, Sugden PH. Stimulation of multiple mitogen-activated protein kinase sub-families by oxidative stress and phosphorylation of the small heat shock protein, HSP25/27, in neonatal ventricular myocytes. Biochem J.1998.333 (Pt 3):581-9
    [22]Weber NC, Toma O, Wolter JI, et al. Mechanisms of xenon-and isoflurane-induced preconditioning-a potential link to the cytoskeleton via the MAPKAPK-2/HSP27 pathway. Br J Pharmacol,2005,146(3):445-455
    [23]Raphael J, Rivo J, Gozal Y. Isoflurane-induced myocardial preconditioning is dependent on phosphatidylinositiol-3-kinase/Akt signaling. British Journal of Anaesthesia,2005; 95(6):756-763
    [24]da Silva R, Grampp T, Pasch T, Schaub MC, Zaugg M. Differential activation of mitogen-activated protein kinases in ischemic and anesthetic preconditioning. Anesthesiology,2004,100(1):59-69
    [25]Wang C, Weihrauch D, Schwabe DA, et al. Extracellular signal-regulated kinases trigger isoflurane preconditioning concomitant with upregulation of hypoxia-inducible factor-1 alpha and vascular endothelial growth factor expression in rats. Anesth Analg,2006,103(2):281-288
    [26]Chen CH, Chuang JH, Liu K, Chan JY. Nitric oxide triggers delayed anesthetic preconditioning-induced cardiac protection via activation of nuclear factor-kappaB and upregulation of inducible nitric oxide synthase. Shock. 2008.30(3):241-249
    [27]姜琳,王琛,覃琴,等.异氟烷预处理对大鼠心肌缺血再灌注损伤的保护作用.复旦学报(医学版),2008,35(4):539-542,547
    [28]Amour J, Brzezinska AK, Weihrauch D, et al. Role of heat shock protein 90 and endothelial nitric oxide synthase during early anesthetic and ischemic preconditioning. Anesthesiology,2009,110(2):317-325
    [29]Ran K, Zhu R, Lu XH, Zou DQ, Li H, Chang YT. [Protective effect of heat-shock protein 27 on myocardium with isoflurane preconditioning in myocardial ischemia/reperfusion injury of myocardium in rabbit]. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue.2007.19(11):683-6
    [30]Raphael J, Abedat S, Rivo J, et al. Volatile anesthetic preconditioning attenuates myocardial apoptosis in rabbits after regional ischemia and reperfusion via Akt signaling and modulation of Bcl-2 family proteins. J Pharmacol Exp Ther,2006,318(1):186-194
    [31]Jamnicki-Abegg M, Weihrauch D, Pagel PS, et al. Isoflurane inhibits cardiac
    myocyte apoptosis during oxidative and inflammatory stress by activating Akt and enhancing Bcl-2 expression. Anesthesiology.2005.103(5):1006-1014
    [32]冉珂,段开明,邹定全,等.异氟醚预处理延迟相对兔缺血再灌注心肌Bcl-2蛋白表达及IL-10水平的影响.现代医药卫生,2007,23(16):2371-2372
    [33]徐军美,杨昭云,常业恬,等.吸入麻醉药预处理对兔缺血再灌注心肌Bcl-2、 Bax及p53基因表达的影响.中华麻醉学杂志,2003,104(3):495-502
    [34]Lucchinetti E, da SR, Pasch T, Schaub MC, Zaugg M. Anaesthetic preconditioning but not postconditioning prevents early activation of the deleterious cardiac remodelling programme:evidence of opposing genomic responses in cardioprotection by pre-and postconditioning. Br J Anaesth.2005. 95(2):140-52
    [35]Hamaya Y, Takeda T, Dohi S, Nakashima S, Nozawa Y. The effects of pentobarbital, isoflurane, and propofol on immediate-early gene expression in the vital organs of the rat. Anesth Analg.2000.90(5):1177-1183
    [36]Hieber S, Huhn R, Hollmann MW, Weber NC, Preckel B. Hypoxia-inducible factor 1 and related gene products in anaesthetic-induced preconditioning. Eur J Anaesthesiol.2009.26(3):201-206
    [37]Alcindor D, Krolikowski JG, Pagel PS, et al. Cyclooxygenase-2 mediates ischemia, anesthetic, and pharmacologic preconditioning in vivo. Anesthesiology,2004,100(3):547-554
    [38]Tanaka K, Ludwig LM, Krolikowski JG, et al. Isoflurane produces delayed preconditioning against myocardial ischemia and reperfusion injury:role of cyclooxygenase-2. Anesthesiology,2004,100(3):525-531
    [39]Jiang MT, Nakae Y, Ljubkovic M, et al. Isoflurane activates human cardiac mitochondrial adenosine triphosphate-sensitive K+channels reconstituted in lipid bilayers. Anesth Analg,2007,105(4):926-932
    [40]Stadnicka A, Marinovic J, Bienengraeber M, et al. Impact of in vivo preconditioning by isoflurane on adenosine triphosphate-sensitive potassium channels in the rat heart. Anesthesiology,2006,104(3):503-510
    [41]Masui K, Kashimoto S, Furuya A, et al. Isoflurane and sevoflurane during reperfusion prevent recovery from ischaemia in mitochondrial KATP channel blocker pretreated hearts. Eur J Anaesthesiol,2006,23(2):123-129
    [42]Zaugg M, Lucchinetti E, Spahn DR, Pasch T, Schaub MC. Volatile anesthetic mimic cardial preconditioning by priming the activation of mitochondrial KATP channels via multiple signaling pathways. Anesthesiology,2002,97(1):4-14
    [43]An JZ, Bosnjak ZJ, Jiang MT. Myocardial protection by isoflurane preconditioning preserves Ca2+cycling proteins independent of sarcolemmal and mitochondrial KATp channels. Anesth Analg,2007,105(5):1207-1213
    [44]Tampo A, Hogan CS, Sedlic F, et al. Accelerated inactivation of cardiac L-type calcium channels triggered by anaesthetic-induced preconditioning. Br J Pharmacol,2009,156(3):432-443
    [45]Pravdic D, Sedlic F, Mio Y, et al. Anesthetic-induced preconditioning delays opening of mitochondrial permeability transition pore via protein kinase C-epsilon-mediated pathway. Anesthesiology,2009,111(2):261-274
    [46]Hu G, Vasiliauskas T, Salem MR, et al. Neutrophils pretreated with volatile anesthetics lose ability to cause cardiac dysfunction. Anesthesiology,2003, 98(3):712-718
    [47]Hu G, Salem MR, Crystal GJ. Isoflurane and sevoflurane precondition against neutrophil-induced contractile dysfunction in isolated rat hearts. Anesthesiology,2004,100(3):489-497
    [1]Lamberts RR, Onderwater G, Hamdani N, et al. Reactive oxygen species-induced stimulation of 5'AMP-activated protein kinase mediates sevoflurane-induced cardioprotection. Circulation,2009,120(11 Suppl):S10-15
    [2]Wong CH, Liu TZ, Chye SM, et al. Sevofluran-induced oxidative stress and cellular injury in human peripheral polymorphonuclear neutrophils. Food Chem Toxicol,2006,44(8):1399-1407
    [3]Bouwman RA, Musters RJP, van Beek-Harmsen BJ, et al. Sevoflurane-induced cardioprotection depends on PKC-a activation via production of reactive oxygen species. Br J Anaesth,2007,99(5):639-645
    [4]Bouwman RA, Salic K, Padding FG, et al. Cardioprotection via activation of protein kinase C-8 depends on modulation of the reverse mode of the Na+/Ca2+ exchanger. Circulation,2006,114[suppl I]:Ⅰ-226-Ⅰ-232
    [5]李恒,杨承祥,孙凯,等.挥发性麻醉药对大鼠离体心脏缺血再灌注损伤的影响.中国病理生理杂志,2007,23(10):1891-1895
    [6]Kaneda K, Miyamae M, Sugioka s, et al. Sevoflurane enhances ethanol-induced cardiac preconditioning through modulation of protein kinase C, mitochondrial KATP channels, and nitric oxide synthase, in guinea pig hearts. Anesth Analg, 2008,106(1):9-16
    [7]Riess ML, Costa AD, Carlson R, et al. Differential increase of mitochondrial matrix volume by sevoflurane in isolated cardiac mitochondria. Anesth Analg, 2008,106(4):1049-1055
    [8]Andrews DT, Royse AG, Royse CF. Functional comparison of anaesthetic agents during myocardial ischaemia-reperfusion using pressure-volume loops. Br J Anaesth,2009,103(5):654-664
    [9]李波.七氟烷预处理对大鼠心肌缺血再灌注损伤保护作用:[硕士学位论文].天津市:天津医科大学,2008
    [10]姜琳.七氟烷预处理对大鼠缺血再灌注心肌TNF-α及ICAM-1的影响:[硕士学位论文].江苏苏州:苏州大学,2008
    [11]覃琴NF-κB在七氟烷预处理对大鼠心肌缺血再灌注损伤作用机制的研究:[硕士学位论文].江苏苏州:苏州大学,2008
    [12]Kalenka A, Maurer MH, Feldmann RE, et al. Volatile anesthetics evoke prolonged changes in the proteome of the left ventricule myocardium:defining a molecular basis of cardioprotection? Acta Anaesthesiol Scand,2006,50(4): 414-427
    [13]吴若岚.七氟烷预处理对缺血/再灌注心肌组织Bcl-2表达的影响.数理医药学杂志,2008,21(1):48-50
    [14]Landoni G, Bignami E, Oliviero F, et al. Halogenated anaesthetics and cardiac protection in cardiac and non-cardiac anaesthesia. Ann Card Anaesth,2009, 12(1):4-9
    [15]Lutz M, Liu H. Inhaled sevoflurane produces better delayed myocardial protection at 48 versus 24 hours after exposure. Anesth Analg,2006,102(4): 984-990
    [16]Lucchinetti E, Aguirre J, Feng J, et al. Molecular evidence of late preconditioning after sevoflurane inhalation in healthy volunteers. Anesth Analg, 2007,105(3):629-640
    [17]陈洪涛,杨承祥,李恒,等.七氟烷后处理对大鼠离体心脏缺血/再灌注损伤心功能和线粒体的影响.中国药理学通报,2008,24(6):766-771
    [18]Chen HT, Yang CX, Li H, et al. Cardioprotection of sevoflurane postconditioning by activating extracellular signal-regulated kinase 1/2 in isolated rat hearts. Acta Pharmacol Sin,2008,29(8):931-941
    [19]Li H, Wang JK, Zeng YM, et al. Sevoflurane post-conditioning protects against myocardial reperfusion injury by activation of phosphatidylinositol-3-kinase signal transduction. Clin Exp Pharmacol Physiol,2008,35(9):1043-1051
    [20]方能新,李立环,雷迁,等.七氟烷缺血后处理对离体大鼠心肌细胞的保护作用.中国药理学通报,2008,24(5):597-600
    [21]He w, Zhang FJ, Wang SP, et al. Postconditioning of sevoflurane and propofol is associated with mitochondrial permeability transition pore. J Zhejiang Univ Sci B,2008,9(2):100-108
    [22]Zhang F, Chen G, Chen C, et al. Sevoflurane postconditioning converts persistent ventricular fibrillation into regular rhythm. Eur J Anaesthesiol,2009, 26(9):766-771
    [23]Bouwman RA, van't Hof FNG, de Ruijter W, et al. The mechanism of sevoflurane-induced cardioprotection is independent of the applied ischaemic stimulus in rat trabeculae. Br J Anaesthesia,2006,97(3):307-314
    [24]Larsen JR, Aagaard S, Lie RH, et al. Sevoflurane improves myocardial
    ischaemic tolerance in a closed-chest porcine model. Acta Anaesthesiol Scand, 2008,52(10):1400-1410
    [25]Landoni G, Biondi-Zoccai GG, Zangrillo A, et al. Desflurane and sevoflurane in cardiac surgery:a meta-analysis of randomized clinical trials. J Cardiothorac Vasc Anesth,2007,21(4):502-511
    [26]Yu CH, Beattie WS. The effects of volatile anesthetics on cardiac ischemic complications and mortality in CABG:a meta-analysis. Can J Anesth,2006, .53(9):906-918
    [27]Symons JA, Myles PS. Myocardial protection with volatile anaesthetic agents during coronary artery bypass surgery:a meta-analysis. Br J Anaesth,2006, 97(2):127-136
    [28]Kawamura T, Kadosaki M, Nara N, et al. Effects of sevoflurane on cytokine balance in patients undergoing coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth,2006,20(4):503-508
    [29]Lucchinetti E, Hofer C, Bestmann L, et al. Gene regulatory control of myocardial energy metabolism predicts postoperative cardiac function in patients undergoing off-pump coronary artery bypass graft surgery:inhalational versus intravenous anesthetics. Anesthesiology,2007,106(3):444-457
    [30]Hemmerling T, Olivier JF, Le N, et al. Myocardial protection by isoflurane vs. sevoflurane in ultra-fast-track anaesthesia for off-pump aortocoronary bypass grafting. Eur J Anaesthesiol,2008,25(3):230-236
    [31]Huseidzinovic I, Barisin S, Bradic N, et al. Early cardioprotective effect of sevoflurane on left ventricular performance during coronary artery bypass grafting on a beating heart:randomized controlled study. Croat Med J,2007, 48(3):333-340
    [32]Cromheecke S, Pepermans V, Hendrickx E, et al. Cardioprotective properties of sevoflurane in patients undergoing aortic valve replacement with cardiopulmonary bypass. Anesth Analg,2006,103(2):289-296
    [33]Larsen JR, Aagaard SR, Hasenkam JM, et al. Pre-occlusion ischaemia, not sevoflurane, successfully preconditions the myocardium against further damage in porcine in vivo hearts. Acta Anaesthesiol Scand,2007,51(4):402-409
    [34]Bignami E, Biondi-Zoccai G, Landoni G, et al. Volatile anesthetics reduce mortality in cardiac surgery. J Cardiothorac Vasc Anesth,2009,23(5):594-599
    [35]Piriou V, Mantz J, Goldfarb G, et al. Sevoflurane preconditioning at 1 MAC only provides limited protection in patients undergoing coronary artery bypass surgery: a randomized bi-centre trial. Br J Anaesth,2007,99(5):624-631
    [36]Wiesner G, Barankay A, Braun S, et al. No difference in postoperative cardiac troponin T between a sevoflurane-or midazolam-supplemented opioid anesthetic in patients undergoing on-pump coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth,2006,21(1):162-164
    [37]Law-Koune JD, Raynaud C, Liu N, et al. Sevoflurane-remifentanil versus propofol-remifentanil anesthesia at a similar bispectral level for off-pump coronary artery surgery:no evidence of reduced myocardial ischemia. J Cardiothorac Vasc Anesth,2006,20(4):484-492
    [38]Zaugg M. Is protection by inhalation agents volatile?Controversies in cardioprotection. Br J Anaesth,2007,99(5):603-606
    [39]Yu CK, Li YH, Wong GTC, et al. Remifentanil preconditioning confers delayed cardioprotection in the rat. Br J Anaesth,2007,99(5):632-638
    [40]Jakobsen CJ, Berg H, Hindsholm KB, et al. The influence of propofol versus sevoflurane anesthesia on outcome in 10,535 cardiac surgical procedures. J Cardiothorac Vasc Anesth,2007,21(5):664-671
    [41]Bein B, Renner J, Caliebe D, et al. The effects of interrupted or continuous administration of sevoflurane on preconditioning before cardio-pulmonary bypass in coronary artery surgery:comparison with continuous propofol. Anaesthesia,2008,63(10):1046-1055
    [42]De Hert SG, Van der Linden PJ, Cromheecke S, et al. Cardioprotective properties of sevoflurane in patients undergoing coronary surgery with cardiopulmonary bypass are related to the modalities of its administration. Anesthesiology,2004,101(2):299-310
    [43]Frassdorf J, Borowski A, Ebel D, et al. Impact of preconditioning protocol on anesthetic-induced cardioprotection in patients having coronary artery bypass surgery. J Thorac Cardiovasc Surg,2009,137(6):1436-1442,1442.e1-2
    [44]Okusa C, Miyamae M, Sugioka S, et al. Acute memory phase of sevoflurane preconditioning is associated with sustained translocation of protein kinase C-alpha and epsilon, but not delta, in isolated guinea pig hearts. Eur J Anaesthesiol,2009,26(7):582-588
    [45]Gentry-Smetana S, Redford D, Moore D, et al. Direct effects of volatile anesthetics on cardiac function. Perfusion,2008,23(1):43-47
    [46]Kadioglu E, Sardas S, Erturk S, et al. Determination of DNA damage by alkaline halo and comet assay in patients under sevoflurane anesthesia. Toxicol Ind Health,2009,25(3):205-212
    [47]De Hert SG. Anesthetic preconditioning:how important is it in today's cardiac anesthesia? J Cardiothorac Vasc Anesth,2006,20(4):473-476
    [48]Huhn R, Heinen A, Weber NC, et al. Hyperglycaemia blocks sevoflurane-induced postconditioning in the rat heart in vivo:cardioprotection can be restored by blocking the mitochondrial permeability transition pore. Br J Anaesth,2008,100(4):465-471
    [49]Yan M, Chen C, Zhang F, et al. Lidocaine abolishes the myocardial protective effect of sevoflurane post-conditioning. Acta Anaesthesiol Scand,2008,52(1): 111-116
    [50]Masui K, Kashimoto S, Furuya A, et al. Isoflurane and sevoflurane during reperfusion prevent recovery from ischaemia in mitochondrial KATP channel blocker pretreated hearts. Eur J Anaesthesiol,2006,23(1):123-129

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700