用户名: 密码: 验证码:
神经元细胞周期调控异常在帕金森病发病机制中作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的建立PD细胞模型,并观察各种PD相关损伤因素对神经元样PC12细胞周期分布的影响。
     方法体外培养神经元样PC12细胞,分别用不同浓度的多巴胺神经毒素(6-OHDA、MPP+和lactacystin)处理细胞,四甲基偶氮唑盐法(MTT法)检测细胞活性,Annexin-V/PI双标流式细胞术检测细胞凋亡率,PI单标流式细胞术检测细胞周期分布,并观察细胞周期抑制药物flavopiridol对细胞周期、细胞活性和细胞凋亡的影响。
     结果PC12细胞经神经生长因子诱导后具有神经元的表型,各种神经毒素处理后细胞活性呈浓度依赖性和时间依赖性下降,10μM lactacystin、75μM MPP+和100μM6-OHDA使PC12细胞活力分别下降到对照组的49.31±3.23%、59.75±6.50%和48.32±9.43%。流式细胞术检测发现细胞死亡的主要方式为凋亡,且细胞凋亡率随各种神经毒素处理时间的延长而升高。细胞周期检测发现,神经元样PC12细胞71.27%处于G0/G1期,各种神经毒素处理后,G0/G1期细胞比例减少,而S期和G2/M期细胞比例升高。细胞周期抑制剂flavopiridol能够抑制细胞周期重启和细胞损伤。
     结论线粒体功能障碍、氧化应激和泛素-蛋白酶体功能障碍等PD相关损伤因素能够诱导神经元细胞周期重启,细胞周期重启参与神经元损伤过程。
     目的观察各种PD相关损伤因素对神经元样PC12细胞周期调节因子表达的影响。
     方法体外培养神经元样PC12细胞,分别用lactacystin (10μM)、6-OHDA (100μM)和MPP+(75μM)处理细胞,逆转录聚合酶链反应(RT-PCR)观察细胞周期调节因子cyclin (cyclin A、cyclin D1、cyclin B1和cyclin E)和CDK(CDK2、CDK4和CDK1)mRNA表达水平的变化,Western blot和免疫细胞化学染色观察细胞周期调节因子pRB、p-pRB、cyclin B1、CDK4和CDK1蛋白表达水平的变化。
     结果RT-PCR结果显示,各种多巴胺神经毒素处理后,神经元样PC12细胞cyclin A、cyclin D1和CDK1 mRNA表达水平升高,而cyclin B1、cyclin E、CDK2和CDK4 mRNA水平无明显改变。Western blot和免疫细胞化学染色显示,lactacystin处理后PC12细胞内pRB蛋白磷酸化水平增高,同时cyclin B1、CDK1和CDK4蛋白表达水平增高。结论各种多巴胺神经毒素通过上调细胞周期调节因子的表达(cyclin A、cyclin D1和CDK1)或抑制其降解(cyclin B1和CDK4)促进神经元细胞周期重启。
     目的探讨神经元细胞周期重启后的DNA复制机制及其在神经变性中的作用。
     方法MPP+处理原代培养的小脑颗粒细胞;CGCs),MTT法检测细胞活性,Annexin-V/PI双标流式细胞术检测细胞凋亡率,PI单标流式细胞术检测细胞周期分布,BrdU掺入法检测S期细胞比例,Western blot法检测细胞周期调节因子(cyclin A和cyclin B)和各种DNA聚合酶(DNA pols)表达水平的变化,并观察细胞周期抑制剂(flavopiridol和olomoucine)和各种DNA pols抑制剂对细胞活性的影响,细胞内转染dominant negative DNA pol-β,观察其对细胞活性和细胞凋亡的影响。
     结果MPP+处理后原代CGCs细胞活性下降和细胞凋亡,同时CGCs细胞周期重启,S期细胞增多,S期相关调节因子cyclin A表达增高,而G2/M期相关调节因子cyclin B表达水平无明显变化。细胞周期抑制剂flavopiridol和olomoucine都能够抑制MPP+引起的细胞周期重启和细胞凋亡。MPP+处理后DNA pol-β和DNA引物酶表达升高,而DNA pol-β和pol-ε表达无明显变化。DNA pol-α/δ抑制剂阿非迪霉素对细胞活性和细胞凋亡率无明显影响,而DNA pol-β抑制剂双脱氧胞苷能够抑制MPP+诱导的细胞损伤,细胞内表达dominant negative DNA pol-β也能够抑制MPP+引起的细胞活性下降和细胞凋亡。
     结论神经元细胞周期重启后由DNA pol-β介导DNA复制和细胞损伤。
     目的观察MAPK信号通路在MPP+诱导的PC12细胞周期重启和细胞损伤中的作用。
     方法MPP+处理神经元样PC12细胞,四甲基偶氮唑盐法(MTT法)检测细胞活性,Annexin-V/PI双标流式细胞术检测细胞凋亡率,PI单标流式细胞术检测细胞周期分布,Western blot法观察ERK1/2、JNK和P38信号通路活化状态。分别使用ERK1/2通路抑制剂(PD98059)、JNK通路抑制剂(SP600125)和P38通路抑制剂(SB202190)预处理PC12细胞,观察其对神经元细胞周期和细胞活性的影响。
     结果MPP+处理后PC12细胞内ERK1/2、JNK和P38磷酸化水平均增高,ERK1/2通路抑制剂PD98059能够抑制ERK1/2通路活化水平,同时能够抑制细胞周期重启和细胞活性下降。JNK通路抑制剂SP600125能够抑制细胞活性下降,但对细胞周期无明显影响。P38通路抑制剂SB202190对细胞活性和细胞周期均无显著影响。
     结论ERK1/2信号通路是介导细胞周期重启的上游机制。
     目的观察氧化应激在ERK1/2通路活化和细胞周期重启中的作用。
     方法MPP+处理神经元样PC12细胞,四甲基偶氮唑盐法(MTT法)检测细胞活性,PI单标流式细胞术检测细胞周期分布,荧光比色法检测细胞内活性氧物质(ROS)水平,Western blot法检测ERK1/2信号通路活化状态。并观察过氧化氢酶预处理对ERK1/2通路活化、细胞周期重启和细胞活性的影响。
     结果MPP+处理后PC12细胞内ROS水平增高,过氧化氢酶预处理能够抑制细胞内ROS水平升高,同时能够抑制MPP+诱导的ERK1/2通路活化、细胞周期重启和细胞活性下降。
     结论氧化应激能够诱导ERK1/2信号通路活化和细胞周期重启。
     目的观察桑黄素在PD细胞模型和动物模型中的神经保护作用及其机制。
     方法MPP+处理神经元样PC12细胞,四甲基偶氮唑盐法(MTT法)检测细胞活性,Annexin-V/PI双标流式细胞术检测细胞凋亡率,PI单标流式细胞术检测细胞周期分布,荧光比色法检测细胞内活性氧物质(ROS)水平。MPTP腹腔注射建立小鼠PD模型,高效液相色谱法检测纹状体多巴胺水平,酪氨酸羟化酶(TH)免疫组织化学染色检测黑质多巴胺能神经元数量。
     结果MPP+处理后神经元样PC12细胞活性下降,细胞内ROS水平增高,同时出现细胞周期重启,桑黄素能够明显抑制MPP+诱导的细胞活性下降、细胞凋亡和细胞内ROS水平升高,同时还能够抑制MPP+引起的细胞周期重启。MPTP小鼠模型纹状体内多巴胺水平下降,黑质多巴胺能神经元减少,桑黄素腹腔注射能够明显升高PD小鼠模型纹状体多巴胺水平,同时黑质内多巴胺能神经元数量增多。
     结论桑黄素对PD细胞模型和动物模型都具有明显的神经保护作用,其保护作用的机制可能与其抗氧化、抗增殖活性有关。
Objective To investigate the role of cell cycle aberrant in neuronal death induced by dopaminergic neurotoxins.
     Methods Neuronal PC12 cells were exposed to dopaminergic neurotoxins (lactacystin, MPP+, and 6-OHDA). Cell viability was measured by MTT. Flow cytometry was used to detect cell apoptosis and the distribution of cell cycle. The role of cell cycle inhibitors was assessed by MTT and flow cytometry.
     Results After differentiated by NGF, PC12 cells acquire a neuronal phenotype similar to that of sympathetic neurons. The cell viability of neuronal PC12 cells decreased in a time-and concentration-dependent manner. After exposure to lactacystin, MPP+, and 6-OHDA, the apoptotic rate increased in a time-dependent manner. At the same time, the percentage of cells in G0/G1 phase of cell cycle decreased and that in G2/M phase increased. Flavopiridol, a cell cycle inhibitor attenuated the cell cycle re-entry and cell injury induced by neurotoxins.
     Conclusion Cell cycle aberrant mediates cell apoptosis induced by dopaminergic neurotoxins.
     Objective To investigate effect of dopaminergic neurotoxins on the expression of cell cycle regulators in neuronal PC 12 cells.
     Methods Neuronal PC12 cells were exposed to dopaminergic neurotoxins (lactacystin, MPP+, and 6-OHDA). The mRNA levels of cyclin (cyclin A, cyclin D1, cyclin B1 and cyclin E) and cyclin dependent kinases (CDK2, CDK4 and CDK1) was assayed by RT-PCR. The protein levels of cell cycle regulators (pRB, p-pRB, cyclin B1, CDK4 and CDK1) were assessed by Western blot and immunocytochemistry.
     Results After exposure to dopaminergic neurotoxins, the mRNA levels of cyclin A, cyclin Dl and CDK1 increased, while the mRNA levels of cyclin B1, cyclin E, CDK2 and CDK4 did not change. The protein levels of p-pRB, cyclin B1, CDK4 and CDK1 increased after exposure lactacystin.
     Conclusion Neurotoxins induce cell cycle re-entry via influencing the expression and degradation cell cycle regulators.
     Objective To investigate the role of DNA polymerases in DNA replication and apoptotic death in neurons after re-entering the cell cycle
     Methods Cerebellar granule cells were exposed to MPP+. Cell viability was measured by MTT. Cell cycle distribution of neurons was measured by flow cytometry, and cell apoptosis was detected by flow cytometry and Hoechst staining. BrdU incorporation was used to detect the cells in S phase of cell cycle. Western blot was used to detect the expression of cyclin A, cyclin B, DNA primase, DNA pol-P, DNA pol-8 and pol-s. The effect of cell cycle inhibitors and DNA pols inhibitors on cell cycle, cell viability and cell apoptosis was assessed as well.
     Results After exposure to MPP+, some of the postmitotic neurons re-entered S phase of the cell cycle. The neuronal cell cycle re-entry and apoptosis were attenuated by flavopiridol, which is a broad inhibitor of cyclin-dependent kinases (CDKs). MPP+ exposure significantly increased the expression of DNA pol-βand primase but did not affect the expression of the canonical replicative DNA pols, including DNA pol-δand pol-ε. Dideoxycytidine, which is a pharmacological inhibitor of DNA pol-β, attenuated the neuronal apoptosis mediated by MPP+. In a similar manner, the expression of a dominant negative form of DNA pol-P was also neuroprotective.
     Conclusion DNA pol-βmay have a causal role in MPP+-induced neuronal apoptosis.
     Objective To investigate the role of MAPK signaling pathway in cell cycle re-entry and cell injury.
     Methods Neuronal PC12 cells were exposed to MPP+. Cell viability was measured by MTT. Flow cytometry was used to detect the distribution of cell cycle. Western blot was used to detect the expression of ERK, p-ERK, JNK, p-JNK, P38 and p-P38. The specific inhibitors of ERK, JNK, and P38 pathway was used to determine the role of different MAPK signaling pathway in cell cycle re-entry and cell viability.
     Results After exposure to MPP+, the expression of p-ERK, p-JNK, and p-P38 increased. PD98059, an inhibitor of ERK1/2 pathway inhibited the cell cycle re-entry and cell viability lose induced by MPP+. SP600125, an inhibitor of JNK pathway attenuated cell viability loss of PC 12 cells, but did not affected the cell cycle re-entry. SB202190, an inhibitor of P38 pathway did not affect the cell viability and cell cycle re-entry.
     Conclusion ERK1/2 signaling pathway mediates cell cycle re-entry induced by MPP+.
     Objective To investigate the role of oxidative stress in the activation of ERK1/2 pathway in and cell cycle re-entry.
     Methods Neuronal PC12 cells were exposed to MPP+. Cell viability was measured by MTT. Flow cytometry was used to detect the distribution of cell cycle. Intracellular reactive oxygen species (ROS) was measured using the fluorescent probe 2,7-dichlorofluorescein diacetate (H2DCFDA). Western blot was used to detect the expression of ERK1/2 and p-ERK. Catalase, an antioxidant was used to determine the role of oxidative stress in the activation of ERK1/2 pathway and cell cycle re-entry.
     Results After exposure MPP+, the level of intracellular ROS increased, and the cells re-entered the cell cycle. Pretreatment with catalase attenuated the ROS formation, cell cycle re-entry and cell viability loss induced by MPP+.
     Conclusion Oxidative stress mediates the activation of ERK1/2 pathway in and neuronal cell cycle re-entry.
     Aim:To investigate the neuroprotective effects of morin on 1-methyl-4-phenylpyridinium ion (MPP+)-induced apoptosis in neuronal differentiated PC12 cells as well as in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD.
     Methods:Neuronal differentiated PC 12 cells were challenged with MPP+ in the presence or absence of morin. Cell viability was determined by the MTT method. Cell apoptosis and cell cycle distribution were measured by flow cytometry. Intracellular ROS formation was assayed by fluorescence assay. In the MPTP mouse model of PD, the striatal dopamine content was detected by HPLC. The survival of dopaminergic neurons were measured by immunohistochemistry.
     Results:MPP+ induced loss of cell viability and apoptosis in neuronal PC12 cells. Concomitant treatment with morin significantly attenuated cell viability loss, apoptosis, and oxidative stress induced by MPP+. Furthermore, morin attenuated cell cycle re-entry induced by MPP+. In mice, MPTP induced significant nigrostriatal lesions. When administered prior to MPTP, morin attenuated behavioral deficits, dopaminergic neuronal death and striatal dopamine depletion in the MPTP mouse model.
     Conclusion:Morin is neuroprotective both in vitro and in vivo. The neuroprotective effect of morin may be attributed to its antioxidant and antiproliferative properties.
引文
1. Zhang ZX, Roman GC, Hong Z, et al. Parkinson's disease in China:prevalence in Beijing, Xian, and Shanghai.2005,365(9459):595-597.
    2. Yamashita H, Matsumoto M. Molecular pathogenesis, experimental models and new therapeutic strategies for Parkinson's disease. Regen Med,2007,2(4):447-455.
    3. Hoglinger GU, Breunig JJ, Depboylu C, et al. The pRB/E2F cell-cycle pathway mediates cell death in Parkinson's disease. Proc Natl Acad Sci U S A,2007,104(9): 3585-3590.
    4. Yang Y, Geldmacher DS, Herrup K. DNA replication precedes neuronal cell death in Alzheimer's disease J Neurosci,2001,21(8):2661-2668.
    5. Malumbres M, BapRBacid M. Cell cycle, CDKs and cancer:a changing paradigm. Nat Rev Cancer.2009,9(3):153-166.
    6. Raji NS, Krishna TH, Rao KS. DNA-polymerase alpha, beta, delta and epsilon activities in isolated neuronal and astroglial cell fractions from developing and aging rat cerebral cortex. Int J Dev Neurosci,2002,20(6):491-496.
    7. Yang Y, Herrup K. Cell division in the CNS:protective response or lethal event in post-mitotic neurons? Biochim Biophys Acta.2007,1772(4):457-466.
    8. Yang Y, Geldmacher DS, Herrup K. DNA replication precedes neuronal cell death in Alzheimer's disease. J Neurosci,2001,21:2661-2668.
    9. Yang Y, Mufson EJ, Herrup K. Neuronal cell death is preceded by cell cycle events at all stages of Alzheimer's disease. J Neurosci,2003,23:2557-2563.
    10. Ranganathan S, Bowser R. Alterations in G(1) to S phase cell-cycle regulators during amyotrophic lateral sclerosis. Am J Pathol,2003,162(3):823-835.
    11. Di Giovanni S, Movsesyan V, Ahmed F, et al. Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury. Proc Natl Acad Sci U S A,2005,102(23):8333-8338.
    12. Kuan CY, Schloemer AJ, Lu A, et al. Hypoxia-ischemia induces DNA synthesis without cell proliferation in dying neurons in adult rodent brain. J Neurosci,2004, 24(47):10763-10772.
    13. Yu X, Caltagarone J, Smith MA, et al. DNA damage induces cdk2 protein levels and histone H2B phosphorylation in SH-SY5Y neuroblastoma cells. J Alzheimers Dis, 2005,8(1):7-21.
    14. Copani A, Sortino MA, Caricasole A, et al. Erratic expression of DNA polymerases by beta-amyloid causes neuronal death. FASEB J,2002,16(14):2006-2008.
    15. Copani A, Caraci F, Hoozemans JJ, et al. The nature of the cell cycle in neurons:focus on a "non-canonical" pathway of DNA replication causally related to death. Biochim Biophys Acta,2007,1772(4):409-412.
    16. Zhu JH, Kulich SM, Oury TD, et al. Cytoplasmic aggregates of phosphorylated extracellular signal-regulated kinase in Lewy body diseases. Am J Pathol,2002,161: 2087-2098.
    17. Lee SS, Kim YM, Junn E, et al. Cell cycle aberrations by alpha-synuclein over-expression and cyclin B immunoreactivity in Lewy bodies. Neurobiol Aging, 2003,24(5):687-696.
    1. Lev N, Melamed E, Offen D. Apoptosis and Parkinson's disease. Prog Neuropsychopharmacol Biol Psychiatry,2003,27:245-250.
    2. Schulz JB. Update on the pathogenesis of Parkinson's disease. J Neurol,2008,255: 3-7.
    3. Olanow CW. The pathogenesis of cell death in Parkinson's disease-2007. Mov Disord, 2007,22:S335-342.
    4. Schapira AH. Etiology of Parkinson's disease. Neurology,2006,66:S10-23.
    5. Herrup K, Neve R, Ackerman SL, et al. Divide and die:cell cycle events as triggers of nerve cell death. J Neurosci,2004,24:9232-9239.
    6. Nakayama KI, Nakayama K. Ubiquitin ligases:cell-cycle control and cancer. Nat Rev Cancer,2006,6:369-381.
    7. Mosch B, Morawski M, Mittag A, et al. Aneuploidy and DNA replication in the normal human brain and Alzheimer's disease. J Neurosci,2007,27:6859-6867.
    8. Hoglinger GU, Breunig JJ, Depboylu C, et al. The pRB/E2F cell-cycle pathway mediates cell death in Parkinson's disease. Proc Natl Acad Sci U S A,2007,104(9): 3585-3590.
    9. Dauer W, Przedborski S. Parkinson's disease:mechanisms and models. Neuron,2003, 39(6):889-909.
    10. Greene LA, Tischler AS. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A,1976,73(7):2424-2428.
    11. Lipman T, Tabakman R, Lazarovici P. Neuroprotective effects of the stable nitroxide compound Tempol on 1-methyl-4-phenylpyridinium ion-induced neurotoxicity in the Nerve Growth Factor-differentiated model of pheochromocytoma PC 12 cells. Eur J Pharmacol,2006,549:50-57.
    12. Soldner F, Weller M, Haid S, et al. MPP+ inhibits proliferation of PC12 cells by a p21(WAF1/Cip1)-dependent pathway and induces cell death in cells lacking p21(WAF1/Cip1). Exp Cell Res,1999,250:75-85.
    13. Hartmann A, Hunot S, Michel PP, et al. Caspase-3:a vulnerability factor and effector in apoptosis death of dopaminergic neurons in Parkinson's disease. Proc Natl Acad Sci USA,2000,97(6):2875-2880.
    14. Liang Q, Liou AK, Ding Y, et al.6-Hydroxydopamine induces dopaminergic cell degeneration via a caspase-9-mediated apoptotic pathway that is attenuated by caspase-9 dexpression. J Neurosci Res,2004,77(5):747-761.
    15. Eberhardt O, Schulz JB. Apoptotic mechanisms and antiapoptotic therapy in the MPTP model of Parkinson's disease. Toxicol Lett,2003,139 (2-3):135-151.
    16. Sriram SR, Li X, Ko HS, et al. Familial-associated mutations differentially disrupt the solubility, localization, binding and ubiquitination properties of parkin. Hum Mol Genet,2005,14(17):2571-2586.
    17. Healy DG, Abou-Sleiman PM, Wood NW, et al. Genetic causes of Parkinson's disease: UCHL-1. Cell Tissue Res,2004,318(1):189-194.
    18. Barzilai A, Melamed E. Molecular mechanisms of selective dopaminergic neuronal death in Parkinson's disease. Trends Mol Med,2003, (3):126-132.
    19. McNaught KS, Belizaire R, Isacson O, et al. Altered proteasomal function in sporadic Parkinson's disease. Exp NeurOl,2003,179:38-46.
    20. McNaught KS, Jenner P. Proteasomal function is impaired in substantia nigra in Parkinson's disease. Neurosci Lett,2001,297:191-194.
    21. McNaught KS, Olanow CW. Proteolytic stress:a unifying concept for the etiopathogenesis of Parkinson's disease. Ann Neurol,2003,53(Suppl 3):73-84.
    22. McNaught KS, Mytilineou C, Jnobaptiste R, et al. Impairment of the ubiquitin-proteasome system causes dopaminergic cell death and inclusion body formation in ventral mesencephalic cultures. J Neurochem,2002,81:301-306.
    23. Lee SS, Kim YM, Junn E, et al. Cell cycle aberrations by alpha-synuclein over-expression and cyclin B immunoreactivity in Lewy bodies. Neurobiol Aging, 2003,24(5):687-696.
    24. Cheng P, Li Y, Yang L, et al. Hepatitis B virus X protein (HBx) induces G2/M arrest and apoptosis through sustained activation of cyclin B1-CDK1 kinase. Oncol Rep, 2009,22:1101-1107.
    1. Nakayama KI, Nakayama K. Ubiquitin ligases:cell-cycle control and cancer. Nat Rev Cancer,2006,6:369-381.
    2. Doonan JH, Kitsios G. Functional evolution of cyclin-dependent kinases. Mol Biotechnol.2009,42(1):14-29.
    3. Halaban R. pRB/E2F:a two-edged sword in the melanocytic system. Cancer Metastasis Rev,2005,24(2):339-356.
    4. Jordan-Sciutto KL, Dorsey R, Chalovich EM, et al. Expression patterns of retinoblastoma protein in Parkinson disease. J Neuropathol Exp Neurol,2003,62(1): 68-74.
    5. Stanelle J, Putzer BM. E2F1-induced apoptosis:turning killers into therapeutics. Trends Mol Med,2006,12(4):177-185.
    6. Vermeulen K, Van Bockstaele DR, Berneman ZN. The cell cycle:a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif,2003,36: 131-149.
    7. Biswas SC, Liu DX, Greene LA. Bim is a direct target of a neuronal E2F-dependent apoptotic pathway. J Neurosci,2005,25(37):8349-8358.
    8. Hoglinger GU, Breunig JJ, Depboylu C, et al. The pRB/E2F cell-cycle pathway mediates cell death in Parkinson's disease. Proc Natl Acad Sci U S A,2007,104(9): 3585-3590.
    9. Gallant P, Nigg EA. cyclin B2 undergoes cell cycle-dependent nuclear translocation and, when expressed as a non-destructible mutant, causes mitotic arrest in HeLa cells. J Cell Biol,1992,117:213-224.
    10. Cheng P, Li Y, Yang L, et al. Hepatitis B virus X protein (HBx) induces G2/M arrest and apoptosis through sustained activation of cyclin B1-CDK1 kinase. Oncol Rep, 2009,22:1101-1107.
    11. Vincent I, Jicha G, Rosado M, et al. Aberrant expression of mitotic CDK1/cyclin B1 kinase in degenerating neurons of Alzheimer's disease brain. J Neurosci,1997,17: 3588-3598.
    12. El-Khodor BF, Oo TF, Kholodilov N, et al. Ectopic expression of cell cycle markers in models of induced programmed cell death in dopamine neurons of the rat substantia nigra pars compacta. Exp Neurol,2003,179(1):17-27.
    13. Konishi Y, Lehtinen M, Donovan N, et al. CDK1 phosphorylation of BAD links the cell cycle to the cell death machinery. Mol Cell,2002,9:1005-1016.
    1. Schapira AH. Mitochondria in the aetiology and pathogenesis of Parkinson's disease. Lancet Neurol,2008,7(1):97-109.
    2. Schulz JB. Update on the pathogenesis of Parkinson's disease. J Neurol,2008, 255(Suppl 5):3-7.
    3. Dauer W, Przedborski S. Parkinson's disease:mechanisms and models. Neuron,2008, 39(6):889-909.
    4. Serulle Y, Morfini G, Pigino G, et al.1-Methyl-4-phenylpyridinium induces synaptic dysfunction through a pathway involving caspase and PKC delta enzymatic activities. Proc Natl Acad Sci U S A,2007,104(7):2437-2441.
    5. Shang T, Kotamraju S, Kalivendi SV, et al. 1-Methyl-4-phenylpyridinium-induced apoptosis in cerebellar granule neurons is mediated by transferrin receptor iron-dependent depletion of tetrahydrobiopterin and neuronal nitric-oxide synthase-derived superoxide. J Biol Chem,2008,279(18):19099-19112.
    6. Jordan-Sciutto KL, Dorsey R, Chalovich EM, et al. Expression patterns of retinoblastoma protein in Parkinson disease. J Neuropathol Exp Neurol,2003,62(1): 68-74.
    7. Herrup K, Neve R, Ackerman SL, et al. Divide and die:cell cycle events as triggers of nerve cell death. J Neurosci,2004,24(42):9232-9239.
    8. Yang Y, Mufson EJ, Herrup K. Neuronal cell death is preceded by cell cycle events at all stages of Alzheimer's disease. J Neurosci,2003,23(7):2557-2563.
    9. Ranganathan S, Bowser R. Alterations in G(1) to S phase cell-cycle regulators during amyotrophic lateral sclerosis. Am J Pathol,2003,162(3):823-835.
    10. Hoglinger GU, Breunig JJ, Depboylu C, et al. The pRB/E2F cell-cycle pathway mediates cell death in Parkinson's disease. Proc Natl Acad Sci U S A,2007,'104(9): 3585-3590.
    11. Greene LA, Biswas SC, Liu DX. Cell cycle molecules and vertebrate neuron death: E2F at the hub. Cell Death Differ,2004,11(1):49-60.
    12. Di Giovanni S, Movsesyan V, Ahmed F, et al. Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury. Proc Natl Acad Sci U S A,2008,102(23):8333-8833.
    13. Rideout HJ, Wang Q, Park DS, et al. cyclin-dependent kinase activity is required for apoptotic death but not inclusion formation in cortical neurons after proteasomal inhibition. J Neurosci,2003,23(4):1237-1245.
    14. Zhu X, Raina AK, Perry G, et al. Alzheimer's disease:the two-hit hypothesis. Lancet Neurol,2004,3(4):219-226.
    15. Yang Y, Herrup K. Cell division in the CNS:protective response or lethal event in post-mitotic neurons? Biochim Biophys Acta,2006,1772(4):457-466.
    16. Copani A, Sortino MA, Caricasole A, et al. Erratic expression of DNA polymerases by beta-amyloid causes neuronal death. FASEB J,2002,16(14):2006-2008.
    17. Copani A, Hoozemans JJ, Caraci F, et al. DNA polymerase-beta is expressed early in neurons of Alzheimer's disease brain and is loaded into DNA replication forks in neurons challenged with beta-amyloid. J Neurosci,2006,26(43):10949-10957.
    18. Gonzalez-Polo RA, Soler G, Fuentes JM. MPP+:mechanism for its toxicity in cerebellar granule cells. Mol Neurobiol,2004,30(3):253-264.
    19. Marini AM, Schwartz JP, Kopin IJ. The neurotoxicity of 1-methyl-4-phenylpyridinium in cultured cerebellar granule cells. J Neurosci,1989,9(10):3665-3672.
    20. Du Y, Dodel RC, Bales KR, et al. Involvement of a caspase-3-like cysteine protease in 1-methyl-4-phenylpyridinium-mediated apoptosis of cultured cerebellar granule neurons. J Neurochem,1997,69(4):1382-1388.
    21. Alvira D, Tajes M, Verdaguer E, et al. Inhibition of cyclin-dependent kinases is neuroprotective in 1-methyl-4-phenylpyridinium-induced apoptosis in neurons. Neuroscience,2007,146(1):350-365.
    22. Arakawa Y, Bito H, Furuyashiki T, et al. Control of axon elongation via an SDF-lalpha/Rho/mDia pathway in cultured cerebellar granule neurons. J Cell Biol, 2003,161(2):381-391.
    23. Knockaert M, Greengard P, Meijer L. Pharmacological inhibitors of cyclin-dependent kinases. Trends Pharmacol Sci,2002,23(9):417-425.
    24. Burgers PM. Polymerase dynamics at the eukaryotic DNA replication fork. J Biol Chem,2009,284(7):4041-4045.
    25. Moon AF, Garcia-Diaz M, Batra VK, et al. The X family portrait:structural insights into biological functions of X family polymerases. DNA Repair (Amst),2007,6(12): 1709-1725.
    26. Servant L, Bieth A, Hayakawa H, et al. Involvement of DNA polymerase beta in DNA replication and mutagenic consequences. J Mol Biol,2002,315(5):1039-1047.
    27. Lee MY, Toomey NL, Wright GE. Differential inhibition of human placental DNA polymerases delta and alpha by BuPdGTP and BuAdATP. Nucleic Acids Res,1985,
    13(23):8623-8630.
    28. Vens C, Dahmen-Mooren E, Verwijs-Janssen M, et al. The role of DNA polymerase beta in determining sensitivity to ionizing radiation in human tumor cells. Nucleic Acids Res,2002,30(13):2995-3004.
    29. Neijenhuis S, Begg AC, Vens C. Radiosensitization by a dominant negative to DNA polymerase beta is DNA polymerase beta-independent and XRCC1-dependent. Radiother Oncol,2005,76(2):123-128.
    30. Husain I, Morton BS, Beard WA, et al. Specific inhibition of DNA polymerase beta by its 14 kDa domain:role of single-and double-stranded DNA binding and 5'-phosphate recognition. Nucleic Acids Res,1995,23(9):1597-1603.
    31. Feddersen RM, Ehlenfeldt R, Yunis WS, et al. Disrupted cerebellar cortical development and progressive degeneration of Purkinje cells in SV40 T antigen transgenic mice. Neuron,1992,9(5):955-966.
    32. Mosch B, Morawski M, Mittag A, et al. Aneuploidy and DNA replication in the normal human brain and Alzheimer's disease. J Neurosci,2007,27(26):6859-6867.
    33. Lee SS, Kim YM, Junn E, et al. Cell cycle aberrations by alpha-synuclein over-expression and cyclin B immunoreactivity in Lewy bodies. Neurobiol Aging, 2003,24(5):687-696.
    34. Raji NS, Krishna TH, Rao KS. DNA-polymerase alpha, beta, delta and epsilon activities in isolated neuronal and astroglial cell fractions from developing and aging rat cerebral cortex. Int J Dev Neurosci,2002,20(6):491-496.
    35. Siegel RL, Kalf GF. DNA polymerase beta involvement in DNA endoreduplication in rat giant trophoblast cells. J Biol Chem,1982,257(4):1785-1790.
    36. Friedberg EC, Wagner R, Radman M. Specialized DNA polymerases, cellular survival, and the genesis of mutations. Science,2002,296(5573):1627-1630.
    37. Martin LJ. DNA damage and repair:relevance to mechanisms of neurodegeneration. J Neuropathol Exp Neurol,2008,67(5):377-387.
    1. MacCorkle RA, Tan TH. Mitogen-activated protein kinases in cell-cycle control. Cell Biochem Biophys,2005,43:451-461.
    2. Zhu JH, Guo F, Shelburne J, et al. Localization of phosphorylated ERK/MAP kinases to mitochondria and autophagosomes in Lewy body diseases. Brain Pathol,2003,13: 473-481.
    3. Yong HY, Koh MS, Moon A. The p38 MAPK inhibitors for the treatment of inflammatory diseases and cancer. Expert Opin Investig Drugs,2009,18(12): 1893-1905.
    4. Kim EK, Choi EJ. Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta,2010,1802(4):396-405.
    5. Miloso M, Scuteri A, Foudah D, et al. MAPKs as mediators of cell fate determination: an approach to neurodegenerative diseases. Curr Med Chem,2008,15(6):538-548.
    6. Sawe N, Steinberg G, Zhao H. Dual roles of the MAPK/ERK1/2 cell signaling pathway after stroke. J Neurosci Res,2008,86(8):1659-1669.
    7. Eminel S, Klettner A, Roemer L, et al. JNK2 translocates to the mitochondria and mediates cytochrome c release in PC 12 cells in response to 6-hydroxydopamine. J Biol Chem,2004,279(53):55385-55392.
    8. Newhouse K, Hsuan SL, Chang SH, et al. Rotenone-induced apoptosis is mediated by p38 and JNK MAP kinases in human dopaminergic SH-SY5Y cells. Toxicol Sci,2004, 79(1):137-146.
    9. Zhu X, Raina AK, Perry G, et al. Alzheimer's disease:the two-hit hypothesis. Lancet Neurol,2004,3(4):219-226.
    10. Segura Torres JE, Chaparro-Huerta V, Rivera Cervantres MC, et al. Neuronal cell death due to glutamate excitotocity is mediated by p38 activation in the rat cerebral cortex. Neurosci Lett,2006,403(3):233-238.
    11. Legos JJ, Erhardt JA, White RF, et al. SB 239063, a novel p38 inhibitor, attenuates early neuronal injury following ischemia. Brain Res,2001,892(1):70-77.
    12. Rodriguez-Blanco J, Martin V, Herrera F, et al. Intracellular signaling pathways involved in post-mitotic dopaminergic PC12 cell death induced by 6-hydroxydopamine. J Neurochem,2008,107(1):127-140.
    13. Chu CT, Levinthal DJ, Kulich SM, et al. Oxidative neuronal injury. The dark side of ERK1/2. Eur J Biochem,2004,271:2060-2066.
    14. Alessandrini A, Namura S, Moskowitz MA, et al. MEK1 protein kinase inhibition protects against damage resulting from focal cerebral ischemia. Proc Natl Acad Sci USA,1999,96:12866-12869.
    15. Wang ZQ, du Wu C, Huang FP, et al. Inhibition of MEK/ERK1/2 pathway reduces proinflammatory cytokine interleukin-1 expression in focal cerebral ischemia. Brain Res,2004,996:55-66.
    16. Meloche S, Pouyssegur J. The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1-to S-phase transition. Oncogene,2007,26:3227-3239.
    17. Hashimoto K, Guroff G, Katagiri Y. Delayed and sustained activation of p42/p44 mitogen-activated protein kinase induced by proteasome inhibitors through p21 (ras) in PC12 cells. J Neurochem,2000,74(1):92-98.
    18. McCubrey JA, Lahair MM, Franklin RA. Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxid Redox Signal,2006,8(9-10):
    1775-1789.
    19. Zhang P, Wang YZ, Kagan E, et al. Peroxynitrite targets the epidermal growth factor receptor, Raf-1, and MEK independently to activate MAPK. J Biol Chem,2000, 275(29):22479-22486.
    20. Kamata H, Hirata H. Redox regulation of cellular signalling. Cell Signal,1999,11: 1-14.
    21. Keyse SM. Protein phosphatases and the regulation of mitogen-activated protein kinase signalling. Curr Opin Cell Biol,2000,12:186-192.
    1. Lang AE. The progression of Parkinson disease:a hypothesis. Neurology,2007,68: 948-52.
    2. Langston JW. The Parkinson's complex:parkinsonism is just the tip of the iceberg. Ann Ann Neurol,2006,59:591-6.
    3. Aquilano K, Baldelli S, Rotilio G, et al. Role of nitric oxide synthases in Parkinson's disease:a review on the antioxidant and anti-inflammatory activity of polyphenols. Neurochem Res,2008,33:2416-2426.
    4. Guo S, Bezard E, Zhao B. Protective effect of green tea polyphenols on the SH-SY5Y cells against 6-OHDA induced apoptosis through ROS-NO pathway. Free Radic Biol Med,2005,39:682-695.
    5. Pan T, Jankovic J, Le W. Potential therapeutic properties of green tea polyphenols in Parkinson's disease. Drugs Aging,2003,20:711-721.
    6. Reznichenko L, Amit T, Zheng H, et al. Reduction of iron-regulated amyloid precursor protein and beta-amyloid peptide by (-)-epigallocatechin-3-gallate in cell cultures: implications for iron chelation in Alzheimer's disease. J Neurochem,2006,97: 527-536.
    7. Gottlieb M, Leal-Campanario R, Campos-Esparza MR, et al. Neuroprotection by two polyphenols following excitotoxicity and experimental ischemia. Neurobiol Dis,2006, 23:374-386.
    8. Ibarretxe G, Sanchez-Gomez MV, Campos-Esparza MR, et al. Differential oxidative stress in oligodendrocytes and neurons after excitotoxic insults and protection by natural polyphenols. Glia,2006,53:201-211.
    9. Wu TW, Fung KP, Zeng LH, et al. Molecular properties and myocardial salvage effects of morin hydrate. Biochem Pharmacol,1995,49:537-543.
    10. Campos-Esparza MR, Sanchez-Gomez MV, Matute C. Molecular mechanisms of neuroprotection by two natural antioxidant polyphenols. Cell Calcium,2009,45: 358-368.
    11. Mazzio E, Huber J, Darling S, et al. Effect of antioxidants on L-glutamate and N-methyl-4-phenylpyridinium ion induced-neurotoxicity in PC12 cells. Neurotoxicology,2001,22:283-288.
    12. Jackson-Lewis V, Przedborski S. Protocol for the MPTP mouse model of Parkinson's disease. Nat Protoc,2007,2:141-151.
    13. Geng X, Tian X, Tu P, et al. Neuroprotective effects of echinacoside in the mouse MPTP model of Parkinson's disease. Eur J Pharmacol,2007,564:66-74.
    14. Lipman T, Tabakman R, Lazarovici P. Neuroprotective effects of the stable nitroxide compound Tempol on 1-methyl-4-phenylpyridinium ion-induced neurotoxicity in the Nerve Growth Factor-differentiated model of pheochromocytoma PC12 cells. Eur J Pharmacol,2006,549:50-57.
    15. Soldner F, Weller M, Haid S, et al. MPP+ inhibits proliferation of PC12 cells by a p21(WAF1/Cip1)-dependent pathway and induces cell death in cells lacking p21(WAF1/Cip1). Exp Cell Res,1999,250:75-85.
    16. Chung WG, Miranda CL, Maier CS. Epigallocatechin gallate (EGCG) potentiates the cytotoxicity of rotenone in neuroblastoma SH-SY5Y cells. Brain Res,2007,1176: 133-142.
    17. Kaariainen TM, Piltonen M, Ossola B, et al. Lack of robust protective effect of quercetin in two types of 6-hydroxydopamine-induced parkinsonian models in rats and dopaminergic cell cultures. Brain Res,2008,1203:149-159.
    18. Zeng LH, Wu J, Fung B, et al. Comparative protection against oxyradicals by three flavonoids on cultured endothelial cells. Biochem Cell Biol,1997,75:717-720.
    19. Chetsawang B, Kooncumchoo P, Govitrapong P, et al.1-Methyl-4-phenyl-pyridinium ion-induced oxidative stress, c-Jun phosphorylation and DNA fragmentation factor-45 cleavage in SK-N-SH cells are averted by selegiline. Neurochem Int,2008,53: 283-288.
    20. Joglar B, Rodriguez-Pallares J, Rodriguez-Perez AI, et al. The inflammatory response in the MPTP model of Parkinson's disease is mediated by brain angiotensin:relevance to progression of the disease. J Neurochem,2009,109:656-669.
    21. Marella M, Seo BB, Matsuno-Yagi A, et al. Mechanism of cell death caused by complex I defects in a rat dopaminergic cell line. J Biol Chem,2007,282: 24146-24156.
    22. Zhang R, Kang KA, Piao MJ, et al. Cellular protection of morin against the oxidative stress induced by hydrogen peroxide. Chem Biol Interact,2009,177:21-27.
    23. Manna SK, Aggarwal RS, Sethi G, et al. Morin (3,5,7,2',4'-Pentahydroxyflavone) abolishes nuclear factor-kappaB activation induced by various carcinogens and inflammatory stimuli, leading to suppression of nuclear factor-kappaB-regulated gene expression and up-regulation of apoptosis. Clin Cancer Res,2007,13:2290-2297.
    24. Ghosh A, Roy A, Liu X, et al. Selective inhibition of NF-kappaB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson's disease. Proc Natl Acad Sci USA,2007,104:18754-18759.
    25. Kempuraj D, Madhappan B, Christodoulou S, et al. Flavonols inhibit proinflammatory mediator release, intracellular calcium ion levels and protein kinase C theta phosphorylation in human mast cells. Br J Pharmacol,2005,145:934-944.
    26. Abd El Mohsen MM, Kuhnle G, Rechner AR, et al. Uptake and metabolism of epicatechin and its access to the brain after oral ingestion. Free Radic Biol Med,2002, 33:1693-702.
    27. Youdim KA, Qaiser MZ, Begley DJ, et al. Flavonoid permeability across an in situ model of the blood-brain barrier. Free Radic Biol Med,2004,36:592-604.
    28. Cho YM, Onodera H, Ueda M, et al. A 13-week subchronic toxicity study of dietary administered morin in F344 rats. Food Chem Toxicol,2006,44:891-897.
    29. Rotelli AE, Guardia T, Juarez AO, et al. Comparative study of flavonoids in experimental models of inflammation. Pharmacol Res,2003,48:601-606.
    1. Sherr CJ. G1 phase progression:cycling on cue. Cell,1994,79(4):551-555.
    2. Meikrantz W, Schlegel R. Apoptosis and the cell cycle. J Cell Biochem,1995,58(2): 160-174.
    3. Feddersen RM, Ehlenfeldt R, Yunis WS, et al. Disrupted cerebellar cortical development and progressive degeneration of Purkinje cells in SV40 T antigen transgenic mice. Neuron,1992,9(5):955-966.
    4. Clarke AR, Maandag ER, van Roon M, et al. Requirement for a functional Rb-1 gene in murine development. Nature,1992,359(6393):328-330.
    5. Zhang Z, Cao X, Xiong N, et al. DNA polymerase-beta is required for 1-methyl-4-phenylpyridinium-induced apoptotic death in neurons. Apoptosis,2010, 15(1):105-115.
    6. Alvira D, Tajes M, Verdaguer E, et al. Inhibition of cyclin-dependent kinases is neuroprotective in 1-methyl-4-phenylpyridinium-induced apoptosis in neurons. Neuroscience,2007,146(1):350-365.
    7. Kuan CY, Schloemer AJ, Lu A, et al. Hypoxia-ischemia induces DNA synthesis without cell proliferation in dying neurons in adult rodent brain. J Neurosci,2004, 24(47):10763-10772.
    8. Busser J, Geldmacher DS, Herrup K. Ectopic cell cycle proteins predict the sites of neuronal cell death in Alzheimer's disease brain. J Neurosci,1998,18(8) 2801-2807.
    9. Pei JJ, Braak H, Gong CX, et al. Up-regulation of cell division cycle (cdc) 2 kinase in neurons with early stage Alzheimer's disease neurofibrillary degeneration. Acta Neuropathol,2002,104 (4):369-376.
    10. Mosch B, Morawski M, Mittag A, et al. Aneuploidy and DNA replication in the normal human brain and Alzheimer's disease. J Neurosci,2007,27(26):6859-6867.
    11. Yang Y, Mufson EJ, Herrup K. Neuronal cell death is preceded by cell cycle events at all stages of Alzheimer's disease. J Neurosci,2003,23(7):2557-2563.
    12. Yang Y, Geldmacher DS, Herrup K. DNA replication precedes neuronal cell death in Alzheimer's disease. J Neurosci,2001,21(8):2661-2668.
    13. Yang Y, Varvel NH, Lamb BT, et al. Ectopic cell cycle events link human Alzheimer's disease and amyloid precursor protein transgenic mouse models. J Neurosci,2006,26 (3):775-784.
    14. Zhu X, Raina AK, Perry G, et al. Alzheimer's disease:the two-hit hypothesis. Lancet Neurol,2004,3(4):219-226.
    15. Jordan-Sciutto KL, Dorsey R, Chalovich EM, et al. Expression patterns of retinoblastoma protein in Parkinson disease. J Neuropathol Exp Neurol,2003, 62(1):68-74.
    16. Hoglinger GU, Breunig JJ, Depboylu C, et al. The pRb/E2F cell-cycle pathway mediates cell death in Parkinson's disease. Proc Natl Acad Sci U S A,2007, 104(9):3585-3590.
    17. El-Khodor BF, Oo TF, Kholodilov N, et al. Ectopic expression of cell cycle markers in models of induced programmed cell death in dopamine neurons of the rat substantia nigra pars compacta. Experimental Neurology,2003,179(1):17-27.
    18. Lee SS, Kim YM, Junn E, et al. Cell cycle aberrations by alpha-synuclein over-expression and cyclin B immunoreactivity in Lewy bodies. Neurobiol Aging,2003, 24(5):687-696.
    19. Alvira D, Tajes M, Verdaguer E, et al. Inhibition of cyclin-dependent kinases is neuroprotective in 1-methyl-4-phenylpyridinium-induced apoptosis in neurons. Neuroscience,2007,146(1):350-365.
    20. Rideout HJ, Wang Q, Park DS, et al. Cyclin-dependent kinase activity is required for apoptotic death but not inclusion formation in cortical neurons after proteasomal inhibition. J Neurosci,2003,23(4):1237-1245.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700