用户名: 密码: 验证码:
帕金森病(PD)致病基因LRRK2启动子分离及PD相关基因CSP-α、Nrdp1、USP24突变筛查研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
帕金森病(Parkinson Disease, PD)是一种常见的神经退行性疾病。PD的发病机制十分复杂,目前认为其是由遗传因素与环境因素的共同作用所导致的。PD遗传致病机制的研究已取得了明显进展,迄今已定位了16个PD相关位点,克隆了11个PD致病基因,其中包括富亮氨酸重复激酶2基因(Leucine-rich repeat kinase 2, LRRK2),该基因不仅是常染色体显性遗传性PD重要致病基因,还与部分原发性PD有关。
     目前LRRK2基因突变导致PD发生的机制仍不清楚,但已有的研究提示某些LRRK2致病突变(如G2019S)可能引起其功能增强而具有细胞毒性作用,而且过表达野生型LRRK2也可产生细胞毒性作用。此外LRRK2可能参与PD发生过程中异常蛋白沉积。过表达野生型LRRK2、LRRK2的PD相关突变G2019S或LRRK2激酶结构域加速a-Synuclein A53T的聚集。由此可见,对LRRK2的表达和功能的精确调控是维持机体稳态所必需的,调控机制的异常可能导致疾病的发生,因此我们从分离LRRK2基因启动子开始,展开对其转录调控机制的研究。
     方法:在数据库中查询LRRK2基因相关的序列信息,运用多种在线软件对LRRK2基因的转录起始位点、第一个外显子和启动子进行预测。在预测结果的基础上,设计7个不同长度的缺失片段(它们分别是-941/-1、-659/-1、-659/-143、-530/-143、-426/-143、-332/-143、-232/-143,其中的-941/-1片段包含LRRK2基因启动子的全长预测片段,-659/-1片段将全长片段从5'端向3'端截短至预测CpG岛的5'端上游,-659/-143片段包含LRRK2基因的CpG岛,此后的缺失片段为在此基础上从5'端向3'端每隔100bp左右依次截短),构建荧光素酶报告基因载体,通过在SH-SY5Y细胞和Hela细胞中进行各缺失片段的瞬时转染及荧光素酶活性分析,确定启动子所在区域。并运用MatInspector对LRRK2基因核心启动子可能的顺式元件进行生物信息学分析,为将来顺式元件的鉴定及转录调控研究奠定基础。
     结果:本研究对LRRK2基因在脑组织中表达的最主要剪切本ENST00000298910进行分析,以LRRK2基因的RefSeq序列NM 198578的蛋白翻译起始位点“ATG”的A碱基为+1位进行描述。结果显示-530/-143间的387bp在2个细胞株中具有最强的启动活性;将片段-530/-143自5'向3'方向截短后,启动活性在两个细胞株中均明显下降,但最短的缺失片段(-232/-143)在2个细胞株中的启动活性仍显著高于pGL3-Basic的基础值(p<0.05),因此-232/-143间的89bp很可能存在LRRK2基因的基础启动子,其在神经细胞及非神经性细胞中均能启动报告基因的表达。将片段-530/-143自5'向3'方向缺失104bp后,启动活性在两个细胞株中均明显减弱(p<0.05),因此推测在-530至-426区间可能存在具有正性调控启动活性的顺式作用元件;将片段-659/-1自3'向5'方向截短142bp得到片段-659/-143,其启动活性明显增强(p<0.05),而片段-659/-143自5'向3'方向截短129bp得到片段-530/-143,其启动活性也增强(p<0.05),因此推测-143至-1区间、-659至-530区间可能存在负性调控启动活性的顺式作用元件。将片段-426/-143自5'向3'方向截短94bp得到片段-332/-143,其启动活性在Hela细胞减弱(p<0.05),而在SH-SY5Y细胞中无明显变化(p>0.05);将片段-332/-143自5'向3'方向截短100bp得到的片段-232/-143,其启动活性在Hela细胞中增强(p<0.05),而在SH-SY5Y细胞中则减弱(p<0.05),因而推测-426至-232区间可能存在一些与不同组织差异性表达有关的顺式作用元件。
     结论:本研究中,我们确定了LRRK2基因启动子的位置、并对启动子的活性和特征进行了分析,为进一步深入研究LRRK2基因的转录调控机制奠定了基础。
     α-半胱氨酸串蛋白(Cysteine-string protein-α,C5P-α)是一种突触前囊泡相关蛋白和分子伴侣蛋白,该蛋白参与突触的生长、突触囊泡的运输和对接,并参与大多数突触的成熟、维持及调节。CSP-α基因敲除小鼠出现严重的神经退行性病变和死亡。在CSP-α基因敲除小鼠中过表达人野生型共核蛋白(α-synuclein)和A53T突变型α-synuclein均可减轻CSP-α基因敲除所导致的表型,因此CSP-α与α-synuclein存在功能相关性。共核蛋白基因(SNCA)已被证实是PD的致病基因,它编码的蛋白α-SVnuclein在PD的发病机制中起着非常关键的作用。这些研究结果提示我们CSP-α可能在PD的发病过程中起作用。因此我们在PD患者中对CSP-α基因进行突变筛查,以分析该基因是否参与PD的发病。
     方法:对CSP-α基因的外显子2-5设计引物进行PCR扩增,采用PCR产物直接测序法在173例中国汉族PD患者中对该基因的编码区(外显子2-5)及外显子-内含子交界区进行突变筛查;由于在患者中,位于CSP-α基因的外显子2和外显子3存在基因变异,因此我们还在273例无神经系统疾病的对照组受试者中对该基因的外显子2、3进行突变筛查。
     结果:在CSP-α基因编码区中,我们未检测到错义突变,但检测出5个变异,其中2个是位于编码区的同义突变(exon2的c.75C>T和exon3的c.144C>T);其他3个位于内含子,分别是位于intron2的c.107+41c>g及位于intron3的c.321+20c>t和c.321+133a>g,其中c.321+20c>t和c.321+133a>g为已知多态,c.107+41c>g为一罕见变异,仅在一例36岁以震颤为主要临床表现的女性散发患者中发现该变异,在273例正常人中未能发现该变异的存在。4种多态(c.75C>T,c.144C>T,c.321+20c>t和c.321+133a>g)的基因型和等位基因频率在173例PD患者和273例对照组受试者之间不存在差别(p值均>0.05)。
     结论:在中国汉族PD患者中,未发现CSP-α基因编码区及剪切位点存在致病突变,CSP-α基因突变可能不是中国PD患者的主要致病原因。
     神经调节蛋白受体降解蛋白1(neuregulin receptor degradation protein 1, Nrdp1)是一种泛素E3连接酶,属RBCC (N-terminal RING finger/B-box/coiled coil)蛋白亚家族成员。Nrdp1与受体酪氨酸激酶家族成员-神经调节蛋白受体ErbB3及ErbB4互作,通过调节神经调节蛋白受体在细胞表面的稳定性,而影响细胞的生长、增殖及分化过程,并与肿瘤的发生有关。Zhong等通过酵母双杂交实验,在果蝇pACT2 cDNA中鉴定出Nrdp1为Parkin的互作蛋白。Nrdp1通过泛素-蛋白酶体系统降解Parkin,即Parkin是Nrdp1的一个泛素化底物,并且Nrdp1可能通过作用于Parkin而影响线粒体功能。Parkin是遗传性PD最为重要的致病基因之一,在早发性和散发性PD的发病机制中也起着重要的作用。Parkin蛋白是一种E3泛素连接酶,通过降解特定易聚集且具有神经毒性的底物,抑制神经元凋亡,并参与维持线粒体正常功能以及介导细胞对异常线粒体的清除,在PD的发病机制中起着关键作用。由此,我们推测Nrdp1可能在PD发生过程中起作用,因此我们在PD患者中对Nrdp1基因进行突变筛查,以分析该基因是否参与PD的发病。
     方法:对Nrdp1基因的外显子3-7设计引物进行PCR扩增,采用PCR产物直接测序法在209例中国汉族PD患者和302例健康对照者中对该基因的5'UTR区(外显子1-2)、蛋白编码区(外显子3-7)及外显子-内含子交界区进行突变筛查。
     结果:在Nrdp1基因编码区(外显子3-7)中未发现序列变异,在5'UTR区和第一内含子区中发现2个未报道的变异:c.-206 T>A与c.-208-8A>G。我们进一步在无神经系统疾病的对照组受试者中对这2个变异进行检测,并进行病例-对照相关分析,结果显示c.-206 T>A不论是等位基因频率还是基因型频率在PD患者与对照组间均不存在显著差异(p>0.05);而c.-208-8 A>G变异仅在1例PD患者中检测到,并未在对照组中检测到。
     结论:在中国汉族PD患者中,未发现Nrdp1基因编码区及剪切位点存在致病突变,Nrdp1基因突变可能不是中国PD患者的主要致病原因。
     泛素-特异性蛋白酶24(USP24)是泛素-特异性蛋白酶家族的成员,其功能是将多聚泛素从靶蛋白上移走,防止靶蛋白被蛋白酶体降解,而蛋白酶体降解系统异常及蛋白聚集是参与帕金森病(PD)发病的关键机制;此外,在1p32已定位了PD遗传易感位点PARK10,至今未在该位点克隆出PD致病基因,而USP24基因位于PARK10上。尽管有学者用单核苷酸多态(SNP)在患者与正常人间进行了相关分析并得出USP24基因与PD相关的结论,但他们并未在PD患者中对USP24基因进行突变筛查,本研究首次在PD患者中对USP24基因的部分外显子,外显子39-68进行突变筛查,以探讨该基因是否参与PD的发病。
     方法:对USP24基因的外显子39-68设计引物进行PCR扩增,采用PCR产物直接测序法在92例中国汉族PD患者中对该基因的外显子39-68及外显子-内含子交界区进行突变筛查。
     结果:在USP24基因的exon39-68中未发现任何碱基变异,但在外显子-内含子交界区检测出11种变异,其中3种为已知多态(rs6588545,rs12031876和rs10493176),位于exon 59的c.7078+22 a>g变异仅在1例以强直为主要临床症状的男性早发性PD患者中检测到,在95例正常人中不存在此变异。
     结论:在中国汉族PD患者中,未发现USP24基因编码区及剪切位点存在致病突变,位于USP24基因exon 39-exon 68的基因突变可能不是中国PD患者的主要致病原因。
Parkinson's disease (PD) is the second most globally prevalent neurodegenerative disorder. The cause of PD is complex and multifactorial, involving both hereditary and environmental factors. Recent progress in molecular genetic studies of familial PD has led to the identification of 16 susceptible loci and 11 genes responsible for PD. Mutations in LRRK2 are thus far the most prevalent genetic cause associated with autosomal dominant and idiopathic PD. Although the mechanism of how PD-associated LRRK2 mutations cause disease is yet unknown, several studies indicated that certain kinds of mutations including G2019S are likely associated with toxic gain of function. Moreover, to overexpress wildtype LRRK2 was found to be toxic in cultured cells and transgenic fly model. Becides, LRRK2 was found to be associated with abnormal protein deposition in the brains of patients with lowy body disease including PD. To overexpress wildtype LRRK2, G2019S mutant or kinase domain alone accelerate the formation of aggregates caused by a-synuclein A53T mutant. These results suggest that precise regulation of LRRK2 expression and function is necessary for maintaining homeostasis of the organism, and the disruption of the regulation mechanism may cause disease. Therefore, to elucidate the mechanism of LRRK2 transcriptional regulation is helpful to understand PD aetiology. In this study, the promoter activity of the LRRK2 5'-flanking region was analized, which is the first step to understand the transcriptional regulation of LRRK2.
     Methods:Several on-line softwares were involved in our study to predict the transcriptional start site, the first exon, and the promoter regions. Base on the predictation results,7 fragments whose lengthes was deleted further and further, and constructed the luciferase reporter plasmids. The plasmids were then transfected transiently into the SH-SY5Y and Hela cell lines, and the luciferase activity were analysed to identified the core promoter region.
     Results:1) The major transcript in the brain-ENST00000298910 was our target transcipt, and we used the'ATG' of the RefSeq:NM_198578 as the marker to describe the location of the sequences in our study.2) The basal promoter of LRRK2 is located at-232/-143 region that drives the transcription of reporter gene in both neuronal and non-neuronal cells. A 104bp fragment in-530/-426 shows significant enhanced activity, suggesting a positive cis-acting element within region-530/-426. Two fragments in-143/-1 and -659/-530 shows significant decreased activity, suggesting a negative cis-acting element within these two regions. Comparing the structs of LRRK2 2 splice forms (ENST00000298910 and ENST00000343742), they might share the same promoter region. In this region, we also find a fragment in-426/-232 that shows different promoter activity in neuronal and non-neuronal cells. The result is consistent with the fact that LRRK2 is widely expressed while the express level between tissues is not the same. To understand the mechanism behind it needs further research.
     In summary, we have identified and characterized the promoter of human LRRK2 gene. The results establish the basis for further research on the transcription regulation mechanism of LRRK2.
     Cysteine string protein-a (CSP-a) is an abundant vesicle protein and molecular chaperone. It is thought to promote synaptic growth and vesicle trafficking/docking, and to participate in the maturation and maintenance of synapses. Genetic inactivation of CSP-a in mice results in severe neurodegeneration and postnatal lethality. Transgenic expression of human/mouse wild-typeα-synuclein rescues the lethality and neurodegeneration induced by CSP-a ablation, indicating the functional interaction ofα-synuclein and CSP-a. a-Synuclein plays a key role in the pathogenesis of Parkinson disease (PD). We therefore hypothesized that CSP-a also contributes to the development of PD via its relationship withα-synuclein. To elucidate the relationship between CSP-a and PD, we screened for potential mutations in the CSP-a gene among Chinese PD patients.
     Methods:Using direct sequencing, we analyzed the coding regions (exons 2-5) and the exon-intron junctions of CSP-a among 171 PD patients and 273 genetically unrelated control individuals.
     Results:No missense mutations were found in the coding regions. However,5 variants were identified, including silence variants c.75C>T (exon 2) and c.144C>T (exon 3); previously reported polymorphisms c.321+20c>t and c.321+133c>t (both in intron 3); and a rare variant c.107+41c>g (intron 2). Case-control association analysis revealed that the allelic and genotypic distributions of the 4 variants (c.75C>T, c.144C>T, c.321+20c>t and c.321+133c>t) did not significantly differ between patients and controls.
     Conclusion:we conclude that the CSP-a gene may not affect PD pathogenesis via gene mutations in the Chinese population.
     Strong evidence has proved that a defect in the Parkin gene is a common, known genetic cause of Parkinson disease (PD). The E3 ubiquitin ligase Nrdp1 is shown to interact with the N terminal of Parkin (the first 76 amino acids) and catalyze degradation of Parkin via the ubiquitin-proteasome pathway, suggesting that Nrdp1 may be involved in PD development via Parkin regulation. For the first time, we screened PD patients for mutations in the Nrdp1 gene to determine the association between these variants and PD.
     Methods:By direct sequencing, we analysed the entire coding regions and 5' UTR of Nrdp1 in 209 Chinese PD patients and 302 unrelated healthy individuals.
     Results:No variant was detected in the coding regions (exons 3-7); only 2 variants (c.-206 T>A and c.-208-8 A>G) were identified in the 5' UTR (exon 2) and intron 1. Furthermore, a study of the allelic and genotypic association between patients and controls showed no significant association between the c.-206 T>A polymorphism and PD; c.-208-8 A>G was identified in one PD patient and not in controls.
     Conclusion:we conclude that the Nrdp1 gene may not affect PD pathogenesis via gene mutations in the Chinese population.
     Ubiquitin-specific proteases gene (USP24) is a member of the family of the ubiquitin-specific proteases that remove polyubiquitin from target proteins. Ubiquitin-proteasomal pathway is proved to involved in the etiology of PD. Although none gene was cloned in the suspected PD pathogenic PARK 10 locus until now, but USP24 has strong a priori biological plausibility to be involved in PD, also, the evidence has showed that multiple SNPs located in the USP24 gene had significant association with PD risk. Although the association study provided the evidence that USP24 gene might be the suspected PD pathogenic gene, but it is necessary to screen PD patients for mutations in the USP24 gene to determine whether there are the variations contribute to the PD pathogenesis. For the first time, we screened PD patients for mutations in the USP24 gene.
     Methods:By direct sequencing, we analysed part of the coding regions (exon39-exon68) and exon-intron boundaries in 92 Chinese PD patients.
     Results:No variant was detected in the coding regions (exons 39-68); only 11 variants were identified in the exon-intron boundaries,3 of them are previously reported polymorphisms (rs6588545, rs12031876 and rs10493176), the variant c.7078+22 a>g only identified in 1 early-onset male patient complicated with rigity, and not in controls.
     Conclusion:Our data do not support the hypothesized major role of the mutation located in the exon39-exon68 of USP24 gene in PD development in the Chinese population.
引文
[1]Moore DJ, West AB, Dawson VL, Dawson TM. Molecular pathophysiology of Parkinson's disease. Annu Rev Neurosci 2005;28:57-87.
    [2]Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 1997;276(5321):2045-7.
    [3]Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, Harta G, Brownstein MJ, Jonnalagada S, Chernova T, Dehejia A, Lavedan C, Gasser T, Steinbach PJ, Wilkinson KD, Polymeropoulos MH. The ubiquitin pathway in Parkinson's disease. Nature 1998;395(6701):451-2.
    [4]Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S, Kachergus J, Hulihan M, Uitti RJ, Calne DB, Stoessl AJ, Pfeiffer RF, Patenge N, Carbajal IC, Vieregge P, Asmus F, Muller-Myhsok B, Dickson DW, Meitinger T, Strom TM, Wszolek ZK, Gasser T. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 2004;44(4):601-7.
    [5]Paisan-Ruiz C, Jain S, Evans EW, Gilks WP, Simon J, van der Brug M, Lopez de Munain A, Aparicio S, Gil AM, Khan N, Johnson J, Martinez JR, Nicholl D, Carrera IM, Pena AS, de Silva R, Lees A, Marti-Masso JF, Perez-Tur J, Wood NW, Singleton AB. Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron 2004;44(4):595-600.
    [6]Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998;392(6676):605-8.
    [7]Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, Gonzalez-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 2004;304 (5674):1158-60.
    [8]Bonifati V, Rizzu P, van Baren MJ, Schaap 0, Breedveld GJ, Krieger E, Dekker MC, Squitieri F, Ibanez P, Joosse M, van Dongen JW, Vanacore N, van Swieten JC, Brice A, Meco G, van Duijn CM, Oostra BA, Heutink P. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 2003; 299 (5604):256-9.
    [9]Ramirez A, Heimbach A, Grundemann J, Stiller B, Hampshire D, Cid LP, Goebel I, Mubaidin AF, Wriekat AL, Roeper J, Al-Din A, Hillmer AM, Karsak M, Liss B, Woods CG, Behrens MI, Kubisch C. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 2006;38(10):1184-91.
    [10]Strauss KM, Martins LM, Plun-Favreau H, Marx FP, Kautzmann S, Berg D, Gasser T, Wszolek Z, Muller T, Bornemann A, Wolburg H, Downward J, Riess O, Schulz JB, Kruger R. Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease. Hum Mol Genet 2005;14(15):2099-111.
    [11]Gandhi PN, Chen SG, Wilson-Delfosse AL. Leucine-rich repeat kinase 2 (LRRK2):a key player in the pathogenesis of Parkinson's disease. J Neurosci Res 2009; 87 (6): 1283-95.
    [12]Solano SM, Miller DW, Augood SJ, Young AB, Penney JB, Jr. Expression of alpha-synuclein, parkin, and ubiquitin carboxy-terminal hydrolase L1 mRNA in human brain:genes associated with familial Parkinson's disease. Ann Neurol 2000; 47(2):201-10.
    [13]Galter D, Westerlund M, Carmine A, Lindqvist E, Sydow O, Olson L. LRRK2 expression linked to dopamine-innervated areas. Ann Neurol 2006;59(4):714-9.
    [14]Melrose H, Lincoln S, Tyndall G, Dickson D, Farrer M. Anatomical localization of leucine-rich repeat kinase 2 in mouse brain. Neuroscience 2006; 139(3):791-4.
    [15]Taymans JM, Van den Haute C, Baekelandt V. Distribution of PINK1 and LRRK2 in rat and mouse brain. J Neurochem 2006;98(3):951-61.
    [16]Higashi S, Moore DJ, Colebrooke RE, Biskup S, Dawson VL, Arai H, Dawson TM, Emson PC. Expression and localization of Parkinson's disease-associated leucine-rich repeat kinase 2 in the mouse brain. J Neurochem 2007; 100(2):368-81.
    [17]Melrose HL, Kent CB, Taylor JP, Dachsel JC, Hinkle KM, Lincoln SJ, Mok SS, Culvenor JG, Masters CL, Tyndall GM, Bass DI, Ahmed Z, Andorfer CA, Ross OA, Wszolek ZK, Delldonne A,Dickson DW,Farrer MJ. A comparative analysis of leucine-rich repeat kinase 2 (Lrrk2) expression in mouse brain and Lewy body disease. Neuroscience 2007; 147(4):1047-58.
    [18]West AB, Moore DJ, Biskup S, Bugayenko A, Smith WW, Ross CA, Dawson VL, Dawson TM. Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci U S A 2005; 102(46):16842-7.
    [19]Biskup S, Moore DJ, Celsi F, Higashi S, West AB, Andrabi SA, Kurkinen K, Yu SW, Savitt JM, Waldvogel HJ, Faull RL, Emson PC, Torp R, Ottersen OP, Dawson TM, Dawson VL. Localization of LRRK2 to membranous and vesicular structures in mammalian brain. Ann Neurol 2006;60(5):557-69.
    [20]Hatano T, Kubo S, Imai S, Maeda M, Ishikawa K, Mizuno Y, Hattori N. Leucine-rich repeat kinase 2 associates with lipid rafts. Hum Mol Genet 2007;16(6):678-90.
    [21]Gandhi PN, Chen SG, Wilson-Delfosse AL. Leucine-rich repeat kinase 2 (LRRK2):A key player in the pathogenesis of Parkinson's disease. J Neurosci Res 2008.
    [22]Bosgraaf L, Van Haastert PJ. Roc, a Ras/GTPase domain in complex proteins. Biochim Biophys Acta 2003;1643(1-3):5-10.
    [23]West AB, Moore DJ, Choi C, Andrabi SA, Li X, Dikeman D, Biskup S, Zhang Z, Lim KL, Dawson VL, Dawson TM. Parkinson's disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. Hum Mol Genet 2007;16(2):223-32.
    [24]Guo L, Wang W, Chen SG. Leucine-rich repeat kinase 2:relevance to Parkinson's disease. Int J Biochem Cell Biol 2006;38(9):1469-75.
    [25]Marin I. The Parkinson disease gene LRRK2:evolutionary and structural insights. Mol Biol Evol 2006;23(12):2423-33.
    [26]Gloeckner CJ, Kinkl N, Schumacher A, Braun RJ, O' Neill E, Meitinger T, Kolch W, Prokisch H, Ueffing M. The Parkinson disease causing LRRK2 mutation Ⅰ2020T is associated with increased kinase activity. Hum Mol Genet 2006;15(2):223-32.
    [27]Smith WW, Pei Z, Jiang H, Moore DJ, Liang Y, West AB, Dawson VL, Dawson TM, Ross CA. Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration. Proc Natl Acad Sci U S A 2005; 102 (51):18676-81.
    [28]Greggio E, Jain S, Kingsbury A, Bandopadhyay R, Lewis P, Kaganovich A, van der Brug MP, Beilina A, Blackinton J, Thomas KJ, Ahmad R, Miller DW, Kesavapany S, Singleton A, Lees A, Harvey RJ, Harvey K, Cookson MR. Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol Dis 2006;23(2):329-41.
    [29]Mata IF, Wedemeyer WJ, Farrer MJ, Taylor JP, Gallo KA. LRRK2 in Parkinson's disease:protein domains and functional insights. Trends Neurosci 2006; 29 (5): 286-93.
    [30]Luzon-Toro B, Rubio de la Torre E, Delgado A, Perez-Tur J, Hilfiker S. Mechanistic insight into the dominant mode of the Parkinson's disease-associated G2019S LRRK2 mutation. Hum Mol Genet 2007; 16(17):2031-9.
    [31]Guo L, Gandhi PN, Wang W, Petersen RB, Wilson-Delfosse AL, Chen SG. The Parkinson's disease-associated protein, leucine-rich repeat kinase 2 (LRRK2), is an authentic GTPase that stimulates kinase activity. Exp Cell Res 2007; 313 (16):3658-70.
    [32]Li X, Tan YC, Poulose S, Olanow CW, Huang XY, Yue Z. Leucine-rich repeat kinase 2 (LRRK2)/PARK8 possesses GTPase activity that is altered in familial Parkinson's disease R1441C/G mutants. J Neurochem 2007;103(1):238-47.
    [33]Jaleel M, Nichols RJ, Deak M, Campbell DG, Gillardon F, Knebel A, Alessi DR. LRRK2 phosphorylates moesin at threonine-558:characterization of how Parkinson's disease mutants affect kinase activity. Biochem J 2007;405(2):307-17.
    [34]Lewis PA, Greggio E, Beilina A, Jain S, Baker A, Cookson MR. The R1441C mutation of LRRK2 disrupts GTP hydrolysis. Biochem Biophys Res Commun 2007;357(3):668-71.
    [35]Smith WW, Pei Z, Jiang H, Dawson VL, Dawson TM, Ross CA. Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nat Neurosci 2006;9(10):1231-3.
    [36]Ito G, Okai T, Fujino G, Takeda K, Ichijo H, Katada T, Iwatsubo T. GTP binding is essential to the protein kinase activity of LRRK2, a causative gene product for familial Parkinson's disease. Biochemistry 2007;46(5):1380-8.
    [37]Deng J, Lewis PA, Greggio E, Sluch E, Beilina A, Cookson MR. Structure of the ROC domain from the Parkinson's disease-associated leucine-rich repeat kinase 2 reveals a dimeric GTPase. Proc Natl Acad Sci U S A 2008; 105(5):1499-504.
    [38]Gotthardt K, Weyand M, Kortholt A, Van Haastert PJ, Wittinghofer A. Structure of the Roc-COR domain tandem of C. tepidum, a prokaryotic homologue of the human LRRK2 Parkinson kinase.EMBO J 2008;27(17):2352.
    [39]Wang L, Xie C, Greggio E, Parisiadou L, Shim H, Sun L, Chandran J, Lin X, Lai C, Yang WJ, Moore DJ, Dawson TM, Dawson VL, Chiosis G, Cookson MR, Cai H. The chaperone activity of heat shock protein 90 is critical for maintaining the stability of leucine-rich repeat kinase 2. J Neurosci 2008;28(13):3384-91.
    [40]Dachsel JC, Taylor JP, Mok SS, Ross OA, Hinkle KM, Bailey RM, Hines JH, Szutu J, Madden B, Petrucelli L, Farrer MJ. Identification of potential protein interactors of Lrrk2. Parkinsonism Relat Disord 2007;13(7):382-5.
    [41]Zhu M, Qin ZJ, Hu D, Munishkina LA, Fink AL. Alpha-synuclein can function as an antioxidant preventing oxidation of unsaturated lipid in vesicles. Biochemistry 2006;45(26):8135-42.
    [42]Zhu X, Siedlak SL, Smith MA, Perry G, Chen SG. LRRK2 protein is a component of Lewy bodies. Ann Neurol 2006;60(5):617-8; author reply 18-9.
    [43]Alegre-Abarrategui J, Ansorge 0, Esiri M, Wade-Martins R. LRRK2 is a component of granular alpha-synuclein pathology in the brainstem of Parkinson's disease. Neuropathol Appl Neurobiol 2008;34(3):272-83.
    [44]Perry G, Zhu X, Babar AK, Siedlak SL, Yang Q, Ito G, Iwatsubo T, Smith MA, Chen SG. Leucine-rich repeat kinase 2 colocalizes with alpha-synuclein in Parkinson's disease, but not tau-containing deposits in tauopathies. Neurodegener Dis 2008;5(3-4):222-4.
    [45]Giasson BI, Covy JP, Bonini NM, Hurtig HI, Farrer MJ, Trojanowski JQ, Van Deerlin VM. Biochemical and pathological characterization of Lrrk2. Ann Neurol 2006;59(2):315-22.
    [46]Higashi S, Biskup S, West AB, Trinkaus D, Dawson VL, Faull RL, Waldvogel HJ, Arai H, Dawson TM, Moore DJ, Emson PC. Localization of Parkinson's disease-associated LRRK2 in normal and pathological human brain. Brain Res 2007;1155:208-19.
    [47]Lin X, Parisiadou L, Gu XL, Wang L, Shim H, Sun L, Xie C, Long CX, Yang WJ, Ding J, Chen ZZ, Gallant PE, Tao-Cheng JH, Rudow G, Troncoso JC, Liu Z, Li Z, Cai H. Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by/Parkinson's-disease-related mutant alpha-synuclein. Neuron 2009;64(6): 807-27.
    [48]Iaccarino C, Crosio C, Vitale C, Sanna G, Carri MT, Barone P. Apoptotic mechanisms in mutant LRRK2-mediated cell death. Hum Mol Genet 2007; 16(11):1319-26.
    [49]Ho CC, Rideout HJ, Ribe E, Troy CM, Dauer WT. The Parkinson disease protein leucine-rich repeat kinase 2 transduces death signals via Fas-associated protein with death domain and caspase-8 in a cellular model of neurodegeneration. J Neurosci 2009;29(4):1011-6.
    [50]Hurley MJ, Patel PH, Jackson MJ, Smith LA, Rose S, Jenner P. Striatal leucine-rich repeat kinase 2 mRNA is increased in 1-methyl-4-phenyl-1,2,3,6-tetrahydropy-ridine-lesioned common marmosets (Callithrix jacchus) with L-3,4-dihydroxyphen-ylalanine methyl ester-induced dyskinesia. Eur J Neurosci 2007; 26(1):171-7.
    [51]Wakaguri H, Yamashita R, Suzuki Y, Sugano S, Nakai K. DBTSS:database of transcription start sites, progress report 2008. Nucleic Acids Res 2008;36(Database issue):D97-101.
    [52]Suzuki Y, Sugano S. Construction of full-length-enriched cDNA libraries. The oligo-capping method. Methods Mol Biol 2001; 175:143-53.
    [53]Suzuki Y, Sugano S. Construction of a full-length enriched and a 5'-end enriched cDNA library using the oligo-capping method. Methods Mol Biol 2003;221:73-91.
    [54]Suzuki Y, Yamashita R, Nakai K, Sugano S. DBTSS:DataBase of human Transcriptional Start Sites and full-length cDNAs. Nucleic Acids Res 2002; 30(1): 328-31.
    [55]Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS, Wagner L, Shenmen CM, Schuler GD, Altschul SF, Zeeberg B, Buetow KH, Schaefer CF, Bhat NK, Hopkins RF, Jordan H, Moore T, Max SI, Wang J, Hsieh F, Diatchenko L, Marusina K, Farmer AA, Rubin GM, Hong L, Stapleton M, Soares MB, Bonaldo MF, Casavant TL, Scheetz TE, Brownstein MJ, Usdin TB, Toshiyuki S, Carninci P, Prange C, Raha SS, Loquellano NA, Peters GJ, Abramson RD, Mullahy SJ, Bosak SA, McEwan PJ, McKernan KJ, Malek JA, Gunaratne PH, Richards S, Worley KC, Hale S, Garcia AM, Gay LJ, Hulyk SW, Villalon DK, Muzny DM, Sodergren EJ, Lu X, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Young AC, Shevchenko Y, Bouffard GG, Blakesley RW, Touchman JW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Krzywinski MI, Skalska U, Smailus DE, Schnerch A, Schein JE, Jones SJ, Marra MA. Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci U S A 2002;99(26): 16899-903.
    [56]Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J. The status, quality, and expansion of the NIH full-length cDNA project:the Mammalian Gene Collection (MGC). Genome Res 2004;14(10B):2121-7.
    [57]Larsen F, Gundersen G, Lopez R, Prydz H. CpG islands as gene markers in the human genome. Genomics 1992;13(4):1095-107.
    [58]Davuluri RV, Grosse I, Zhang MQ. Computational identification of promoters and first exons in the human genome. Nat Genet 2001;29(4):412-7.
    [59]Bajic VB, Seah SH, Chong A, Zhang G, Koh JL, Brusic V. Dragon Promoter Finder: recognition of vertebrate RNA polymerase II promoters. Bioinformatics 2002; 18(1): 198-9.
    [60]Liu R, States DJ. Consensus promoter identification in the human genome utilizing expressed gene markers and gene modeling. Genome Res 2002;12(3):462-9.
    [61]Ohler U, Liao GC, Niemann H, Rubin GM. Computational analysis of core promoters in the Drosophila genome. Genome Biol 2002;3(12):RESEARCH0087.
    [62]Gardiner-Garden M, Frommer M. CpG islands in vertebrate genomes. J Mol Biol 1987;196(2):261-82.
    [63]Ioshikhes IP, Zhang MQ. Large-scale human promoter mapping using CpG islands. Nat Genet 2000;26(1):61-3.
    [64]Ponger L, Mouchiroud D. CpGProD:identifying CpG islands associated with transcription start sites in large genomic mammalian sequences. Bioinformatics 2002;18(4):631-3.
    [65]Bajic VB, Seah SH. Dragon gene start finder:an advanced system for finding approximate locations of the start of gene transcriptional units. Genome Res 2003;13(8):1923-9.
    [66]Hannenhalli S, Levy S. Promoter prediction in the human genome. Bioinformatics 2001;17 Suppl1:S90-6.
    [67]Down TA, Hubbard TJ. Computational detection and location of transcription start sites in mammalian genomic DNA. Genome Res 2002;12(3):458-61.
    [68]Reese MG. Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Cbmput Chem 2001;26(1):51-6.
    [69]Knudsen S. Promoter2.0:for the recognition of PoⅢ promoter sequences. Bioinformatics 1999;15(5):356-61.
    [70]Ohler U, Stemmer G, Harbeck S, Niemann H. Stochastic segment models of eukaryotic promoter regions. Pac Symp Biocomput 2000:380-91.
    [71]Solovyev VV, Shahmuradov IA. PromH:Promoters identification using orthologous genomic sequences. Nucleic Acids Res 2003;31(13):3540-5.
    [72]Fickett JW, Hatzigeorgiou AG. Eukaryotic promoter recognition. Genome Res 1997;7(9):861-78.
    [73]Prestridge DS. Computer software for eukaryotic promoter analysis. Methods Mol Biol 2000;130:265-95.
    [74]Bajic VB, Seah SH. Dragon Gene Start Finder identifies approximate locations of the 5'ends of genes. Nucleic Acids Res 2003;31(13):3560-3.
    [75]Bajic VB, Seah SH, Chong A, Krishnan SP, Koh JL, Brusic V. Computer model for recognition of functional transcription start sites in RNA polymerase Ⅱ promoters of vertebrates. J Mol Graph Model 2003;21(5):323-32.
    [76]Werner T. Finding and decrypting of promoters contributes to the elucidation of gene function. In Silico Biol 2002;2(3):249-55.
    [77]Scherf M, Klingenhoff A, Werner T. Highly specific localization of promoter regions in large genomic sequences by PromoterInspector:a novel context analysis approach. J Mol Biol 2000;297(3):599-606.
    [78]Prestridge DS. Predicting Pol Ⅱ promoter sequences using transcription factor binding sites. J Mol Biol 1995;249(5):923-32.
    [79]Halees AS, Leyfer D, Weng Z. PromoSer:A large-scale mammalian promoter and transcription start site identification service. Nucleic Acids Res 2003;31(13):3554-9.
    [80]Thierry-Mieg D, Thierry-Mieg J. Ace View:a comprehensive cDNA-supported gene and transcripts annotation. Genome Biol 2006;7 Suppl 1:S12 1-14.
    [81]Trinklein ND, Aldred SJ, Saldanha AJ, Myers RM. Identification and functional analysis of human transcriptional promoters. Genome Res 2003;13(2):308-12.
    [82]Suzuki Y, Tsunoda T, Sese J, Taira H, Mizushima-Sugano J, Hata H, Ota T, Isogai T, Tanaka T, Nakamura Y, Suyama A, Sakaki Y, Morishita S, Okubo K, Sugano S. Identification and characterization of the potential promoter regions of 1031 kinds of human genes. Genome Res 2001; 11 (5):677-84.
    [83]Bajic VB, Tan SL, Suzuki Y, Sugano S. Promoter prediction analysis on the whole human genome. Nat Biotechnol 2004;22(11):1467-73.
    [84]Quandt K, Frech K, Karas H, Wingender E, Werner T. MatInd and MatInspector:new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res 1995;23(23):4878-84.
    [85]Smale ST, Baltimore D. The "initiator" as a transcription control element. Cell 1989;57(1):103-13.
    [86]Smale ST, Schmidt MC, Berk AJ, Baltimore D. Transcriptional activation by Sp1 as directed through TATA or initiator:specific requirement for mammalian transcription factor ⅡD. Proc Natl Acad Sci U S A 1990;87(12):4509-13.
    [87]Lin SY, Black AR, Kostic D, Pajovic S, Hoover CN, Azizkhan JC. Cell cycle-regulated association of E2F1 and Sp1 is related to their functional interaction. Mol Cell Biol 1996;16(4):1668-75.
    [88]Novina CD, Roy AL. Core promoters and transcriptional control. Trends Genet 1996;12(9):351-5.
    [89]Sehgal A, Patil N, Chao M. A constitutive promoter directs expression of the nerve growth factor receptor gene. Mol Cell Biol 1988;8(8):3160-7.
    [90]Braak H, Rub U, Jansen Steur EN, Del Tredici K, de Vos RA. Cognitive status correlates with neuropathologic stage in Parkinson disease. Neurology 2005;64(8):1404-10.
    [91]Zinsmaier KE, Eberle KK, Buchner E, Walter N, Benzer S. Paralysis and early death in cysteine string protein mutants of Drosophila. Science 1994;263(5149):977-80.
    [92]Umbach JA, Zinsmaier KE, Eberle KK, Buchner E, Benzer S, Gundersen CB. Presynaptic dysfunction in Drosophila csp mutants. Neuron 1994; 13(4):899-907.
    [93]Arnold C, Reisch N, Leibold C, Becker S, Prufert K, Sautter K, Palm D, Jatzke S, Buchner S, Buchner E. Structure-function analysis of the cysteine string protein in Drosophila:cysteine string, linker and C terminus. J Exp Biol 2004;207(Pt 8):1323-3-4.
    [94]Bronk P, Nie Z, Klose MK, Dawson-Scully K, Zhang J, Robertson RM, Atwood HL, Zinsmaier KE. The multiple functions of cysteine-string protein analyzed at Drosophila nerve terminals. J Neurosci 2005;25(9):2204-14.
    [95]Dawson-Scully K, Bronk P, Atwood HL, Zinsmaier KE. Cysteine-string protein increases the calcium sensitivity of neurotransmitter exocytosis in Drosophila. J Neurosci 2000;20(16):6039-47.
    [96]Chandra S, Gallardo G, Fernandez-Chacon R, Schluter OM, Sudhof TC. Alpha-synuclein cooperates with CSPalpha in preventing neurodegeneration. Cell 2005;123(3):383-96.
    [97]Fernandez-Chacon R, Wolfel M, Nishimune H, Tabares L, Schmitz F, Castellano-Munoz M, Rosenmund C, Montesinos ML, Sanes JR, Schneggenburger R, Sudhof TC. The synaptic vesicle protein CSP alpha prevents presynaptic degeneration. Neuron 2004;42(2):237-51.
    [98]Schmitz F, Tabares L, Khimich D, Strenzke N, de la Villa-Polo P, Castellano-Munoz M, Bulankina A, Moser T, Fernandez-Chacon R, Sudhof TC. CSPalpha-deficiency causes massive and rapid photoreceptor degeneration. Proc Natl Acad Sci U S A 2006;103(8):2926-31.
    [99]Chen S, Zheng X, Schulze KL, Morris T, Bellen H, Stanley EF. Enhancement of presynaptic calcium current by cysteine string protein. J Physiol 2002;538(Pt 2):383-9.
    [100]Gundersen CB, Umbach JA. Suppression cloning of the cDNA for a candidate subunit of a presynaptic calcium channel. Neuron 1992;9(3):527-37.
    [101]Chamberlain LH, Burgoyne RD. Cysteine string protein functions directly in regulated exocytosis. Mol Biol Cell 1998;9(8):2259-67.
    [102]Zhang H, Kelley WL, Chamberlain LH, Burgoyne RD, Wollheim CB, Lang J. Cysteine-string proteins regulate exocytosis of insulin independent from transmembrane ion fluxes. FEBS Lett 1998;437(3):267-72.
    [103]Zhang H, Kelley WL, Chamberlain LH, Burgoyne RD, Lang J. Mutational analysis of cysteine-string protein function in insulin exocytosis. J Cell Sci 1999; 112 (Pt 9):1345-51.
    [104]Graham ME, Burgoyne RD. Comparison of cysteine string protein (Csp) and mutant alpha-SNAP overexpression reveals a role for csp in late steps of membrane fusion in dense-core granule exocytosis in adrenal chromaffin cells. J Neurosci 2000;20(4): 1281-9.
    [105]Brown H, Larsson O, Branstrom R, Yang SN, Leibiger B, Leibiger I, Fried G, Moede T, Deeney JT, Brown GR, Jacobsson G, Rhodes CJ, Braun JE, Scheller RH, Corkey BE, Berggren PO, Meister B. Cysteine string protein (CSP) is an insulin secretory granule-associated protein regulating beta-cell exocytosis. EMBO J 1998;17(17):5048-58.
    [106]Chamberlain LH, Burgoyne RD. The cysteine-string domain of the secretory vesicle cysteine-string protein is required for membrane targeting. Biochem J 1998;335 (Pt 2):205-9.
    [107]Chamberlain LH, Burgoyne RD. Activation of the ATPase activity of heat-shock proteins Hsc70/Hsp70 by cysteine-string protein. Biochem J 1997;322 (Pt 3):853-8.
    [108]Braun JE, Wilbanks SM, Scheller RH. The cysteine string secretory vesicle protein activates Hsc70 ATPase. J Biol Chem 1996;271(42):25989-93.
    [109]Tobaben S, Varoqueaux F, Brose N, Stahl B, Meyer G. A brain-specific isoform of small glutamine-rich tetratricopeptide repeat-containing protein binds to Hsc70 and the cysteine string protein. J Biol Chem 2003;278(40):38376-83.
    [110]Ranjan R, Bronk P, Zinsmaier KE. Cysteine string protein is required for calcium secretion coupling of evoked neurotransmission in drosophila but not for vesicle recycling. J Neurosci 1998;18(3):956-64.
    [111]Natochin M, Campbell TN, Barren B, Miller LC, Hameed S, Artemyev NO, Braun JE. Characterization of the G alpha(s) regulator cysteine string protein. J Biol Chem 2005;280(34):30236-41.
    [112]Miller LC, Swayne LA, Kay JG, Feng ZP, Jarvis SE, Zamponi GW, Braun JE. Molecular determinants of cysteine string protein modulation of N-type calcium channels. J Cell Sci 2003;116(Pt 14):2967-74.
    [113]Magga JM, Jarvis SE, Arnot MI, Zamponi GW, Braun JE. Cysteine string protein regulates G protein modulation of N-type calcium channels. Neuron 2000;28(1):195-204.
    [114]Nie Z, Ranjan R, Wenniger JJ, Hong SN, Bronk P, Zinsmaier KE. Overexpression of cysteine-string proteins in Drosophila reveals interactions with syntaxin. J Neurosci 1999;19(23):10270-9.
    [115]Swayne LA, Beck KE, Braun JE. The cysteine string protein multimeric complex. Biochem Biophys Res Commun 2006;348(1):83-91.
    [116]Chamberlain LH, Burgoyne RD. Cysteine-string protein:the chaperone at the synapse. J Neurochem 2000;74(5):1781-9.
    [117]Tobaben S, Thakur P, Fernandez-Chacon R, Sudhof TC, Rettig J, Stahl B. A trimeric protein complex functions as a synaptic chaperone machine. Neuron 2001;31(6): 987-99.
    [118]Stahl B, Tobaben S, Sudhof TC. Two distinct domains in hsc70 are essential for the interaction with the synaptic vesicle cysteine string protein. Eur J Cell Biol 1999;78(6):375-81.
    [119]Chamberlain LH, Burgoyne RD. The molecular chaperone function of the secretory vesicle cysteine string proteins. J Biol Chem 1997;272(50):31420-6.
    [120]Leveque C, Pupier S, Marqueze B, Geslin L, Kataoka M, Takahashi M, De Waard M, Seagar M. Interaction of cysteine string proteins with the alphalA subunit of the P/Q-type calcium channel. J Biol Chem 1998;273(22):13488-92.
    [121]Wu MN, Fergestad T, Lloyd TE, He Y, Broadie K, Bellen HJ. Syntaxin 1A interacts with multiple exocytic proteins to regulate neurotransmitter release in vivo. Neuron 1999;23(3):593-605.
    [122]Evans GJ, Wilkinson MC, Graham ME, Turner KM, Chamberlain LH, Burgoyne RD, Morgan A. Phosphorylation of cysteine' string protein by protein kinase A. Implications for the modulation of exocytosis. J Biol Chem 2001;276(51):47877-85.
    [123]Evans GJ, Morgan A. Phosphorylation-dependent interaction of the synaptic vesicle proteins cysteine string protein and synaptotagmin I. Biochem J 2002;364(Pt 2):343-7.
    [124]Sakisaka T, Meerlo T, Matteson J, Plutner H, Balch WE. Rab-alphaGDI activity is regulated by a Hsp90 chaperone complex. EMBO J 2002;21(22):6125-35.
    [125]Zhang H, Peters KW, Sun F, Marino CR, Lang J, Burgoyne RD, Frizzell RA. Cysteine string protein interacts with and modulates the maturation of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 2002;277(32):28948-58.
    [126]Gibbs SJ, Barren B, Beck KE, Proft J, Zhao X, Noskova T, Braun AP, Artemyev NO, Braun JE. Hsp40 couples with the CSPalpha chaperone complex upon induction of the heat shock response. PLoS One 2009;4(2):e4595.
    [127]Rosales-Hernandez A, Beck KE, Zhao X, Braun AP, Braun JE. RDJ2 (DNAJA2) chaperones neural G protein signaling pathways. Cell Stress Chaperones 2009; 14(1): 71-82.
    [128]Dawson-Scully K, Lin Y, Imad M, Zhang J, Marin L, Home JA, Meinertzhagen IA, Karunanithi S, Zinsmaier KE, Atwood HL. Morphological and functional effects of altered cysteine string protein at the Drosophila larval neuromuscular junction. Synapse 2007;61(1):1-16.
    [129]Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT, Schols L, Riess O. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease. Nat Genet 1998; 18(2):106-8.
    [130]Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atares B, Llorens V, Gomez Tortosa E, del Ser T, Munoz DG, de Yebenes JG. The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 2004;55(2):164-73.
    [131]Farrer M, Kachergus J, Forno L, Lincoln S, Wang DS, Hulihan M, Maraganore D, Gwinn-Hardy K, Wszolek Z, Dickson D, Langston JW. Comparison of kindreds with parkinsonism and alpha-synuclein genomic multiplications. Ann Neurol 2004;55(2):174-9.
    [132]Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S, Levecque C, Larvor L, Andrieux J, Hulihan M, Waucquier N, Defebvre L, Amouyel P, Farrer M, Destee A. Alpha-synuclein locus duplication as a cause of familial Parkinson's disease. Lancet 2004;364(9440):1167-9.
    [133]Murphy DD, Rueter SM, Trojanowski JQ, Lee VM. Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J Neurosci 2000;20(9):3214-20.
    [134]Kazantsev AG, Kolchinsky AM. Central role of alpha-synuclein oligomers in neurodegeneration in Parkinson disease. Arch Neurol 2008;65(12):1577-81.
    [135]Feany MB, Bender WW. A Drosophila model of Parkinson's disease. Nature 2000;404(6776):394-8.
    [136]Chen Q, Thorpe J, Keller JN. Alpha-synuclein alters proteasome function, protein synthesis, and stationary phase viability. J Biol Chem 2005;280(34):30009-17.
    [137]Bertoncini CW, Fernandez CO, Griesinger C, Jovin TM, Zweckstetter M. Familial mutants of alpha-synuclein with increased neurotoxicity have a destabilized conformation. J Biol Chem 2005;280(35):30649-52.
    [138]Lee EN, Cho HJ, Lee CH, Lee D, Chung KC, Paik SR. Phthalocyanine tetrasulfonates affect the amyloid formation and cytotoxicity of alpha-synuclein. Biochemistry 2004;43(12):3704-15.
    [139]Galvin JE. Interaction of alpha-synuclein and dopamine metabolites in the pathogenesis of Parkinson's disease:a case for the selective vulnerability of the substantia nigra. Acta Neuropathol 2006; 112(2):115-26.
    [140]da Costa CA, Ancolio K, Checler F. Wild-type but not Parkinson's disease-related ala-53 -> Thr mutant alpha-synuclein protects neuronal cells from apoptotic stimuli. J Biol Chem 2000;275(31):24065-9.
    [141]Lotharius J, Barg S, Wiekop P, Lundberg C, Raymon HK, Brundin P. Effect of mutant alpha-synuclein on dopamine homeostasis in a new human mesencephalic cell line. J Biol Chem 2002;277(41):38884-94.
    [142]Fortin DL, Troyer MD, Nakamura K, Kubo S, Anthony MD, Edwards RH. Lipid rafts mediate the synaptic localization of alpha-synuclein. J Neurosci 2004;24(30):6715-23.
    [143]Hughes AJ DS, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson's disease:a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 1992;55:181-4.
    [144]Hughes AJ DS, Lees AJ. Improved accuracy of clinical diagnosis of Lewy body Parkinson's disease. Neurology 2001;57:1497-99.
    [145]Berg D, Niwar M, Maass S, Zimprich A, Moller JC, Wuellner U, Schmitz-Hubsch T, Klein C, Tan EK, Schols L, Marsh L, Dawson TM, Janetzky B, Muller T, Woitalla D, Kostic V, Pramstaller PP, Oertel WH, Bauer P, Krueger R, Gasser T, Riess 0. Alpha-synuclein and Parkinson's disease:implications from the screening of more than 1,900 patients. Mov Disord 2005;20(9):1191-4.
    [146]Goedert M, Spillantini MG, Davies SW. Filamentous nerve cell inclusions in neurodegenerative diseases. Curr Opin Neurobiol 1998;8(5):619-32.
    [147]Jensen PH, Nielsen MS, Jakes R, Dotti CG, Goedert M. Binding of alpha-synuclein to brain vesicles is abolished by familial Parkinson's disease mutation. J Biol Chem 1998;273(41):26292-4.
    [148]Abeliovich A, Schmitz Y, Farinas I, Choi-Lundberg D, Ho WH, Castillo PE, Shinsky N, Verdugo JM, Armanini M, Ryan A, Hynes M, Phillips H, Sulzer D, Rosenthal A. Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 2000;25(1):239-52.
    [149]Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, Sagara Y, Sisk A, Mucke L. Dopaminergic loss and inclusion body formation in alpha-synuclein mice:implications for neurodegenerative disorders. Science 2000;287(5456):1265-9.
    [150]Kahle PJ, Neumann M, Ozmen L, Muller V, Jacobsen H, Schindzielorz A, Okochi M, Leimer U, van Der Putten H, Probst A, Kremmer E, Kretzschmar HA, Haass C. Subcellular localization of wild-type and Parkinson's disease-associated mutant alpha-synuclein in human and transgenic mouse brain. J Neurosci 2000;20(17):6365-73.
    [151]Engelender S, Kaminsky Z, Guo X, Sharp AH, Amaravi RK, Kleiderlein JJ, Margolis RL, Troncoso JC, Lanahan AA, Worley PF, Dawson VL, Dawson TM, Ross CA. Synphilin-1 associates with alpha-synuclein and promotes the formation of cytosolic inclusions. Nat Genet 1999;22(1):110-4.
    [152]Evans GJ, Morgan A. Regulation of the exocytotic machinery by cAMP-dependent protein kinase:implications for presynaptic plasticity. Biochem Soc Trans 2003;31(Pt 4):824-7.
    [153]Golbe LI, Di Iorio G, Sanges G, Lazzarini AM, La Sala S, Bonavita V, Duvoisin RC. Clinical genetic analysis of Parkinson's disease in the Contursi kindred. Ann Neurol 1996;40(5):767-75.
    [154]Diamonti AJ, Guy PM, Ivanof C, Wong K, Sweeney C, Carraway KL,3rd. An RBCC protein implicated in maintenance of steady-state neuregulin receptor levels. Proc Natl Acad Sci U S A 2002;99(5):2866-71.
    [155]Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, Weissman AM. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci U S A 1999;96(20):11364-9.
    [156]Qiu XB, Goldberg AL. Nrdpl/FLRF is a ubiquitin ligase promoting ubiquitination and degradation of the epidermal growth factor receptor family member, ErbB3. Proc Natl Acad Sci U S A 2002;99(23):14843-8.
    [157]Qiu XB, Markant SL, Yuan J, Goldberg AL. Nrdpl-mediated degradation of the. gigantic IAP, BRUCE, is a novel pathway for triggering apoptosis. EMBO J 2004;23(4):800-10.
    [158]Wu X, Yen L, Irwin L, Sweeney C, Carraway KL,3rd. Stabilization of the E3 ubiquitin ligase Nrdpl by the deubiquitinating enzyme USP8. Mol Cell Biol 2004;24(17):7748-57.
    [159]Zhong L, Tan Y, Zhou A, Yu Q, Zhou J. RING finger ubiquitin-protein isopeptide ligase Nrdpl/FLRF regulates parkin stability and activity. J Biol Chem 2005;280(10): 9425-30.
    [160]Djarmati A, Hedrich K, Svetel M, Schafer N, Juric V, Vukosavic S, Hering R, Riess O, Romac S, Klein C, Kostic V. Detection of Parkin (PARK2) and DJ1 (PARK7) mutations in early-onset Parkinson disease:Parkin mutation frequency depends on ethnic origin of patients. Hum Mutat 2004;23(5):525.
    [161]Hattori N, Kitada T, Matsumine H, Asakawa S, Yamamura Y, Yoshino H, Kobayashi T, Yokochi M, Wang M, Yoritaka A, Kondo T, Kuzuhara S, Nakamura S, Shimizu N, Mizuno Y. Molecular genetic analysis of a novel Parkin gene in Japanese families with autosomal recessive juvenile parkinsonism:evidence for variable homozygous deletions in the Parkin gene in affected individuals. Ann Neurol 1998;44(6):935-41.
    [162]Hedrich K, Kann M, Lanthaler AJ, Dalski A, Eskelson C, Landt O, Schwinger E, Vieregge P, Lang AE, Breakefield XO, Ozelius LJ, Pramstaller PP, Klein C. The importance of gene dosage studies:mutational analysis of the parkin gene in early-onset parkinsonism. Hum M61 Genet 2001; 10(16):1649-56.
    [163]Hedrich K, Marder K, Harris J, Kann M, Lynch T, Meija-Santana H, Pramstaller PP, Schwinger E, Bressman SB, Fahn S, Klein C. Evaluation of 50 probands with early-onset Parkinson's disease for Parkin mutations. Neurology 2002;58(8):1239-46.
    [164]Kann M, Jacobs H, Mohrmann K, Schumacher K, Hedrich K, Garrels J, Wiegers K, Schwinger E, Pramstaller PP, Breakefield XO, Ozelius LJ, Vieregge P, Klein C. Role of parkin mutations in 111 community-based patients with early-onset parkinsonism. Ann Neurol 2002;51(5):621-5.
    [165]Lohmann E, Periquet M, Bonifati V, Wood NW, De Michele G, Bonnet AM, Fraix V, Broussolle E, Horstink MW, Vidailhet M, Verpillat P, Gasser T, Nicholl D, Teive H, Raskin S, Rascol 0, Destee A, Ruberg M, Gasparini F, Meco G, Agid Y, Durr A, Brice A. How much phenotypic variation can be attributed to parkin genotype? Ann Neurol 2003;54(2):176-85.
    [166]Lucking CB, Durr A, Bonifati V, Vaughan J, De Michele G, Gasser T, Harhangi BS, Meco G, Denefle P, Wood NW, Agid Y, Brice A. Association between early-onset Parkinson's disease and mutations in the parkin gene. N Engl J Med 2000;342 (21):1560-7.
    [167]Nichols WC, Pankratz N, Uniacke SK, Pauciulo MW, Halter C, Rudolph A, Conneally PM, Foroud T. Linkage stratification and mutation analysis at the Parkin locus identifies mutation positive Parkinson's disease families. J Med Genet 2002;39(7):489-92.
    [168]Oliveira SA, Scott WK, Martin ER, Nance MA, Watts RL, Hubble JP, Koller WC, Pahwa R, Stern MB, Hiner BC, Ondo WG, Allen FH, Jr., Scott BL, Goetz CG, Small GW, Mastaglia F, Stajich JM, Zhang F, Booze MW, Winn MP, Middleton LT, Haines JL, Pericak-Vance MA, Vance JM. Parkin mutations and susceptibility alleles in late-onset Parkinson's disease. Ann Neurol 2003;53(5):624-9.
    [169]Periquet M, Latouche M, Lohmann E, Rawal N, De Michele G, Ricard S, Teive H, Fraix V, Vidailhet M, Nicholl D, Barone P, Wood NW, Raskin S, Deleuze JF, Agid Y, Durr A, Brice A. Parkin mutations are frequent in patients with isolated early-onset parkinsonism. Brain 2003;126(Pt 6):1271-8.
    [170]Matsumine H, Saito M, Shimoda-Matsubayashi S, Tanaka H, Ishikawa A, Nakagawa-Hattori Y, Yokochi M, Kobayashi T, Igarashi S, Takano H, Sanpei K, Koike R, Mori H, Kondo T, Mizutani Y, Schaffer AA, Yamamura Y, Nakamura S, Kuzuhara S, Tsuji S, Mizuno Y. Localization of a gene for an autosomal recessive form of juvenile Parkinsonism to chromosome 6q25.2-27. Am J Hum Genet 1997;60(3):588-96.
    [171]Morales B, Martinez A, Gonzalo I, Vidal L, Ros R, Gomez-Tortosa E, Rabano A, Ampuero I, Sanchez M, Hoenicka J, Garcia De Yebenes J. Steele-Richardson-Olszewski syndrome in a patient with a single C212Y mutation in the parkin protein. Mov Disord 2002;17(6):1374-80.
    [172]Abbas N, Lucking CB, Ricard S, Durr A, Bonifati V, De Michele G, Bouley S, Vaughan JR, Gasser T, Marconi R, Broussolle E, Brefel-Courbon C, Harhangi BS, Oostra BA, Fabrizio E, Bohme GA, Pradier L, Wood NW, Filla A, Meco G, Denefle P, Agid Y, Brice A. A wide variety of mutations in the parkin gene are responsible for autosomal recessive parkinsonism in Europe. French Parkinson's Disease Genetics Study Group and the European Consortium on Genetic Susceptibility in Parkinson's Disease. Hum Mol Genet 1999;8(4):567-74.
    [173]Nisipeanu P, Inzelberg R, Abo Mouch S, Carasso RL, Blumen SG, Zhang J, Matsumine H, Hattori N, Mizuno Y. Parkin gene causing benign autosomal recessive juvenile parkinsonism. Neurology 2001;56(11):1573-5.
    [174]Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y, Takahashi R. An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 2001; 105(7):891-902.
    [175]Shimura H, Schlossmacher MG, Hattori N, Frosch MP, Trockenbacher A, Schneider R, Mizuno Y, Kosik KS, Selkoe DJ. Ubiquitination of a new form of alpha-synuclein by parkin from human brain:implications for Parkinson's disease. Science 2001;293(5528):263-9.
    [176]Zhang Y, Gao J, Chung KK, Huang H, Dawson VL, Dawson TM. Parkin functions as an E2-dependent ubiquitin-protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Natl Acad Sci U S A 2000;97 (24):13354-9.
    [177]Chung KK, Zhang Y, Lim KL, Tanaka Y, Huang H, Gao J, Ross CA, Dawson VL, Dawson TM. Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1:implications for Lewy-body formation in Parkinson disease. Nat Med 2001;7(10):1144-50.
    [178]Imai Y, Soda M, Takahashi R. Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity. J Biol Chem 2000; 275 (46):35661-4.
    [179]Henn IH, Bouman L, Schlehe JS, Schlierf A, Schramm JE, Wegener E, Nakaso K, Culmsee C, Berninger B, Krappmann D, Tatzelt J, Winklhofer KF. Parkin mediates neuroprotection through activation of IkappaB kinase/nuclear factor-kappaB signaling. J Neurosci 2007;27(8):1868-78.
    [180]Cha GH, Kim S, Park J, Lee E, Kim M, Lee SB, Kim JM, Chung J, Cho KS. Parkin negatively regulates JNK pathway in the dopaminergic neurons of Drosophila. Proc Natl Acad Sci U S A 2005;102(29):10345-50.
    [181]Hasegawa T, Treis A, Patenge N, Fiesel FC, Springer W, Kahle PJ. Parkin protects against tyrosinase-mediated dopamine neurotoxicity by suppressing stress-activated protein kinase pathways. J Neurochem 2008; 105(5):1700-15.
    [182]Palacino JJ, Sagi D, Goldberg MS, Krauss S, Motz C, Wacker M, Klose J, Shen J. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem 2004;279(18):18614-22.
    [183]Yu F, Zhou J. Parkin is ubiquitinated by Nrdpl and abrogates Nrdpl-induced oxidative stress. Neurosci Lett 2008;440(1):4-8.
    [184]Foroud T, Uniacke SK, Liu L, Pankratz N, Rudolph A, Halter C, Shults C, Marder K, Conneally PM, Nichols WC. Heterozygosity for a mutation in the parkin gene leads to later onset Parkinson disease. Neurology 2003;60(5):796-801.
    [185]Hicks AA, Petursson H, Jonsson T, Stefansson H, Johannsdottir HS, Sainz J, Frigge ML, Kong A, Gulcher JR, Stefansson K, Sveinbjornsdottir S. A susceptibility gene for late-onset idiopathic Parkinson's disease. Ann Neurol 2002;52(5):549-55.
    [186]Li YJ, Scott WK, Hedges DJ, Zhang F, Gaskell PC, Nance MA, Watts RL, Hubble JP, Koller WC, Pahwa R, Stern MB, Hiner BC, Jankovic J, Allen FA, Jr., Goetz CG, Mastaglia F, Stajich JM, Gibson RA, Middleton LT, Saunders AM, Scott BL, Small GW, Nicodemus KK, Reed AD, Schmechel DE, Welsh-Bohmer KA, Conneally PM, Roses AD, Gilbert JR, Vance JM, Haines JL, Pericak-Vance MA. Age at onset in two common neurodegenerative diseases is genetically controlled. Am J Hum Genet 2002;70(4):985-93.
    [187]Oliveira SA, Li YJ, Noureddine MA, Zuchner S, Qin X, Pericak-Vance MA, Vance JM. Identification of risk and age-at-onset genes on chromosome 1p in Parkinson disease. Am J Hum Genet 2005;77(2):252-64.
    [188]Li Y, Schrodi S, Rowland C, Tacey K, Catanese J, Grupe A. Genetic evidence for ubiquitin-specific proteases USP24 and USP40 as candidate genes for late-onset Parkinson disease. Hum Mutat 2006;27(10):1017-23.
    [189]Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson's disease:a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 1992;55(3):181-4.
    [190]Funayama M, Hasegawa K, Kowa H, Saito M, Tsuji S, Obata F. A new locus for Parkinson's disease (PARK8) maps to chromosome 12p11.2-ql3.1. Ann Neurol 2002;51(3):296-301.
    [191]Kachergus J, Mata IF, Hulihan M, Taylor JP, Lincoln S, Aasly J, Gibson JM, Ross OA, Lynch T, Wiley J, Payami H, Nutt J, Maraganore DM, Czyzewski K, Styczynska M, Wszolek ZK, Farrer MJ, Toft M. Identification of a novel LRRK2 mutation linked to autosomal dominant parkinsonism:evidence of a common founder across European populations. Am J Hum Genet 2005;76(4):672-80.
    [192]Scholz S, Mandel RJ, Fernandez HH, Foote KD, Rodriguez RL, Barton E, Munson S, Singleton A, Okun MS. LRRK2 mutations in a clinic-based cohort of Parkinson's disease. Eur J Neurol 2006;13(12):1298-301.
    [193]Gilks WP, Abou-Sleiman PM, Gandhi S, Jain S, Singleton A, Lees AJ, Shaw K, Bhatia KP, Bonifati V, Quinn NP, Lynch J, Healy DG, Holton JL, Revesz T, Wood NW. A common LRRK2 mutation in idiopathic Parkinson's disease. Lancet 2005;365(9457):415-6.
    [194]Tomiyama H, Li Y, Funayama M, Hasegawa K, Yoshino H, Kubo S, Sato K, Hattori T, Lu CS, Inzelberg R, Djaldetti R, Melamed E, Amouri R, Gouider-Khouja N, Hentati F, Hatano Y, Wang M, Imamichi Y, Mizoguchi K, Miyajima H, Obata F, Toda T, Farrer MJ, Mizuno Y, Hattori N. Clinicogenetic study of mutations in LRRK2 exon 41 in Parkinson's disease patients from 18 countries. Mov Disord 2006;21 (8):1102-8.
    [195]Farrer MJ, Stone JT, Lin CH, Dachsel JC, Hulihan MM, Haugarvoll K, Ross OA, Wu RM. Lrrk2 G2385R is an ancestral risk factor for Parkinson's disease in Asia. Parkinsonism Relat Disord-2007;13(2):89-92,
    [196]Tan EK, Zhao Y, Skipper L, Tan MG, Di Fonzo A, Sun L, Fook-Chong S, Tang S, Chua E, Yuen Y, Tan L, Pavanni R, Wong MC, Kolatkar P, Lu CS, Bonifati V, Liu JJ. The LRRK2 Gly2385Arg variant is associated with Parkinson's disease:genetic and functional evidence. Hum Genet 2007;120(6):857-63.
    [197]Xiromerisiou G, Hadjigeorgiou GM, Gourbali V, Johnson J, Papakonstantinou I, Papadimitriou A, Singleton AB. Screening for SNCA and LRRK2 mutations in Greek sporadic and autosomal dominant Parkinson's disease:identification of two novel LRRK2 variants. Eur J Neurol 2007;14(1):7-11.
    [198]Di Fonzo A, Tassorelli C, De Mari M, Chien HF, Ferreira J, Rohe CF, Riboldazzi G, Antonini A, Albani G, Mauro A, Marconi R, Abbruzzese G, Lopiano L, Fincati E, Guidi M, Marini P, Stocchi F, Onofrj M, Toni V, Tinazzi M, Fabbrini G, Lamberti P, Vanacore N, Meco G, Leitner P, Uitti RJ, Wszolek ZK, Gasser T, Simons EJ, Breedveld GJ, Goldwurm S, Pezzoli G, Sampaio C, Barbosa E, Martignoni E, Oostra BA, Bonifati V. Comprehensive analysis of the LRRK2 gene in sixty families with Parkinson's disease. Eur J Hum Genet 2006;14(3):322-31.
    [199]Berg D, Schweitzer K, Leitner P, Zimprich A, Lichtner P, Belcredi P, Brussel T, Schulte C, Maass S, Nagele T. Type and frequency of mutations in the LRRK2 gene in familial and sporadic Parkinson's disease*. Brain 2005;128(Pt 12):3000-11.
    [200]Mata IF, Kachergus JM, Taylor JP, Lincoln S, Aasly J, Lynch T, Hulihan MM, Cobb SA, Wu RM, Lu CS, Lahoz C, Wszolek ZK, Farrer MJ. Lrrk2 pathogenic substitutions in Parkinson's disease. Neurogenetics 2005;6(4):171-7.
    [201]Bras JM, Guerreiro RJ, Ribeiro MH, Januario C, Morgadinho A, Oliveira CR, Cunha L, Hardy J, Singleton A. G2019S dardarin substitution is a common cause of Parkinson's disease in a Portuguese cohort. Mov Disord 2005;20(12):1653-5.
    [202]Healy DG, Falchi M, O'Sullivan SS, Bonifati V, Durr A, Bressman S, Brice A, Aasly J, Zabetian CP, Goldwurm S, Ferreira JJ, Tolosa E, Kay DM, Klein C, Williams DR, Marras C, Lang AE, Wszolek ZK, Berciano J, Schapira AH, Lynch T, Bhatia KP, Gasser T, Lees AJ, Wood NW. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's disease:a case-control study. Lancet Neurol 2008;7(7):583-90.
    [203]Nichols WC, Pankratz N, Hernandez D, Paisan-Ruiz C, Jain S, Halter CA, Michaels VE, Reed T, Rudolph A, Shults CW, Singleton A, Foroud T. Genetic screening for a single common LRRK2 mutation in familial Parkinson's disease. Lancet 2005;365(9457):410-2.
    [204]Di Fonzo A, Rohe CF, Ferreira J, Chien HF, Vacca L, Stocchi F, Guedes L, Fabrizio E, Manfredi M, Vanacore N, Goldwurm S, Breedveld G, Sampaio C, Meco G, Barbosa E, Oostra BA, Bonifati V. A frequent LRRK2 gene mutation associated with autosomal dominant Parkinson's disease. Lancet 2005;365(9457):412-5.
    [205]Ozelius LJ, Senthil G, Saunders-Pullman R, Ohmann E, Deligtisch A, Tagliati M, Hunt AL, Klein C, Henick B, Hailpern SM, Lipton RB, Soto-Valencia J, Risch N, Bressman SB. LRRK2 G2019S as a cause of Parkinson's disease in Ashkenazi Jews. N Engl J Med 2006;354(4):424-5.
    [206]Lesage S, Durr A, Tazir M, Lohmann E, Leutenegger AL, Janin S, Pollak P, Brice A. LRRK2 G2019S as a cause of Parkinson's disease in North African Arabs. N Engl J Med 2006;354(4):422-3.
    [207]Ishihara L, Warren L, Gibson R, Amouri R, Lesage S, Durr A, Tazir M, Wszolek ZK, Uitti RJ, Nichols WC, Griffith A, Hattori N, Leppert D, Watts R, Zabetian CP, Foroud TM, Farrer MJ, Brice A, Middleton L, Hentati F. Clinical features of Parkinson disease patients with homozygous leucine-rich repeat kinase 2 G2019S mutations. Arch Neurol 2006;63(9):1250-4.
    [208]Greggio E, Zambrano I, Kaganovich A, Beilina A, Taymans JM, Daniels V, Lewis P, Jain S, Ding J, Syed A, Thomas KJ, Baekelandt V, Cookson MR. The Parkinson disease-associated leucine-rich repeat kinase 2 (LRRK2) is a dimer that undergoes intramolecular autophosphorylation. J Biol Chem 2008;283(24):16906-14.
    [209]Gallo KA, Johnson GL. Mixed-lineage kinase control of JNK and p38 MAPK pathways. Nat Rev Mol Cell Biol 2002;3(9):663-72.
    [210]White LR, Toft M, Kvam SN, Farrer MJ, Aasly JO. MAPK-pathway activity, Lrrk2 G2019S, and Parkinson's disease. J Neurosci Res 2007;85(6):1288-94.
    [211]Plowey ED, Cherra SJ,3rd, Liu YJ, Chu CT. Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells. J Neurochem 2008; 105(3):1048-56.
    [212]Habig K, Walter M, Poths S, Riess O, Bonin M. RNA interference of LRRK2-microarray expression analysis of a Parkinson's disease key player. Neurogenetics 2008;9(2):83-94.
    [213]Paisan-Ruiz C, Lang AE, Kawarai T, Sato C, Salehi-Rad S, Fisman GK, Al-Khairallah T, St George-Hyslop P, Singleton A, Rogaeva E. LRRK2 gene in Parkinson disease:mutation analysis and case control association study. Neurology 2005;65(5):696-700.
    [214]Dachsel JC, Mata IF, Ross OA, Taylor JP, Lincoln SJ, Hinkle KM, Huerta C, Ribacoba R, Blazquez M, Alvarez V, Farrer MJ. Digenic parkinsonism:investigation of the synergistic effects of PRKN and LRRK2. Neurosci Lett 2006;410(2):80-4.
    [215]Lee HJ, Khoshaghideh F, Lee S, Lee SJ. Impairment of microtubule-dependent trafficking by overexpression of alpha-synuclein. Eur J Neurosci 2006;24(11): 3153-62.
    [216]Gandhi PN, Wang X, Zhu X, Chen SG, Wilson-Delfosse AL. The Roc domain of leucine-rich repeat kinase 2 is sufficient for interaction with microtubules. J Neurosci Res 2008;86(8):1711-20.
    [217]Gillardon F. Leucine-rich repeat kinase 2 phosphorylates brain tubulin-beta isoforms and modulates microtubule stability-a point of convergence in parkinsonian neurodegeneration? J Neurochem 2009; 110(5):1514-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700