用户名: 密码: 验证码:
特发性癫痫综合征FCTE和BFIS致病基因的定位、候选克隆与GEFS+基因突变检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
家族性皮质性震颤伴癫痫(familial cortical tremor with epilepsy, FCTE)是一种较为罕见的特发性癫痫综合征,呈常染色体显性遗传模式,于成人期起病。由日本Okuma等于1997年首先命名提出。临床表现为与特发性震颤相像的以肢体远端为主的皮质性震颤;频率稀发的癫痫;神经电生理检查显示为皮质反射性肌阵挛的特点;震颤和癫痫对抗癫痫药物反应良好;非进展性病程、预后良好。同时表现有震颤、癫痫和肌阵挛等极其类似症状的,还见于另外四种分类命名有争议的特发性癫痫综合征:家族性特发性肌阵挛与癫痫(FEME)、良性成人家族性肌阵挛性癫痫(BAFME)、家族性成人肌阵挛癫痫(FAME)、常染色体显性遗传的皮质性肌阵挛与癫痫(ADCME),其中BAFME、FAME和ADCME的致病基因分别被定位于8q23.3-q24.1、2p11.1-q12.2。而FCTE的致病基因尚未定位。我们在中国湖南省收集到一个中国人FCTE大家系,所有患者均具有FCTE典型临床表现。为定位和克隆该FCTE家系的致病基因,我们应用微卫星遗传标记连锁分析的方法首先对其进行位点8q23.3-q24.1、2p11.1-q12.2排除分析,结果排除该FCTE家系与2p11.1-q12.2的连锁关系,而提示与8号染色体连锁。基于此我们进一步精细定位,在常染色体显性遗传模式下,重组率θ为0时于D8S 199处获得最大两点LOD值7.21,经单体型分析,将此FCTE家系致病基因定位于D8S555与D8S1753之间约30.5 cM的区间8q23.3-24.23。结合目前已知特发性癫痫致病基因以离子通道基因为主的特点,我们选择此区间内和紧毗邻区的钾离子通道基因KCNQ3、KCNV1、KCNS2,运用聚合酶链反应(PCR)扩增、直接测序法进行突变检测,结果未发现任何的序列变异,排除三个候选基因为该FCTE家系致病基因可能,为进一步候选克隆奠定了重要基础。这是在中国首次发现报道FCTE家系,并首次在世界范围内定位了FCTE致病基因位点。
     良性家族性婴儿惊厥(benign familial infantile seizures, BFIS)是一种较为罕见的呈常染色体显性遗传的特发性癫痫综合征。临床表现为3月-10月龄尤其4月-7月龄出现、1岁-3岁内可自然消退的无热性惊厥,精神运动发育无异常,体查、发作间期脑电图及神经影像学检查正常。目前已定位3个致病基因位点19q12-13.1、16p12-q12和2q24。随后发现部分家系与上述位点并无连锁,提示BFIS还存在其它致病基因位点。我们在中国湖南省收集到两个BFIS大家系,前期工作中,在排除已报道的BFIS致病位点19q12-q13.1、16p12-q12、2q24和排除KCNQ2、KCNQ3、SCN2A基因突变后,其中一个家系(家系1)的致病基因提示位于其它新的位点;另一个家系(家系2)运用微卫星遗传标记的全基因组扫描和精细定位将其致病基因定位于新位点1p36.12-p35.1,并对区间内的33个候选基因进行了相关突变检测,但未发现致病性改变。本研究中,我们采用最新一代SNP遗传标记连锁分析微珠芯片进一步对BFIS家系1进行定位,结果得到三个候选区域5q22.1-5q32、9p21.3-9p21.2和22q11.21-22q12.1。经微卫星遗传标记分析确证与5号染色体连锁,单体型分析将此BFIS家系致病基因定位至极可能位点D5S2057与D5S500之间约5.47 cM、相当于5q31.1-31.2的区域。对紧邻的GABRG2基因,运用聚合酶链反应(PCR)扩增、直接测序法进行突变检测,未发现序列变异。而对定位于1p36.12-p35.1的另一BFIS家系,继续筛选区间内和紧毗邻区的另外14个新候选基因(SYTL1、FUCA1、EPHA8、SH3BGRL3、AK2、SDC3、MAN1C1、ID3、LAPTM5、PAQR7、RCC1、RUNX3、KCNQ4、GABRD)进行突变检测,结果共发现13个SNP改变,其中2个为新发现的SNP。排除这14个基因为BFIS新致病基因的可能,为进一步候选克隆和最终揭示BFIS的发病机制奠定了重要基础。
     全面性(遗传性)癫痫伴热性惊厥附加症(generalized/genetic epilepsy with febrile seizures plus, GEFS+)是一种家族遗传性的特发性癫痫综合征,具有高度的表型和遗传异质性。目前已克隆6个致病基因:SCN1A、SCN1B、SCN2A、SCN9A、GABRD、GABRG2.我们对三个中国GEFS+家系临床特点进行详细分析,发现其临床表型谱包括有热性惊厥(FS)、热性惊厥附加症(FS+)、失神癫痫(AS)和无热性癫痫(AFS),提示存在表型异质性。对突变比例相对较大的基因SCNIA、SCNIB、GABRG2,运用聚合酶链反应(PCR)扩增、直接测序法进行突变检测,结果发现其中一个GEFS+家系在SCN1A基因产生突变c.5383G>A(氨基酸E1795K),为一新的突变点。其余两个GEFS+家系无SCNIA改变及SCNIB、GABRG2基因的改变,提示致病性改变位于其它基因,或可能不是外显子区的常规点突变,尚需进一步探索。对新发现的突变c.5383G>A,我们后续工作中将进行相关功能研究,以探明其发病的病理生理机制。
Familial cortical tremor with epilepsy (FCTE) is a rare autosomal dominant idiopathic epilepsy syndrome, characterized by adult-onset fine finger cortical tremor resembling essential tremor, infrequent seizures, features of cortical reflex myoclonus in neuroelectrophysiological study, good response to anticonvulsants, non-progressive course and benign prognosis. Similar symptoms were described within other controversial idiopathic epilepsy syndromes including FEME, BAFME, FAME, ADCME. Causative genes of BAFME, FAME and ADCME were mapped to 8q23.3-q24.1 and 2p11.1-q12.2. However, Causative gene of FCTE was not mapped yet. A large pedigree of Chinese origin affected with FCTE was found in Hunan Province of China. All of affected individuals manifested typical symptoms of FCTE. By linkage analysis, we excluded this family from linkage to 2p11.1-q12.2, while indicated evidence of linkage to chromosome 8. Using fine microsatellite markers, a maximum two-point LOD score of 7.21 for microsatellite D8S199 at recombination fractionθ0.0 was obtained. Recombination results suggest the locus on chromosome 8q23.3-24.23 over 30.5 cM interval between D8S555 and D8S1753. Considering ion channel genes play an important role in the epileptogenesis of idiopathic epilepsies, three potassium channel genes including KCNQ3, KCNV1 and KCNS2 located in and near 8q23.3-24.23 were subjected to mutation detection through polymerase chain reaction (PCR) and direction sequencing. No sequence variants were found in three candidate genes, therefore excluded from the FCTE pedigree. This is the first family case report of FCTE found in China, and for the first time in the world the causative gene locus of FCTE has been identified.
     Benign familial infantile seizures (BFIS) is an autosomal dominant idiopathic epilepsy syndrome characterized by afebrile seizures, which typically onset from three to twelve months and remit spontaneously within one to three years old, normal psychomotor development outcome and normal finding in physical examination, interictal EEG and neuroimaging. Genetic studies have revealed three causative loci on 19q12-13.1,16p12-q12 and 2q24, and further studies indicate more susceptibility loci may exist. We identified two large BFIS pedigrees from Hunan Province of China. In the previous studies, after exclusion of known loci 19q12-13.1,16p12-q12 and 2q24 as well as mutation in genes KCNQ2, KCNQ3 and SCN2A, causative gene of one BFIS family (Pedigree 1) was indicated to be on novel locus, while that of another BFIS family (Pedigree 2) was mapped to novel locus on 1p36.12-p35.1 through genome-wide scan and fine mapping using microsatellite markers. Then thirty-three candidate genes located on 1p36.12-p35.1 were subjected to mutation detection for Pedigree 2, but no causative variants were found. In this study, we applied SNP linkage beadchip to map causative gene for Pedigree 1. Three candidate loci on 5q22.1-5q32, 9p21.3-9p21.2 and 22q11.21-22q12.1 were obtained. Through linkage analysis using fine microsatellite markers, the most likely locus was linked to 5q31.1-31.2, with a maximum two-point LOD score of 2.84 for microsatellite marker D5S2117 at recombination fractionθ0.0 between D5S2057 and D5S500 over 5.47 cM interval. Subsequently, one candidate gene (GABRG2) closed to 5q31.1-31.2 of Pedigree 1 was selected and subjected to mutation detection by PCR and direct sequencing, but no sequence variant was found. Meanwhile, fourteen candidate genes (SYTL1, FUCA1, EPHA8, SH3BGRL3, AK2, SDC3, MAN1C1, ID3, LAPTM5, PAQR7, RCC1, RUNX3, KCNQ4, GABRD) located/closed to 1p36.12-p35.1 of Pedigree 2, were selected and subjected to mutation detection. Thirteen SNPs were detected, two of which are not reported yet. It is unlikely that the above-mentioned genes are involved in the pathogenesis of the two Chinese BFIS families respectively. The results have laid indispensable basis for further analysis of other candidate genes for to elucidate the molecular pathogenesis of BFIS.
     Generalized/Genetic epilepsy with febrile seizures plus (GEFS+) is a familial idiopathic syndrome with high phenotypic heterogeneity and genetic heterogeneity. To date, six causative genes have been identified including SCN1A, SCN1B, SCN2A, SCN9A, GABRD and GABRG2. We studied three GEFS+ pedigrees of Chinese origin and found their clinical spectrum include FS, FS+, AS and AFS. Three genes, SCN1A, SCN1B and GABRG2 which are more frequently involved in the etiology of GEFS+, were subjected to mutation detection. By PCR and direct sequencing, a novel mutation c.5383G>A in SCN1A was identified in one of pedigrees. But no sequence variants were found in SCN1A, SCN1B or GABRG2 for two other GEFS+ families, indicating causative variants lie in other candidate genes or are probably not routine point mutations. Further investigations are needed for two other GEFS+ families as to finally disclose the corresponding causative gene(s). Functional study will be carried out to investigate the pathogenesis of the novel mutation c.5383G>A.
引文
[1]Baraister M. The Genetics of Neurological Disorders.2nd. New York:Oxford University Press,1990.96-113.
    [2]Gardiner M. Molecular genetics of infantile nervous system channelopathies. Early Hum Dev,2006,82(12):775-779.
    [3]Proposal for revised classification of epilepsies and epileptic syndromes. Commission on Classification and Terminology of the International League Against Epilepsy. Epilepsia,1989,30(4):389-399.
    [4]Engel J, Jr. A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE Task Force on Classification and Terminology. Epilepsia,2001,42(6):796-803.
    [5]Phillips HA, Scheffer IE, Berkovic SF, et al. Localization of a gene for autosomal dominant nocturnal frontal lobe epilepsy to chromosome 20q 13.2. Nat Genet,1995,10(1):117-118.
    [6]Steinlein OK, Mulley JC, Propping P, et al. A missense mutation in the neuronal nicotinic acetylcholine receptor alpha 4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet,1995,11(2): 201-203.
    [7]Okuma Y, Shimo Y, Hatori K, et al. Familial cortical tremor with epilepsy. Parkinsonism Relat Disord,1997,3(2):83-87.
    [8]Otsuka M, Nakamura S, Yashima H, et al. A familial case of cortical tremor. Movement Disorder and Disability,1995,5:99-106.
    [9]Okuma Y, Shimo Y, Shimura H, et al. Familial cortical tremor with epilepsy: an under-recognized familial tremor. Clin Neurol Neurosurg,1998,100(1): 75-78.
    [10]Terada K, Ikeda A, Mima T, et al. Familial cortical myoclonic tremor as a unique form of cortical reflex myoclonus. Mov Disord,1997,12(3):370-377.
    [11]van Rootselaar F, Callenbach PM, Hottenga JJ, et al. A Dutch family with 'familial cortical tremor with epilepsy'. Clinical characteristics and exclusion of linkage to chromosome 8q23.3-q24.1. J Neurol,2002,249(7):829-834.
    [12]Bourdain F, Apartis E, Trocello JM, et al. Clinical analysis in familial cortical myoclonic tremor allows differential diagnosis with essential tremor. Mov Disord,2006,21(5):599-608.
    [13]Ikeda A, Kakigi R, Funai N, et al. Cortical tremor:a variant of cortical reflex myoclonus. Neurology,1990,40(10):1561-1565.
    [14]van Rootselaar AF, Aronica E, Jansen Steur EN, et al. Familial cortical tremor with epilepsy and cerebellar pathological findings. Mov Disord,2004,19(2): 213-217.
    [15]van Rootselaar AF, Maurits NM, Koelman JH, et al. Coherence analysis differentiates between cortical myoclonic tremor and essential tremor. Mov Disord,2006,21(2):215-222.
    [16]Striano P, Zara F, Striano S. Autosomal dominant cortical tremor, myoclonus and epilepsy:many syndromes, one phenotype. Acta Neurol Scand,2005, 111(4):211-217.
    [17]Uyama E, Kumamoto T, Ikeda T, et al. A family of familial myoclonic epilepsy characterized by middle-adult onset presenting with finger tremorous involuntary movements and benign course. Clin Neurol,1985,25:1491-1492.
    [18]Hallett M, Chadwick D, Marsden CD. Cortical reflex myoclonus. Neurology, 1979,29(8):1107-1125.
    [19]Obeso JA, Rothwell JC, Marsden CD. The spectrum of cortical myoclonus. From focal reflex jerks to spontaneous motor epilepsy. Brain,1985,108 (Pt 1): 193-124.
    [20]Shibasaki H, Kuroiwa Y. Electroencephalographic correlates of myoclonus. Electroencephalogr Clin Neurophysiol,1975,39(5):455-463.
    [21]Shibasaki H, Yamashita Y, Tobimatsu S, et al. Electroencephalographic correlates of myoclonus. Adv Neurol,1986,43:357-372.
    [22]Okino S. Familial benign myoclonus epilepsy of adult onset:a previously unrecognized myoclonic disorder. J Neurol Sci,1997,145(1):113-118.
    [23]Inazuki G, Naito H, Ohama E, et al. A clinical study and neuropathological findings of a familial disease with myoclonus and epilepsy--the nosological place of familial essential myoclonus and epilepsy (FEME). Seishin Shinkeigaku Zasshi,1990,92(1):1-21.
    [24]Araki K, Kono I, Ueda Y, et al. A case of familial essential myoclonus--electrophysiological study. Rinsho Shinkeigaku,1991,31(8): 864-868.
    [25]Nagayama S, Kishikawa H, Yukitake M, et al. A case of familial myoclonus showing extremely benign clinical course. Rinsho Shinkeigaku,1998,38(5):
    430-434.
    [26]Morita S, Miwa H, Kondo T. A case of the familial essential myoclonus and epilepsy presenting behavioral arrest. No To Shinkei,2003,55(4):345-348.
    [27]刘青蕊,贺丹,赵静霞,等.家族特发性肌阵挛性癫痫一家系.中华医学遗传学杂志,2000,18(3):244.
    [28]樊双义,余德海,魏东宁.家族特发性肌阵挛性癫痫一家系五例报告.北京医学,2004,26(4):235.
    [29]Yasuda T. Begnin adult familial myoclonic epilepsy (BAFME). Kawasaki Med J,1991,17:1-13.
    [30]Kuwano A, Takakubo F, Morimoto Y, et al. Benign adult familial myoclonus epilepsy (BAFME):an autosomal dominant form not linked to the dentatorubral pallidoluysian atrophy (DRPLA) gene. J Med Genet,1996, 33(1):80-81.
    [31]de Falco FA, Striano P, de Falco A, et al. Benign adult familial myoclonic epilepsy:genetic heterogeneity and allelism with ADCME. Neurology,2003, 60(8):1381-1385.
    [32]Striano P, Chifari R, Striano S, et al. A new benign adult familial myoclonic epilepsy (BAFME) pedigree suggesting linkage to chromosome 2p11.1-q12.2. Epilepsia,2004,45(2):190-192.
    [33]Madia F, Striano P, Di Bonaventura C, et al. Benign adult familial myoclonic epilepsy (BAFME):evidence of an extended founder haplotype on chromosome 2p11.1-q12.2 in five Italian families. Neurogenetics,2008,9(2): 139-142.
    [34]王康,肖波,曾艺.良性成人家族性肌阵挛癫痫一家系七例报告.中华神经科杂志,2003,36(6):465.
    [35]Manabe Y, Narai H, Warita H, et al. Benign adult familial myoclonic epilepsy (BAFME) with night blindness. Seizure,2002,11(4):266-268.
    [36]Mikami M, Yasuda T, Terao A, et al. Localization of a gene for benign adult familial myoclonic epilepsy to chromosome 8q23.3-q24.1. Am J Hum Genet, 1999,65(3):745-751.
    [37]Sano A, Mikami M, Nakamura M, et al. Positional candidate approach for the gene responsible for benign adult familial myoclonic epilepsy. Epilepsia,2002, 43(Suppl 9):26-31.
    [38]Deng FY, Gong J, Zhang YC, et al. Absence of linkage to 8q23.3-q24.1 and 2p11.1-q12.2 in a new BAFME pedigree in China:indication of a third locus for BAFME. Epilepsy Res,2005,65(3):147-152.
    [39]Uyama E, Tokunaga M, Murakami T, et al. Familial adult myoclonus epilepsy: a new phenotype of autosomal dominant myoclonic epilepsy [Abstract]. Ann Neurol,1996,40:505.
    [40]Saka E, Saygi S. Familial adult onset myoclonic epilepsy associated with migraine. Seizure,2000,9(5):344-346.
    [41]Labauge P, Amer LO, Simonetta-Moreau M, et al. Absence of linkage to 8q24 in a European family with familial adult myoclonic epilepsy (FAME). Neurology,2002,58(6):941-944.
    [42]Frey LC, Karceski SC. A North American kindred with familial adult myoclonic epilepsy [abstract]. Epilepsia,2002,43(Suppl.7):152.
    [43]Plaster NM, Uyama E, Uchino M, et al. Genetic localization of the familial adult myoclonic epilepsy (FAME) gene to chromosome 8q24. Neurology, 1999,53(6):1180-1183.
    [44]Guerrini R, Bonanni P, Patrignani A, et al. Autosomal dominant cortical myoclonus and epilepsy (ADCME) with complex partial and generalized seizures:A newly recognized epilepsy syndrome with linkage to chromosome 2p11.1-q12.2. Brain,2001,124(Pt 12):2459-2475.
    [45]曾艳,陈雪平,张树山,等.常染色体显性遗传皮质型肌阵挛并癫痫2家系报告.中国神经精神疾病杂志,2008,34(10):634.
    [46]Shibasaki H, Yamashita Y, Tsuji S. Somatosensory evoked potentials. Diagnostic criteria and abnormalities in cerebral lesions. J Neurol Sci,1977, 34(3):427-439.
    [47]Morton NE. Sequential tests for the detection of linkage. Am J Hum Genet, 1955,7(3):277-318.
    [48]Lathrop GM, Lalouel JM, Julier C, et al. Multilocus linkage analysis in humans:detection of linkage and estimation of recombination. Am J Hum Genet,1985,37(3):482-498.
    [49]Lathrop GM, Lalouel JM. Efficiency of recombination estimates using two-and three-point linkage data. Prog Clin Biol Res,1985,194:97-102.
    [50]Charlier C, Singh NA, Ryan SG, et al. A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nat Genet,1998, 18(1):53-55.
    [51]Singh NA, Charlier C, Stauffer D, et al. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat Genet,1998, 18(1):25-29.
    [52]Phillips HA, Favre I, Kirkpatrick M, et al. CHRNB2 is the second acetylcholine receptor subunit associated with autosomal dominant nocturnal frontal lobe epilepsy. Am J Hum Genet,2001,68(1):225-231.
    [53]Wallace RH, Wang DW, Singh R, et al. Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel betal subunit gene SCN1B. Nat Genet,1998,19(4):366-370.
    [54]Audenaert D, Claes L, Ceulemans B, et al. A deletion in SCN1B is associated with febrile seizures and early-onset absence epilepsy. Neurology,2003,61(6): 854-856.
    [55]Escayg A, MacDonald BT, Meisler MH, et al. Mutations of SCN1 A, encoding a neuronal sodium channel, in two families with GEFS+2. Nat Genet,2000, 24(4):343-345.
    [56]Sugawara T, Tsurubuchi Y, Agarwala KL, et al. A missense mutation of the Na+ channel alpha Ⅱ subunit gene Na(v)1.2 in a patient with febrile and afebrile seizures causes channel dysfunction. Proc Natl Acad Sci U S A,2001, 98(11):6384-6389.
    [57]Wallace RH, Marini C, Petrou S, et al. Mutant GABA(A) receptor gamma2-subunit in childhood absence epilepsy and febrile seizures. Nat Genet, 2001,28(1):49-52.
    [58]Baulac S, Huberfeld G, Gourfinkel-An I, et al. First genetic evidence of GABA(A) receptor dysfunction in epilepsy:a mutation in the gamma2-subunit gene. Nat Genet,2001,28(1):46-48.
    [59]Biervert C, Steinlein OK. Structural and mutational analysis of KCNQ2, the major gene locus for benign familial neonatal convulsions. Hum Genet,1999, 104(3):234-240.
    [60]Anton Y. Basic Principles and Software for PCR Primer Design. In:Walker JM, eds. Methods in Molecular Biology. Totowa, New Jersey:Human Press, 2007.1-105.
    [61]Connors BW, Amitai Y. Making waves in the neocortex. Neuron,1997,18(3): 347-349.
    [62]Bain P, Brin M, Deuschl G, et al. Criteria for the diagnosis of essential tremor. Neurology,2000,54(11 Suppl 4):S7.
    [63]Elble RJ. Diagnostic criteria for essential tremor and differential diagnosis. Neurology,2000,54(11 Suppl 4):S2-6.
    [64]Louis ED, Ford B, Lee H, et al. Diagnostic criteria for essential tremor:a population perspective. Arch Neurol,1998,55(6):823-828.
    [65]Liu AW, Delgado-Escueta AV, Serratosa JM, et al. Juvenile myoclonic epilepsy locus in chromosome 6p21.2-pll:linkage to convulsions and electroencephalography trait. Am J Hum Genet,1995,57(2):368-381.
    [66]Elmslie FV, Williamson MP, Rees M, et al. Linkage analysis of juvenile myoclonic epilepsy and microsatellite loci spanning 61 cM of human chromosome 6p in 19 nuclear pedigrees provides no evidence for a susceptibility locus in this region. Am J Hum Genet,1996,59(3):653-663.
    [67]Liu AW, Delgado-Escueta AV, Gee MN, et al. Juvenile myoclonic epilepsy in chromosome 6p12-p11:locus heterogeneity and recombinations. Am J Med Genet,1996,63(3):438-446.
    [68]Elmslie FV, Rees M, Williamson MP, et al. Genetic mapping of a major susceptibility locus for juvenile myoclonic epilepsy on chromosome 15q. Hum Mol Genet,1997,6(8):1329-1334.
    [69]Sander T, Bockenkamp B, Hildmann T, et al. Refined mapping of the epilepsy susceptibility locus EJM1 on chromosome 6. Neurology,1997,49(3): 842-847.
    [70]Greenberg DA, Durner M, Keddache M, et al. Reproducibility and complications in gene searches:linkage on chromosome 6, heterogeneity, association, and maternal inheritance in juvenile myoclonic epilepsy. Am J Hum Genet,2000,66(2):508-516.
    [71]Bai D, Alonso ME, Medina MT, et al. Juvenile myoclonic epilepsy:linkage to chromosome 6p12 in Mexico families. Am J Med Genet,2002,113(3): 268-274.
    [72]Suzuki T, Morita R, Sugimoto Y, et al. Identification and mutational analysis of candidate genes for juvenile myoclonic epilepsy on 6p11-p12:LRRC1, GCLC, KIAA0057 and CLIC5. Epilepsy Res,2002,50(3):265-275.
    [73]Taske NL, Williamson MP, Makoff A, et al. Evaluation of the positional candidate gene CHRNA7 at the juvenile myoclonic epilepsy locus (EJM2) on chromosome 15q13-14. Epilepsy Res,2002,49(2):157-172.
    [74]Pal DK, Evgrafov OV, Tabares P, et al. BRD2 (RING3) is a probable major susceptibility gene for common juvenile myoclonic epilepsy. Am J Hum Genet,2003,73(2):261-270.
    [75]Gallagher MJ, Song L, Arain F, et al. The juvenile myoclonic epilepsy GABA(A) receptor alphal subunit mutation A322D produces asymmetrical, subunit position-dependent reduction of heterozygous receptor currents and alphal subunit protein expression. J Neurosci,2004,24(24):5570-5578.
    [76]Mas C, Taske N, Deutsch S, et al. Association of the connexin36 gene with juvenile myoclonic epilepsy. J Med Genet,2004,41(7):e93.
    [77]Gu W, Sander T, Heils A, et al. A new EF-hand containing gene EFHC2 on Xp11.4:tentative evidence for association with juvenile myoclonic epilepsy. Epilepsy Res,2005,66(1-3):91-98.
    [78]Krampfl K, Maljevic S, Cossette P, et al. Molecular analysis of the A322D mutation in the GABA receptor alpha-subunit causing juvenile myoclonic epilepsy. Eur J Neurosci,2005,22(1):10-20.
    [79]Pinto D, Westland B, de Haan GJ, et al. Genome-wide linkage scan of epilepsy-related photoparoxysmal electroencephalographic response:evidence for linkage on chromosomes 7q32 and 16p 13. Hum Mol Genet,2005,14(1): 171-178.
    [80]Puranam RS, Jain S, Kleindienst AM, et al. A locus for generalized tonic-clonic seizure susceptibility maps to chromosome 10q25-q26. Ann Neurol,2005,58(3):449-458.
    [81]de Nijs L, Lakaye B, Coumans B, et al. EFHC1, a protein mutated in juvenile myoclonic epilepsy, associates with the mitotic spindle through its N-terminus. Exp Cell Res,2006,312(15):2872-2879.
    [82]Hempelmann A, Taylor KP, Heils A, et al. Exploration of the genetic architecture of idiopathic generalized epilepsies. Epilepsia,2006,47(10): 1682-1690.
    [83]Ma S, Blair MA, Abou-Khalil B, et al. Mutations in the GABRA1 and EFHC1 genes are rare in familial juvenile myoclonic epilepsy. Epilepsy Res,2006, 71(2-3):129-134.
    [84]Pinto D, Louwaars S, Westland B, et al. Heterogeneity at the JME 6p11-12 locus:absence of mutations in the EFHC1 gene in linked Dutch families. Epilepsia,2006,47(10):1743-1746.
    [85]Suzuki T, Delgado-Escueta AV, Alonso ME, et al. Mutation analyses of genes on 6p 12-p 11 in patients with juvenile myoclonic epilepsy. Neurosci Lett,2006, 405(1-2):126-131.
    [86]Welty TE. Juvenile myoclonic epilepsy:epidemiology, pathophysiology, and management. Paediatr Drugs,2006,8(5):303-310.
    [87]Annesi F, Gambardella A, Michelucci R, et al. Mutational analysis of EFHC1 gene in Italian families with juvenile myoclonic epilepsy. Epilepsia,2007, 48(9):1686-1690.
    [88]Cavalleri GL, Walley NM, Soranzo N, et al. A multicenter study of BRD2 as a risk factor for juvenile myoclonic epilepsy. Epilepsia,2007,48(4):706-712.
    [89]Kapoor A, Ratnapriya R, Kuruttukulam G, et al. A novel genetic locus for juvenile myoclonic epilepsy at chromosome 5q12-q14. Hum Genet,2007, 121(6):655-662.
    [90]Medina MT, Suzuki T, Alonso ME, et al. Novel mutations in Myocloninl/EFHC1 in sporadic and familial juvenile myoclonic epilepsy. Neurology,2008,70(22 Pt 2):2137-2144.
    [91]Rozycka A, Steinborn B, Trzeciak WH. The 1674+11C>T polymorphism of CHRNA4 is associated with juvenile myoclonic epilepsy. Seizure,2009,18(8): 601-603.
    [92]Montalenti E, Imperiale D, Rovera A, et al. Clinical features, EEG findings and diagnostic pitfalls in juvenile myoclonic epilepsy:a series of 63 patients. J Neurol Sci,2001,184(1):65-70.
    [93]Auvin S. Treatment of myoclonic seizures in patients with juvenile myoclonic epilepsy. Neuropsychiatr Dis Treat,2007,3(6):729-734.
    [94]Shahwan A, Farrell M, Delanty N. Progressive myoclonic epilepsies:a review of genetic and therapeutic aspects. Lancet Neurol,2005,4(4):239-248.
    [95]Lohi H, Chan EM, Scherer SW, et al. On the road to tractability:the current biochemical understanding of progressive myoclonus epilepsies. Adv Neurol, 2006,97:399-415.
    [96]Ikeuchi T, Koide R, Tanaka H, et al. Dentatorubral-pallidoluysian atrophy: clinical features are closely related to unstable expansions of trinucleotide (CAG) repeat. Ann Neurol,1995,37(6):769-775.
    [97]Lehesjoki AE, Koskiniemi M, Sistonen P, et al. Localization of a gene for progressive myoclonus epilepsy to chromosome 21q22. Proc Natl Acad Sci U
    S A,1991,88(9):3696-3699.
    [98]Lafreniere RG, Rochefort DL, Chretien N, et al. Unstable insertion in the 5' flanking region of the cystatin B gene is the most common mutation in progressive myoclonus epilepsy type 1, EPM1. Nat Genet,1997,15(3): 298-302.
    [99]Minassian BA, Lee JR, Herbrick JA, et al. Mutations in a gene encoding a novel protein tyrosine phosphatase cause progressive myoclonus epilepsy. Nat Genet,1998,20(2):171-174.
    [100]Chan EM, Bulman DE, Paterson AD, et al. Genetic mapping of a new Lafora progressive myoclonus epilepsy locus (EPM2B) on 6p22. J Med Genet,2003, 40(9):671-675.
    [101]Holmes SE, Hearn EO, Ross CA, et al. SCA12:an unusual mutation leads to an unusual spinocerebellar ataxia. Brain Res Bull,2001,56(3-4):397-403.
    [102]Srivastava AK, Choudhry S, Gopinath MS, et al. Molecular and clinical correlation in five Indian families with spinocerebellar ataxia 12. Ann Neurol, 2001,50(6):796-800.
    [103]O'Hearn E, Holmes SE, Calvert PC, et al. SCA-12:Tremor with cerebellar and cortical atrophy is associated with a CAG repeat expansion. Neurology,2001, 56(3):299-303.
    [104]Holmes SE, O'Hearn EE, McInnis MG, et al. Expansion of a novel CAG trinucleotide repeat in the 5'region of PPP2R2B is associated with SCA12. Nat Genet,1999,23(4):391-392.
    [105]Lewis TB, Leach RJ, Ward K, et al. Genetic heterogeneity in benign familial neonatal convulsions:identification of a new locus on chromosome 8q. Am J Hum Genet,1993,53(3):670-675.
    [106]Fong GC, Shah PU, Gee MN, et al. Childhood absence epilepsy with tonic-clonic seizures and electroencephalogram 3-4-Hz spike and multispike-slow wave complexes:linkage to chromosome 8q24. Am J Hum Genet,1998,63(4):1117-1129.
    [107]Shapiro MS, Roche JP, Kaftan EJ, et al. Reconstitution of muscarinic modulation of the KCNQ2/KCNQ3 K(+) channels that underlie the neuronal M current. J Neurosci,2000,20(5):1710-1721.
    [108]Li H, Li N, Shen L, et al. A novel mutation of KCNQ3 gene in a Chinese family with benign familial neonatal convulsions. Epilepsy Res,2008,79(1): 1-5.
    [109]Hugnot JP, Salinas M, Lesage F, et al. Kv8.1, a new neuronal potassium channel subunit with specific inhibitory properties towards Shab and Shaw channels. EMBO J,1996,15(13):3322-3331.
    [110]Salinas M, Duprat F, Heurteaux C, et al. New modulatory alpha subunits for mammalian Shab K+ channels. J Biol Chem,1997,272(39):24371-24379.
    [111]Vigevano F, Fusco L, Di Capua M, et al. Benign infantile familial convulsions. Eur J Pediatr,1992,151(8):608-612.
    [112]Caraballo RH, Cersosimo RO, Amartino H, et al. Benign familial infantile seizures:further delineation of the syndrome. J Child Neurol,2002,17(9): 696-699.
    [113]Vigevano F. Benign familial infantile seizures. Brain Dev,2005,27(3): 172-177.
    [114]Hattori H, Fujii T, Nigami H, et al. Co-segregation of benign infantile convulsions and paroxysmal kinesigenic choreoathetosis. Brain Dev,2000, 22(7):432-435.
    [115]Demir E, Turanii G, Yalntzoglu D, et al. Benign familial infantile convulsions: phenotypic variability in a family. J Child Neurol,2005,20(6):535-538.
    [116]Szepetowski P, Rochette J, Berquin P, et al. Familial infantile convulsions and paroxysmal choreoathetosis:a new neurological syndrome linked to the pericentromeric region of human chromosome 16. Am J Hum Genet,1997, 61(4):889-898.
    [117]Kato N, Sadamatsu M, Kikuchi T, et al. Paroxysmal kinesigenic choreoathetosis:from first discovery in 1892 to genetic linkage with benign familial infantile convulsions. Epilepsy Res,2006,70 (Suppl 1):S174-184.
    [118]Terwindt GM, Ophoff RA, Lindhout D, et al. Partial cosegregation of familial hemiplegic migraine and a benign familial infantile epileptic syndrome. Epilepsia,1997,38(8):915-921.
    [119]Vanmolkot KR, Kors EE, Hottenga JJ, et al. Novel mutations in the Na+, K+-ATPase pump gene ATP1A2 associated with familial hemiplegic migraine and benign familial infantile convulsions. Ann Neurol,2003,54(3):360-366.
    [120]Sakai Y, Kira R, Torisu H, et al. Benign convulsion with mild gastroenteritis and benign familial infantile seizure. Epilepsy Res,2006,68(3):269-271.
    [121]Fukuyama Y. Borderland of epilepsy with special reference to febrile convulsions and so-called infantile convulsions. Seishin-Igaku (Clin Psychiatry),1963,5:211-223.
    [122]Watanabe K, Yamamoto N, Negoro T, et al. Benign complex partial epilepsies in infancy. Pediatr Neurol,1987,3(4):208-211.
    [123]Watanabe K, Yamamoto N, Negoro T, et al. Benign infantile epilepsy with complex partial seizures. J Clin Neurophysiol,1990,7(3):409-416.
    [124]Watanabe K, Negoro T, Aso K. Benign partial epilepsy with secondarily generalized seizures in infancy. Epilepsia,1993,34(4):635-638.
    [125]Sugiura M, Matsumoto A, Watanabe K, et al. Long-term prognosis of generalized convulsions in the first year of life, with special reference to benign infantile convulsions. Jpn J Epil Soc,1983,1:116-121.
    [126]Vigevano F, Sebastianelli R, Fusco L, et al. Benign infantile familial convulsions. In:Malafosse A, Genton P, Hirsch E, et al., eds. Idiopathic generalized epilepsies:clinical, experimental and genetic aspects. London: John Libbey,1994.45-49.
    [127]Lee WL, Low PS, Rajan U. Benign familial infantile epilepsy. J Pediatr,1993, 123(4):588-590.
    [128]Luovigsson P, Olafsson E, Rich SS, et al. Benign infantile familial epilepsy: three families with multiple affected members in three generations. Epilepsia, 1993,34(Suppl2):18.
    [129]Echenne B, Humbertclaude V, Rivier F, et al. Benign infantile epilepsy with autosomal dominant inheritance. Brain Dev,1994,16(2):108-111.
    [130]Capovilla G, Giordano L, Tiberti S, et al. Benign partial epilepsy in infancy with complex partial seizures (Watanabe's syndrome):12 non-Japanese new cases. Brain Dev,1998,20(2):105-111.
    [131]Giordano L, Accorsi P, Valseriati D, et al. Benign infantile familial convulsions:natural history of a case and clinical characteristics of a large Italian family. Neuropediatrics,1999,30(2):99-101.
    [132]Callenbach PM, de Coo RF, Vein AA, et al. Benign familial infantile convulsions:a clinical study of seven Dutch families. Eur J Paediatr Neurol, 2002,6(5):269-283.
    [133]Caraballo R, Pavek S, Lemainque A, et al. Linkage of benign familial infantile convulsions to chromosome 16p12-q12 suggests allelism to the infantile convulsions and choreoathetosis syndrome. Am J Hum Genet,2001,68(3): 788-794.
    [134]Guipponi M, Rivier F, Vigevano F, et al. Linkage mapping of benign familial infantile convulsions (BFIC) to chromosome 19q. Hum Mol Genet,1997,6(3): 473-477.
    [135]Weber YG, Berger A, Bebek N, et al. Benign familial infantile convulsions: linkage to chromosome 16p12-q12 in 14 families. Epilepsia,2004,45(6): 601-609.
    [136]Malacarne M, Gennaro E, Madia F, et al. Benign familial infantile convulsions: mapping of a novel locus on chromosome 2q24 and evidence for genetic heterogeneity. Am J Hum Genet,2001,68(6):1521-1526.
    [137]Callenbach PM, van den Boogerd EH, de Coo RF, et al. Refinement of the chromosome 16 locus for benign familial infantile convulsions. Clin Genet, 2005,67(6):517-525.
    [138]Martinelli Boneschi F, Aridon P, Zara F, et al. No evidence of ATP1A2 involvement in 12 multiplex Italian families with benign familial infantile seizures. Neurosci Lett,2005,388(2):71-74.
    [139]Franzoni E, Bracceschi R, Colonnelli MC, et al. Clinical features of benign infantile convulsions:familial and sporadic cases. Neurology,2005,65(7): 1098-1100.
    [140]Striano P, Bordo L, Lispi ML, et al. A novel SCN2A mutation in family with benign familial infantile seizures. Epilepsia,2006,47(1):218-220.
    [141]Striano P, Lispi ML, Gennaro E, et al. Linkage analysis and disease models in benign familial infantile seizures:a study of 16 families. Epilepsia,2006, 47(6):1029-1034.
    [142]Ishii A, Zhang B, Kaneko S, et al. Positive association between benign familial infantile convulsions and LGI4. Brain Dev,2009, Epub ahead of print
    [143]肖波,宁景春,杨晓苏,等.良性家族性婴儿惊厥一家系.中华医学杂志,2001,81(20):1245.
    [144]尹景岗,尹景芬,张守山,等.良性家族婴儿惊厥一家系.中华医学遗传学杂志,1997,14(4):259-260.
    [145]唐北沙,向燕群.良性家族性婴儿惊厥一家系.中华医学遗传学杂志,2000,17(1):41.
    [146]尹景岗,黄素娟,郭学鹏,等.良性家族性婴儿惊厥基因定位研究.实用儿科临床杂志,1999,14(4):219-222.
    [147]Li HY, Li N, Jiang H, et al. A novel genetic locus for benign familial infantile seizures maps to chromosome 1p36.12-p35.1. Clin Genet,2008,74(5): 490-492.
    [148]Leppert M, Anderson VE, Quattlebaum T, et al. Benign familial neonatal convulsions linked to genetic markers on chromosome 20. Nature,1989, 337(6208):647-648.
    [149]Ottman R, Risch N, Hauser WA, et al. Localization of a gene for partial epilepsy to chromosome 10q. Nat Genet,1995,10(1):56-60.
    [150]Lee WL, Tay A, Ong HT, et al. Association of infantile convulsions with paroxysmal dyskinesias (ICCA syndrome):confirmation of linkage to human chromosome 16p12-q12 in a Chinese family. Hum Genet,1998,103(5): 608-612.
    [151]Koch C, Bednarek N, Motte J. Benign epileptic seizures in infancy followed by paroxysmal choreo-athetosis during adolescence. Epileptic Disord,1999, 1(2):141-142.
    [152]Tomita H, Nagamitsu S, Wakui K, et al. Paroxysmal kinesigenic choreoathetosis locus maps to chromosome 16p11.2-q12.1. Am J Hum Genet, 1999,65(6):1688-1697.
    [153]Swoboda KJ, Soong B, McKenna C, et al. Paroxysmal kinesigenic dyskinesia and infantile convulsions:clinical and linkage studies. Neurology,2000,55(2): 224-230.
    [154]Swoboda KJ, Soong BW, McKenna C, et al. Paroxysmal kinesigenic dyskinesia and infantile convulsions. Clinical and linkage studies.2000. Neurology,2001,57(11 Suppl 4):S42-48.
    [155]Marconi R, De Fusco M, Aridon P, et al. Familial hemiplegic migraine type 2 is linked to 0.9Mb region on chromosome 1q23. Ann Neurol,2003,53(3): 376-381.
    [156]De Fusco M, Marconi R, Silvestri L, et al. Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump alpha2 subunit associated with familial hemiplegic migraine type 2. Nat Genet,2003,33(2):192-196.
    [157]Lewis TB, Shevell MI, Andermann E, et al. Evidence of a third locus for benign familial convulsions. J Child Neurol,1996,11(3):211-214.
    [158]Heron SE, Crossland KM, Andermann E, et al. Sodium-channel defects in benign familial neonatal-infantile seizures. Lancet,2002,360(9336):851-852.
    Erratum, Lancet 2002,2360:1520.
    [159]Berkovic SF, Heron SE, Giordano L, et al. Benign familial neonatal-infantile seizures:characterization of a new sodium channelopathy. Ann Neurol,2004, 55(4):550-557.
    [160]Herlenius E, Heron SE, Grinton BE, et al. SCN2A mutations and benign familial neonatal-infantile seizures:the phenotypic spectrum. Epilepsia,2007, 48(6):1138-1142.
    [161]Plouin P. Benign familial neonatal convulsions. In:Malafosse A, Genton P, Hirsch E, et al., eds. Idiopathic generalized epilepsies:clinical, experimental, and genetic aspects. London:John Libbey & Co Ltd,1994.39-44.
    [162]Zhou X, Ma A, Liu X, et al. Infantile seizures and other epileptic phenotypes in a Chinese family with a missense mutation of KCNQ2. Eur J Pediatr,2006, 165(10):691-695.
    [163]Beck C, Moulard B, Steinlein O, et al. A nonsense mutation in the alpha4 subunit of the nicotinic acetylcholine receptor (CHRNA4) cosegregates with 20q-linked benign neonatal familial convulsions (EBNI). Neurobiol Dis,1994, 1(1-2):95-99.
    [164]Li N, Li H, Jiang H, et al. Mutation detection in candidate genes for benign familial infantile seizures on a novel locus. Int J Neurosci,2010,120(3): 217-221.
    [165]夏家辉.人类遗传病的家系收集疾病基因定位克隆与疾病基因功能的研究.中国工程科学,2000,2(11):1-11.
    [166]向燕群.良性家族性婴儿惊厥临床及疾病基因定位的初步研究:[七年制临床医学专业硕士学位论文].长沙:湖南医科大学,1999.
    [167]Gennaro E, Malacarne M, Carbone I, et al. No evidence of a major locus for benign familial infantile convulsions on chromosome 19ql2-ql3.1. Epilepsia, 1999,40(12):1799-1803.
    [168]李海燕.新的BFIC致病基因的定位、候选克隆及BFNC的KCNQ3基因突变检测:[博士学位论文].长沙:中南大学,2006.
    [169]Kelly RB. Neural transmission. Synaptotagmin is just a calcium sensor. Curr Biol,1995,5(3):257-259.
    [170]Koh TW, Bellen HJ. Synaptotagmin I, a Ca2+ sensor for neurotransmitter release. Trends Neurosci,2003,26(8):413-422.
    [171]Littleton JT, Bellen HJ. Synaptotagmin controls and modulates synaptic-vesicle fusion in a Ca(2+)-dependent manner. Trends Neurosci,1995, 18(4):177-183.
    [172]Schwab Y, Mouton J, Chasserot-Golaz S, et al. Calcium-dependent translocation of synaptotagmin to the plasma membrane in the dendrites of developing neurones. Brain Res Mol Brain Res,2001,96(1-2):1-13.
    [173]Willems PJ, Seo HC, Coucke P, et al. Spectrum of mutations in fucosidosis. Eur J Hum Genet,1999,7(1):60-67.
    [174]Walkley SU. Pyramidal neurons with ectopic dendrites in storage diseases exhibit increased GM2 ganglioside immunoreactivity. Neuroscience,1995, 68(4):1027-1035.
    [175]Wilkinson DG. Multiple roles of EPH receptors and ephrins in neural development. Nat Rev Neurosci,2001,2(3):155-164.
    [176]Kullander K, Klein R. Mechanisms and functions of Eph and ephrin signalling. Nat Rev Mol Cell Biol,2002,3(7):475-486.
    [177]Gu C, Shim S, Shin J, et al. The EphA8 receptor induces sustained MAP kinase activation to promote neurite outgrowth in neuronal cells. Oncogene, 2005,24(26):4243-4256.
    [178]Egeo A, Mazzocco M, Arrigo P, et al. Identification and characterization of a new human gene encoding a small protein with high homology to the proline-rich region of the SH3BGR gene. Biochem Biophys Res Commun, 1998,247(2):302-306.
    [179]Vidal-Taboada JM, Bergonon S, Scartezzini P, et al. High-resolution physical map and identification of potentially regulatory sequences of the human SH3BGR located in the Down syndrome chromosomal region. Biochem Biophys Res Commun,1997,241(2):321-326.
    [180]Mazzocco M, Arrigo P, Egeo A, et al. A novel human homologue of the SH3BGR gene encodes a small protein similar to Glutaredoxin 1 of Escherichia coli. Biochem Biophys Res Commun,2001,285(2):540-545.
    [181]Mons N, Cooper DM. Adenylate cyclases:critical foci in neuronal signaling. Trends Neurosci,1995,18(12):536-542.
    [182]Berndt C, Casaroli-Marano RP, Vilaro S, et al. Cloning and characterization of human syndecan-3. J Cell Biochem,2001,82(2):246-259.
    [183]Jogi A, Persson P, Grynfeld A, et al. Modulation of basic helix-loop-helix transcription complex formation by Id proteins during neuronal differentiation.
    J Biol Chem,2002,277(11):9118-9126.
    [184]Tzeng SF, de Vellis J. Id1, Id2, and Id3 gene expression in neural cells during development. Glia,1998,24(4):372-381.
    [185]Andres-Barquin PJ, Hernandez MC, Israel MA. Id genes in nervous system development. Histol Histopathol,2000,15(2):603-618.
    [186]Inoue K, Ozaki S, Shiga T, et al. Runx3 controls the axonal projection of proprioceptive dorsal root ganglion neurons. Nat Neurosci,2002,5(10): 946-954.
    [187]Schaefer AM, Hadwiger GD, Nonet ML. rpm-1, a conserved neuronal gene that regulates targeting and synaptogenesis in C. elegans. Neuron,2000,26(2): 345-356.
    [188]Suzuki T, Ganesh S, Agarwala KL, et al. A novel gene in the chromosomal region for juvenile myoclonic epilepsy on 6p12 encodes a brain-specific lysosomal membrane protein. Biochem Biophys Res Commun,2001,288(3): 626-636.
    [189]Kubisch C, Schroeder BC, Friedrich T, et al. KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell,1999,96(3):437-446.
    [190]Windpassinger C, Kroisel PM, Wagner K, et al. The human gamma-aminobutyric acid A receptor delta (GABRD) gene:molecular characterisation and tissue-specific expression. Gene,2002,292(1-2):25-31.
    [191]Brickley SG, Revilla V, Cull-Candy SG, et al. Adaptive regulation of neuronal excitability by a voltage-independent potassium conductance. Nature,2001, 409(6816):88-92.
    [192]Dibbens LM, Feng HJ, Richards MC, et al. GABRD encoding a protein for extra-or peri-synaptic GABAA receptors is a susceptibility locus for generalized epilepsies. Hum Mol Genet,2004,13(13):1315-1319.
    [193]Guidelines for epidemiologic studies on epilepsy. Commission on Epidemiology and Prognosis, International League Against Epilepsy. Epilepsia,1993,34(4):592-596.
    [194]Stafstrom CE. The incidence and prevalence of febrile seizures. In:Baram TZ, Shinnar S, eds. Febrile Seizures. San Diego:Academic Press,2002.1-25.
    [195]Offringa M, Bossuyt PM, Lubsen J, et al. Risk factors for seizure recurrence in children with febrile seizures:a pooled analysis of individual patient data from five studies. J Pediatr,1994,124(4):574-584.
    [196]Maher J, McLachlan RS. Febrile convulsions. Is seizure duration the most important predictor of temporal lobe epilepsy? Brain,1995,118(Pt 6): 1521-1528.
    [197]Scheffer IE, Berkovic SF. Generalized epilepsy with febrile seizures plus. A genetic disorder with heterogeneous clinical phenotypes. Brain,1997,120 (Pt 3):479-490.
    [198]孟海娇,洪震,朱国行,等.GABRG2基因多态性在GEFS+中分布的研究.神经疾病与精神卫生,2003,3(6):414-416.
    [199]黄希顺,尹景岗,魏建科,等.全面性癫痫伴高热惊厥附加症基因定位及GABRA6基因测序研究.实用儿科临床杂志,2004,19(8):676-679.
    [200]Liu XR, Deng YH, Liao WP, et al. The clinical and genetic features of generalized epilepsy with febrile seizure plus (GEFS+) in Chinese families. Neurology Asia,2004,9(Supplement 1):91.
    [201]任连坤,吴立文,卢强,等.全面性癫癎伴热性惊厥附加症的临床和脑电图特征分析.中华神经科杂志,2005,38(5):293-296.
    [202]席妹景,黄希顺,魏建科,等.全面性癫痫伴热性惊厥附加症6家系SCN1B基因突变筛查.实用儿科临床杂志,2007,22(10):768-770.
    [203]常秀红,黄希顺,魏建科.全面性癫痫伴热性惊厥附加症家系γ-氨基丁酸A型受体γ2亚单位基因研究.实用儿科临床杂志,2007,22(15):1166-1167.
    [204]Sun H, Zhang Y, Liang J, et al. SCN1A, SCN1B, and GABRG2 gene mutation analysis in Chinese families with generalized epilepsy with febrile seizures plus. J Hum Genet,2008,53(8):769-774.
    [205]Scheffer IE, Harkin LA, Grinton BE, et al. Temporal lobe epilepsy and GEFS+ phenotypes associated with SCN1B mutations. Brain,2007,130(Pt 1): 100-109.
    [206]Singh R, Scheffer IE, Crossland K, et al. Generalized epilepsy with febrile seizures plus:a common childhood-onset genetic epilepsy syndrome. Ann Neurol,1999,45(1):75-81.
    [207]Singh R, Andermann E, Whitehouse WP, et al. Severe myoclonic epilepsy of infancy:extended spectrum of GEFS+? Epilepsia,2001,42(7):837-844.
    [208]Marini C, Harkin LA, Wallace RH, et al. Childhood absence epilepsy and febrile seizures:a family with a GABA(A) receptor mutation. Brain,2003, 126(Pt 1):230-240.
    [209]Wallace RH, Scheffer IE, Parasivam G, et al. Generalized epilepsy with febrile seizures plus:mutation of the sodium channel subunit SCN1B. Neurology,2002,58(9):1426-1429.
    [210]Sugawara T, Mazaki-Miyazaki E, Ito M, et al. Nav1.1 mutations cause febrile seizures associated with afebrile partial seizures. Neurology,2001,57(4): 703-705.
    [211]Abou-Khalil B, Ge Q, Desai R, et al. Partial and generalized epilepsy with febrile seizures plus and a novel SCN1A mutation. Neurology,2001,57(12): 2265-2272.
    [212]Ito M, Nagafuji H, Okazawa H, et al. Autosomal dominant epilepsy with febrile seizures plus with missense mutations of the (Na+)-channel alpha 1 subunit gene, SCN1A. Epilepsy Res,2002,48(1-2):15-23.
    [213]Bonanni P, Malcarne M, Moro F, et al. Generalized epilepsy with febrile seizures plus (GEFS+):clinical spectrum in seven Italian families unrelated to SCN1A, SCN1B, and GABRG2 gene mutations. Epilepsia,2004,45(2): 149-158.
    [214]Ito M, Yamakawa K, Sugawara T, et al. Phenotypes and genotypes in epilepsy with febrile seizures plus. Epilepsy Res,2006,70 (Suppl 1):S199-205.
    [215]Selmer KK, Eriksson AS, Brandal K, et al. Parental SCN1A mutation mosaicism in familial Dravet syndrome. Clin Genet,2009,76(4):398-403.
    [216]Escayg A, Heils A, MacDonald BT, et al. A novel SCN1A mutation associated with generalized epilepsy with febrile seizures plus--and prevalence of variants in patients with epilepsy. Am J Hum Genet,2001,68(4):866-873.
    [217]Lossin C. A catalog of SCN1A variants. Brain Dev,2009,31(2):114-130.
    [218]Wallace RH, Scheffer IE, Barnett S, et al. Neuronal sodium-channel alpha 1-subunit mutations in generalized epilepsy with febrile seizures plus. Am J Hum Genet,2001,68(4):859-865.
    [219]Claes L, Del-Favero J, Ceulemans B, et al. De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet,2001,68(6):1327-1332.
    [220]Mulley JC, Scheffer IE, Petrou S, et al. SCN1A mutations and epilepsy. Hum Mutat,2005,25(6):535-542.
    [221]Annesi G, Gambardella A, Carrideo S, et al. Two novel SCN1A missense mutations in generalized epilepsy with febrile seizures plus. Epilepsia,2003, 44(9):1257-1258.
    [222]Singh NA, Pappas C, Dahle EJ, et al. A role of SCN9A in human epilepsies, as a cause of febrile seizures and as a potential modifier of Dravet syndrome. PLoS Genet,2009,5(9):e1000649.
    [223]Harkin LA, Bowser DN, Dibbens LM, et al. Truncation of the GABA(A)-receptor gamma2 subunit in a family with generalized epilepsy with febrile seizures plus. Am J Hum Genet,2002,70(2):530-536.
    [224]Audenaert D, Claes L, Claeys KG, et al. A novel susceptibility locus at 2p24 for generalised epilepsy with febrile seizures plus. J Med Genet,2005,42(12): 947-952.
    [225]Baulac S, Gourfinkel-An I, Couarch P, et al. A novel locus for generalized epilepsy with febrile seizures plus in French families. Arch Neurol,2008, 65(7):943-951.
    [226]Poduri A, Wang Y, Gordon D, et al. Novel susceptibility locus at chromosome 6q16.3-22.31 in a family with GEFS+. Neurology,2009,73(16):1264-1272.
    [227]Scheffer IE, Zhang YH, Jansen FE, et al. Dravet syndrome or genetic (generalized) epilepsy with febrile seizures plus? Brain Dev,2009,31(5): 394-400.
    [228]Mahoney K, Moore SJ, Buckley D, et al. Variable neurologic phenotype in a GEFS+ family with a novel mutation in SCN1A. Seizure,2009,18(7): 492-497.
    [229]Reutens DC, Howell RA, Gebert KE, et al. Validation of a questionnaire for clinical seizure diagnosis. Epilepsia,1992,33(6):1065-1071.
    [230]Shi X, Yasumoto S, Nakagawa E, et al. Missense mutation of the sodium channel gene SCN2A causes Dravet syndrome. Brain Dev,2009,31(10): 758-762.
    [231]Isom LL, De Jongh KS, Catterall WA. Auxiliary subunits of voltage-gated ion channels. Neuron,1994,12(6):1183-1194.
    [232]Plummer NW, Meisler MH. Evolution and diversity of mammalian sodium channel genes. Genomics,1999,57(2):323-331.
    [233]Catterall WA. From ionic currents to molecular mechanisms:the structure and function of voltage-gated sodium channels. Neuron,2000,26(1):13-25.
    [234]Goldin AL. Evolution of voltage-gated Na(+) channels. J Exp Biol,2002, 205(Pt 5):575-584.
    [235]Goldin AL, Snutch T, Lubbert H, et al. Messenger RNA coding for only the alpha subunit of the rat brain Na channel is sufficient for expression of functional channels in Xenopus oocytes. Proc Natl Acad Sci U S A,1986, 83(19):7503-7507.
    [236]Harkin LA, McMahon JM, Iona X, et al. The spectrum of SCNIA-related infantile epileptic encephalopathies. Brain,2007,130(Pt 3):843-852.
    [237]Wang JW, Kurahashi H, Ishii A, et al. Microchromosomal deletions involving SCN1A and adjacent genes in severe myoclonic epilepsy in infancy. Epilepsia, 2008,49(9):1528-1534.
    [238]Depienne C, Trouillard O, Saint-Martin C, et al. Spectrum of SCN1A gene mutations associated with Dravet syndrome:analysis of 333 patients. J Med Genet,2009,46(3):183-191.
    [239]Nabbout R, Gennaro E, Dalla Bernardina B, et al. Spectrum of SCN1A mutations in severe myoclonic epilepsy of infancy. Neurology,2003,60(12): 1961-1967.
    [240]Marini C, Mei D, Temudo T, et al. Idiopathic epilepsies with seizures precipitated by fever and SCN1A abnormalities. Epilepsia,2007,48(9): 1678-1685.
    [241]An RH, Wang XL, Kerem B, et al. Novel LQT-3 mutation affects Na+ channel activity through interactions between alpha-and betal-subunits. Circ Res,1998,83(2):141-146.
    [242]Cormier JW, Rivolta I, Tateyama M, et al. Secondary structure of the human cardiac Na+ channel C terminus:evidence for a role of helical structures in modulation of channel inactivation. J Biol Chem,2002,277(11):9233-9241.
    [243]Deschenes I, Trottier E, Chahine M. Implication of the C-terminal region of the alpha-subunit of voltage-gated sodium channels in fast inactivation. J Membr Biol,2001,183(2):103-114.
    [244]Mantegazza M, Yu FH, Catterall WA, et al. Role of the C-terminal domain in inactivation of brain and cardiac sodium channels. Proc Natl Acad Sci U S A, 2001,98(26):15348-15353.
    [245]Mantegazza M, Curia G, Biagini G, et al. Voltage-gated sodium channels as therapeutic targets in epilepsy and other neurological disorders. Lancet Neurol, 2010,9(4):413-424.
    [246]Meisler MH, Kearney JA. Sodium channel mutations in epilepsy and other neurological disorders. J Clin Invest,2005,115(8):2010-2017.
    [247]Schouten JP, McElgunn CJ, Waaijer R, et al. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res,2002,30(12):e57.
    [248]Mulley JC, Nelson P, Guerrero S, et al. A new molecular mechanism for severe myoclonic epilepsy of infancy:exonic deletions in SCN1A. Neurology, 2006,67(6):1094-1095.
    [249]Suls A, Claeys KG, Goossens D, et al. Microdeletions involving the SCN1A gene may be common in SCN1A-mutation-negative SMEI patients. Hum Mutat,2006,27(9):914-920.
    [1]Mark Gardiner. Molecular genetics of infantile nervous system channelopathies. Early Human Development,2006,82:775-779.
    [2]Ortrud K. Steinlein, John C. Mulley, Peter Propping, et al. A missense mutation in the neuronal nicotinic acetylcholine receptor 4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nature Genetics,1995,11: 201-203.
    [3]Phillips HA, Favre I, Kirkpatrick M, et al. CHRNB2 is the second acetylcholine receptor subunit associated with autosomal dominant nocturnal frontal lobe epilepsy. Am J Hum Genet,2001,68:225-231.
    [4]Wallace Rh, Wang DW, Singh R, et al. Febrile seizures and generalized epilepsy associated with a mutation in the Na+ channel betal subunit gene SCN1B. Nat Genet,1998,19:365-370.
    [5]Audenaert D, Claes L, Ceulemans B, et al. A deletion in SCN1B is associated with febrile seizures and early-onset absence epilepsy. Neurology,2003,61: 854-856.
    [6]Escayg A, MacDonald BT, Meisler MH, et al. Mutations of SCN1A encoding a neuronal sodium channel in two families with GEFS+2. Nat Genet,2000,24:343-345.
    [7]Sugawara T, Tsurubuchi Y, Agarwala KL,et al. A missense mutation of the Na+ channel alpha-II subunit gene Na(v)1.2 in a patient with febrile and afebrile seizures causes channel dysfunction. Proc. Nat. Acad. Sci,2001,98:6384-6389.
    [8]Singh NA, Charlier C, Stauffer D, et al. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat Genet,1998,18:25-29.
    [9]Charlier C, Nanda A, Ryan SG, et al. A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nat Genet,1998,18: 53-55.
    [10]Haug K, Warnstedt M, Alekov AK, et al. Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies. Nat Genet,2003,33:527-532.
    [11]Wallace RH, Marini, C, Petrou S, et al. Mutant GABA(A) receptor gamma-2-subunit in childhood absence epilepsy and febrile seizures. Nature Genet,2001,28:49-52.
    [12]Baulac S, Huberfeld G, Gourfinkel-An I, et al. First genetic evidence of GABA(A) receptor dysfunction in epilepsy:a mutation in the gamma-2-subunit gene. Nature Genet,2001,28:46-48.
    [13]Ottman R, Winawer MR, Kalachikov S, et al. LGI1 mutations in autosomal dominant partial epilepsy with auditory features. Neurology,2004,62:1120-1126.
    [14]Nakayama J, Fu YH, Clark AM, Nakahara S, et al. A nonsense mutation of the MASS 1 gene in a family with febrile and afebrile seizures. Ann Neurol,2002,52: 654-657.
    [15]Kalscheuer VM, Tao J, Donnelly A, et al. Disruption of the serine/threonine kinase 9 gene causes severe X-linked infantile spasms and mental retardation. Am J Hum Genet,2003,72:1401-1411.
    [16]Stromme P, Mangelsdorf ME, Shaw MA, et al. Mutations in the human ortholog of Aristaless cause X-linked mental retardation and epilepsy. Nat Genet,2002,30: 441-445.
    [17]Suzuki T, Delgado-Escueta AV, Aguan K, et al. Mutations in EFHC1 cause juvenile myoclonic epilepsy. Nat Genet,2004,36:842-849.
    [18]George A, Gutaman K, George C, et al. International Union of Pharmacology. LIII Nomenclature and Molecular Relationships of Voltage-Gated Potassium Channels. Pharmacol Rev,2005,57(4):473-508.
    [19]Robbins J. KCNQ potassium channels:physiology, pathophysiology and pharmacology. Pharmacol Ther,2001,90:1-19.
    [20]Wang Q, Curran ME, Splawski I, et al. Positional cloning of a novel potassium channel gene:KVLQT1 mutations cause cardiac arrhythmias. Nat Genet 1996, 12:17-23.
    [21]Chen YH, Xu S J, Bendahhou S, et al. KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science,2003,299:251-254.
    [22]Neyroud N, Tesson F, Denjoy I, et al. A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. Nat Genet,1997,15:186-189.
    [23]Kubisch C, Schroeder BC, Friedrich T, et al. KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell,1999, 96:437-446
    [24]Biervert C, Schroeder BC, Kubisch C, et al. A potassium channel mutation in neonatal human epilepsy. Science,1998,279:403-406.
    [25]Bezanilla F.. Voltage sensor movements. J. Gen. Physiol.,2002,120:465-473.
    [26]Schwake M., Jentsch T. J., Friedrich T. A carboxy-terminal domain determines the subunit specificity of KCNQ K(+) channel assembly. EMBO Rep.,2003,4: 76-81.
    [27]Jenke M., Sanchez A., Monje F., et al. C-terminal domains implicated in the functional surface expression of potassium channels. EMBO J,2003,22:395-403.
    [28]Schwake M., Athanasiadu D., Beimgraben C. Structural Determinants of M-Type KCNQ (Kv7) K+ Channel Assembly. Neurosci,2006,26(14):3757-3766.
    [29]Kurata H. T., Soon G. S., Eldstrom J. R., et al. Amino-terminal determinants of U-type inactivation of voltage-gated K+ channels. J Biol Chem,2002,277: 29045-29053.
    [30]Schroder B. C., Kubisch C, Stein V, et al. Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channes cause epilepsy. Nature,1998,396 (6712):687-690.
    [31]Cooper E. C., Aldape K. D., Abosch A., et al. Colocalization and coassembly of two human brain M-type potassium channel subunits that are mutated in epilepsy. Proc Natl Acad Sci USA,2000,97:4914-4919.
    [32]Wang H. S., Pan Z., Shi W., Brown B. S., et al. KCNQ2 and KCNQ3 potassium channel subunits:molecular correlates of the M-channel. Science,1998,282: 1890-1893.
    [33]Schroeder B. C., Hechenberger M., Weinreich F.et al. KCNQ5, a novel potassium channel broadly expressed in brain, mediates M-type currents. J Biol Chem,2000, 275:24089-24095.
    [34]Brown B. S., Yu S. P. Modulation and genetic identification of the M channel. Prog Biophys Mol Biol,2000,73:135-166.
    [35]Yang W. P., Levesque P. C., Little W. A., et al. Functional expression of two KvLQTl-related potassium channels responsible for an inherited idiopathic epilepsy. J Biol Chem,1998,273:19419-19423.
    [36]Etxeberria A., Santana-Castro Irene, Regalado M. Paz. Three mechanisms underlie KCNQ2/3 heteromeric potassium M-channel potentiation. J of Neurosci., 2004,24(41):9146-9152.
    [37]Selyanko A. A., Hadley J. K., Brown D. A. Properties of single M-type KCNQ2/KCNQ3 potassium channels expressed in mammalian cells. J Physiol, 2001,534:15-24.
    [38]Singh NA, Westenskow P, Charlier C, et al. KCNQ2 and KCNQ3 potassium channel genes in benign familial neonatal convulsions:expansion of the functional and mutation spectrum. Brain,2003,126:2726-2737.
    [39]Ronen G. M., Rosales T. O., Connolly M., et al. Seizure characteristics in chromosome 20 benign familial neonatal convulsions。 Neurology,1993,43: 1355.
    [40]Hirose S, Okada M, Kaneko S, et al. Molecular genetics of human familial epilepsy syndromes. Epilepsia,2002,45:21-25.
    [41]Goraya JS, Virdi VS, Parmar VR. Benign familial neonatal convulsions. Indian Pediatr,2002,39:292-295.
    [42]Vigevano F, Sebastianelli R, Fusco L, et al. Benign infantile familial convulsions. Eur J Pediatr,1992,151:608-612.
    [43]Miles DK, Holmes GL. Benign neonatal seizures. J Clin Neurophysiol,1990, 7(3):369-79.
    [44]Kaplan RE, Lacey DJ. Benign familial neonatal-infantile seizures. Am J Med Genet,1983,16:595-599.
    [45]Heron SE, Crossland KM, Andermann E, et al. Sodium-channel defects in benign familial neonatal-infantile seizures. Lancet,2002,360:851-852.
    [46]Kugler SL, Johnson WG. Genetics of the febrile seizure susceptibility trait. Brain & Development,1998,20:265-274.
    [47]Sadleir LG, Scheffer IE. Febrile seizures. BMJ,2007,334:307-311.
    [48]Leppert M, Anderson E, Quattlebaum T, et al. Benign familial neonatal conv-ulsions linked to genetic markers on chromosome 20. Nature,1989,337:647-648.
    [49]Lewis TB, Leach RJ, Ward K, et al. Genetic heterogeneity in benign familial neonatal convulsions:identification of a new locus on chromosome 8q. Am J Hum Genet,1993,53:670-675.
    [50]Schwake M., Pusch M., Kharkovets T.,et al. Surface expression and single channel properties of KCNQ2/KCNQ3, M-type K+ channels involved in epilepsy. J Biol Chem,2000,275:13343-13348.
    [51]Castaldo P., del Giudice E. M., Coppola G.,et al. Benign familial neonatal convulsions caused by altered gating of KCNQ2/KCNQ3 potassium channels. J Neurosci,2002,22:RC199.
    [52]Dedek K., Kunath B., Kananura C.,et al. Myokymia and neonatal epilepsy caused by a mutation in the voltage sensor of the KCNQ2 K+ channel. Proc Natl Acad Sci USA,2001,98:12272-12277.
    [53]Okada M., Zhu G., Hirose S.,et al. Age-dependent modulation of hippocampal excitability by KCNQ-channels. Epilepsy Research,2003,53:81-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700