用户名: 密码: 验证码:
上呼吸道上皮细胞的原代培养及其与11型人乳头状瘤病毒结合的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:建立原代培养人呼吸道鳞状上皮细胞与假复层纤毛柱状上皮细胞的方法,比较11型人乳头状瘤病毒与两种上皮细胞的结合能力是否存在差异,并对细胞表面硫酸乙酰肝素分子在病毒与细胞表面的结合过程发挥的作用进行初步探讨。
     方法:取成人正常上呼吸道粘膜,利用无血清培养基对鳞状上皮细胞进行原代培养,无血清培养基以及气-液界面培养联合应用进行假复层纤毛柱状上皮细胞的原代培养及诱导分化;所得细胞与11型人乳头状瘤病毒样颗粒进行结合反应,免疫印迹法检测病毒样颗粒与细胞是否发生结合,ELISA检测结合于细胞表面的病毒样颗粒的吸光值,并比较病毒样颗粒与两种上皮细胞的结合能力是否存在统计学差异;用硫酸乙酰肝素的竞争性抑制物肝素及其特异性酶-乙酰肝素酶干预病毒样颗粒与细胞的结合,检测干预前后病毒-细胞结合率的变化,推测硫酸乙酰肝素在病毒-细胞结合过程中所起的作用。
     结果:
     1.利用无血清培养基培养的人呼吸道鳞状上皮细胞,呈扁平、多角形,核居中,可见1-2个核仁,胞浆透明,无颗粒,细胞连接成片后呈典型的鹅卵石路面状,经抗人角蛋白多克隆抗体染色呈阳性,证实为上皮细胞;气-液界面培养的假复层纤毛柱状上皮,以及气-液界面培养所得到的假复层纤毛柱状上皮细胞纤毛分化良好,接近生理状态。
     2.免疫印迹检测显示:11型人乳头状瘤病毒样颗粒与呼吸道鳞状上皮细胞及假复层纤毛柱状上皮细胞结合后,用抗11型人乳头状瘤病毒样颗粒的单克隆抗体可检测到阳性条带,说明病毒样颗粒与两种上皮细胞均可发生结合。ELISA检测结合于细胞表面的病毒样颗粒的吸光值,鳞状上皮细胞组A450为(0.81±0.12,n=6),假复层纤毛柱状上皮细胞A450为(0.76±0.10,n=6),两组数据经组间t-检验,差别无统计学意义。
     3.肝素以及乙酰肝素酶对细胞表面的预处理都可抑制11型人乳头状瘤病毒样颗粒与呼吸道上皮细胞的结合,且该抑制作用在一定范围内与干预物的浓度呈正相关;当干预物超过一定浓度后,病毒颗粒与细胞的结合会稳定在一个较低水平,但不会完全被阻断。
     结论:
     1.无血清培养基以及气-液界面培养法是原代培养呼吸道鳞状上皮细胞与假复层纤毛柱状上皮细胞的有效方法,培养细胞纯度高、分化好、细胞形态与生理状态接近。
     2.11型人乳头状瘤病毒可在体外与呼吸道上皮细胞结合,且与两种上皮细胞的结合能力无差异,因此,11型人乳头状瘤病毒在呼吸道内不同区域感染率的差异不是在病毒-细胞结合阶段产生。
     3.细胞表面的硫酸乙酰肝素分子参与11型人乳头状瘤病毒与呼吸道上皮细胞的结合过程,并发挥十分重要的作用,硫酸乙酰肝素可能是11型人乳头状瘤病毒的细胞表面受体。
Objective. To establish an efficient method for direct isolation and culture of primary human respiratory epithelial cells from normal tissues, and investigate the attachment of human papillomavirus-11 (HPV-11) to respiratory epithelial cells, and discuss the effect of cellular heparan sulfate on virus-cell interaction.
     Methods.1. Human respiratory epithelial cells were isolated by 0.25%trypsin-EDTA, and cultured in a serum-free medium, and induced ciliated in an air-liquid interface system.2. The binding of HPV-11 virus-like particles (VLPs) to respiratory epithelial cells was detected by immunoblot, and quantified by the absorbance of bound particles measured by ELISA. The absorbance of squamous and ciliated cells was quantitively analysed using SPSS software.3. We further investigated the effect of heparin and heparitinase on the binding of HPV-11 virus-like particles (VLPs) to respiratory epithelial cells.
     Results.1. Primary laryngeal epithelial cells adhered to the cell flask after 6-7 days and formed a characteristic epithelioid shape showing a pavement-like arrangement. The epithelial phenotype of cells was also confirmed by expression of cytokeratins 5 and 8 on cell cytospins by immunofluorescence. Respiratory epithelial cells were observed with cilia appearance two weeks after air-liquid interface culture.2. HPV-11VLPs were capable of binding to surface of respiratory epithelial cells. There was no significant difference in the binding of HPV-11 to suamous and ciliated cells.3. The binding of HPV-11 and respiratory cells was reduced by heparin and heparitinase, and was in direct proportion with the concentration.
     Conclusions.1. The application of serum-free medium and air-liquid interface system in primary culture of human respiratory epithelial cells was effectively efficient.2. The disparity of HPV infection in upper airway was not caused by virus-cell attachment.3. The binding of HPV and respiratory epithelial cells required cellular heparan sulfate that possibly was the receptor of HPV.
引文
1. Kashima HK, Kessis T, Mounts P, Shah K. Polymerase chain reaction identification of human papillomavirus DNA in C02 laser plume from recurrent respiratory papillomatosis. Otolaryngol Head Neck Surg 1991; 104:191-5.
    2. Sourvinos G, Rizos E, Spandidos DA. p53 Codon 72 polymorphism is linked to the development and not the progression of benign and malignant laryngeal tumours. Oral Oncol 2001;37(7):572-8.
    3. Garcia-Milian R, Hernandez H, Panade L, et al. Detection and typing of human papillomavirus DNA in benign and malignant tumours of laryngeal epithelium.Acta Otolaryngol 1998;118(5):754-8.
    4. Munger K, Howley PM. Human papillomavirus immortalization and transformation functions. Virus Res 2002;89(2):213-28.
    5. McKaig RG, Baric RS, Olshan AF. Human papillomavirus and head and neck cancer:epidemiology and molecular biology. Head Neck 1998; 20: 250-625.
    6. Kashima H, Mounts P, Leventhal B, et al. Sites of predilection in recurrent respiratory papillomatosis. Ann Otol Rhi2 nol Laryngol 1993;102:580-583.
    7. Haywood AM. Virus receptors:binding, adhesion strengthening, and changes in viral structure. J Virol.1994 Jan; 68(1):1-5.
    8. Patterson NA, Smith JL, Ozbun MA:Human papillomavirus type 31b infection of human keratinocytes does not require heparan sulfate.J Virol 2005,79:6838-6847.
    5. Conway MJ, Meyers C:Replication and assembly of human papillomaviruses.J Dent Res 2009,88:307-317.
    9. Joyce JG, Tung JS, Przysiecki CT, Cook JC, Lehman ED, Sands JA, Jansen KU, Keller PM:The L1 major capsid protein of human papillomavirus type 11 recombinant virus-like particles interacts with heparin and cell-surface glycosaminoglycans on human keratinocytes.J Biol Chem 1999,274:5810-5822.
    10. Combita AL, Touze A, Bousarghin L, Sizaret PY, Munoz N, Coursaget P:Gene transfer using human papillomavirus pseudovirions varies according to virus genotype and requires cell surface heparan sulfate. FEMS Microbiol Lett 2001,204:183-188.
    11. Green H, Kehinde 0, Thomas J. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc Natl Acad Sci U S A.1979; 76(11):5665-8.
    12. Steinberg, B. M., Abramson, A. L., Meade, R. P. Culture of human laryngeal papilloma cells in vitro. Otolaryngol. Head Neck Surg 1982; 90,728-735.
    13. Wu, R., Sun, S., Steinberg, B.,2003. Requirement of STAT-3 activation for differentiation of mucosal stratified squamous epithelium. Mol. Med.9,77-84.
    14.李东军,陈文弦,周惠敏.人喉上皮细胞体外培养和冷冻保存的研究.中华耳鼻咽喉科杂志,1995;30(5):299-301。
    15.柯朝阳,吴展元,肖伯奎.人喉上皮细胞的原代培养.中国耳鼻咽喉头颈外科杂志,2007;7(1);23-25。
    16.柯朝阳,吴展元.人喉上皮细胞的体外培养及生物学特性.广东医学杂志,798-800。
    17. Parekh TV, Gama P, Wen X, et al. Transforming growth factor beta signaling is disabled early in human endometrial carcinogenesis concomitant with loss of growth inhibition. Cancer Res 2002; 62 (10): 2778-90.
    18. Rees LE, Gunasekaran S, Sipaul F, Birchall MA, Bailey M. The isolation and characterisation of primary human laryngeal epithelial cells Mol Immunol 2006; 43(6):725-30.
    19. Coleman DL, Tuet IK, Widdicombe JH. Electrical properties of dog tracheal epithelial cells grown in monolayer culture. Am J Physiol. 1984; 246(3 Pt 1):C355-9.
    20. Chopra DP, Sullivan J, Wille J J, Siddiqui. Propagation of ifferentiating normal human tracheobronchial epithelial cells in serum-free medium. J Cell Physiol 1987; 130:173-181.
    21. Wiesel JM, Camiel H, Vlodavsky I, Gay I, Ben-Bassat H. Cell attachment, growth characteristics and surface morphology of human upper-respiratory tract epithelium cultured on extracellular matrix. Eur J Clin Invest 1983; 13:57-63.
    22. Gray TE, Thomassen DG, Mass MJ, Barrett JC. Quantitation of cell proliferation, colony formation, and carcinogen induced cytotoxity of rat tracheal epithelial cells grown in culture on 3T3 feeder layers. In Vitro 1983; 19:559-570.
    23. Jorissen M, Van der Schueren B, Van den Berghe H, Cassiman JJ. The preservation and regeneration of cilia on human nasal epithelial cells cultured in vitro. Arch Otorhinolaryngol 1989; 246(5):308-14.
    24. Whitcuttm J, Alder KB, WU R. A biphasic chamber system formaintaining polarity of differentiation of cultured respiratory tract epithelial cells. In Vitro CellDev Biol,1988,24:420-428.
    25. Grubb BR, Rogers TD, Diggs PC, Boucher RC, Ostrowski LE. Culture of murine nasal epithelia:model for cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 2006;290(2):L270-7.
    26. Alder KB, Cheng PW, Kimk C. Characterization of guinea pig tracheal ep ithelial cellsmaintained in biphasic organotypic culture: cellular coposition and biochemical analysis of released glycoconjugates. AM J Resp ir CellMol Biol 1990; 2:145-154.
    27. Antunes MB, Woodworth BA, Bhargave G, Xiong G, Aguilar JL, Ratner AJ, Kreindler JL, Rubenstein RC, Cohen NA. Murine nasal septa for respiratory epithelial air-liquid interface cultures. Biotechniques. 2007; 43(2):195-6,198-200, passim.
    28.肖开颜,周广东,刘伟,崔磊,曹谊林.猪气管上皮细胞的分离、培养和鉴定.中华胸心血管外科杂志,2006;22(5):326-28。
    29.王奎吉,张罗,韩德民,王鸿,范尔钟,宋晓红,刘仲燕.呼吸道纤毛上皮细胞的组织块法培养.中国耳鼻咽喉头颈外科杂志,2006;13(12);833-37。
    30.郭永清,赵小冬,杨占泉.气液界面培养的鼻粘膜上皮细胞的纤毛分化.临床耳鼻咽喉科杂志,2004;18(2):88-90。
    31. White SR, Martin LD, Abe MK, Marroquin BA, Stern R, Fu X. Insulin Receptor Substrate-1/2 Mediates IL-4-Induced Migration of Human airway Epithelial Cells. Am J Physiol Lung Cell Mol Physiol.2009; 297(1):L164-73.
    32. Lee JH, Smith RJ. Recurrent respiratory papillomatosis: pathogenesis to treatment. Curr Opin Otolaryngol Head Neck Surg 2005;13 (6):354-9.
    33. Armstrong LR, Preston EJ, Reichert M, et al. Incidence and prevalence of recurrent respiratory papillomatosis among children in Atlanta and Seattle. Clin Infect Dis 2000; 31:107-9.
    34. Gerein V, Rastorguev E, Gerein J, et al. Incidence, age at onset, and potential reasons of malignant transformation in recurrent respiratory papillomatosis patients:20 years experience. Otolaryngol Head Neck Surg 2005; 132:392-4.
    35. Stubenrauch F, Laimins LA. Human papillomavirus life cycle: active and latent phases. Semin Cancer Biol 1999; 9(6):379-86.
    36. Muller M, Gissmann L, Cristiano RJ, Sun XY, Frazer IH, Jenson AB, Alonso A, Zentgraf H, Zhou J. Papillomavirus capsid binding and uptake by cells from different tissues and species. J Virol.1995; 69(2):948-54.
    37. Volpers C, Unckell F, Schirmacher P, Streeck RE, Sapp M. Binding and internalization of human papillomavirus type 33 virus-like particles by eukaryotic cells. J Virol 1995;69 (6):3258-64.
    38. Evander M, Frazer IH, Payne E, Qi YM, Hengst K, McMillan NA. Identification of the a6 integrin as a candidate rReceptor for papillomaviruses. J Virol 1997; 71(3):2449-56.
    39. Yoon CS, Kim KD, Park SN, Cheong SW. Alpha 6 integrin is the main receptor of human papillomavirus type 16 VLP. Biochem Biophys Res Commun 2001; 283(3):668-73.
    40. Roden RB, Kirnbauer R, Jenson AB, Lowy DR, Schiller JT: Interaction of papillomaviruses with the cell surface.J Virol 1994, 68:7260-66.
    41. Shafti-Keramat S, Handisurya A, Kriehuber E, Meneguzzi G, Slupetzky K, Kirnbauer R:Different heparan sulfate proteoglycans serve as cellular receptors for human papillomaviruses.J Virol 2003; 77:13125-13135.
    42.陈韶,周凯,夏克林,陈柏坤,陈向敏,张丽芳.HPV6bVLPs检测尖锐湿疣病人血清和宫颈分泌物抗体的意义,2003;33(2):79-81。
    43. Knappe M, Bodevin S, Selinka HC, Spillmann D, Streeck RE, Chen XS, Lindahl U, Sapp M:Surface-exposed amino acid residues of HPV16 L1 protein mediating interaction with cell surface heparan sulfate. J Biol Chem 2007; 282:27913-22.
    44.姜笃银,付小兵, 盛志勇.硫酸乙酰肝素糖蛋白的结构-功能多样性与相关修饰酶群作用.中国病理生理杂志,2005;21(5):1020-25。
    45.凌焱,汤国营,陈惠鹏.乙酰肝素酶的生物学特性的研究进展.生物技术通讯,2005;16(1):68-70。
    46.赵建勇, 独军政, 高闪电, 丛国正, 林彤, 邵军军, 伏小平, 常惠芸.中国人兽共患病学报,2008;24(9):874-877。
    47. Giroglou T, Florin L, Schafer F, Streeck RE, Sapp M:Human papillomavirus infection requires cell surface heparan sulfate.J Virol 2001,75:1565-70.
    1. Roden RB, Kirnbauer R, Jenson AB, Lowy DR, Schiller JT: Interaction of papillomaviruses with the cell surface.J Virol 1994, 68:7260-7266.
    2. Evander M, Frazer IH, Payne E, Qi YM, Hengst K, McMillan NA: Identification of the alpha6 integrin as a candidate receptor for papillomaviruses.J Virol 1997,71:2449-2456.
    3. Patterson NA, Smith JL, Ozbun MA:Human papillomavirus type 31b infection of human keratinocytes does not require heparan sulfate.J Virol 2005,79:6838-6847.
    4. Conway MJ, Meyers C:Replication and assembly of human apillomaviruses.J Dent Res 2009,88:307-317.
    5. Wang HK, Duffy AA, Broker TR, Chow LT:Robust production and passaging of infectious HPV in squamous epithelium of primary human keratinocytes. Genes Dev 2009,23:181-194.
    6. Chow LT, Duffy AA, Wang HK, Broker TR:A highly efficient system to produce infectious human papillomavirus:Elucidation of natural virus-host interactions. Cell Cycle 2009,8:1319-1323.
    7. Muller M, Gissmann L, Cristiano RJ, Sun XY, Frazer IH, Jenson AB, Alonso A, Zentgraf H, Zhou J:Papillomavirus capsid binding and uptake by cells from different tissues and species.J Virol 1995, 69:948-954.
    8. Volpers C, Unckell F, Schirmacher P, Streeck RE, Sapp M:Binding and internalization of human papillomavirus type 33 virus-like particles by eukaryotic cells.J Virol 1995,69:3258-3264.
    9. Qi YM, Peng SW, Hengst K, Evander M, Park DS, Zhou J, Frazer IH: Epithelial cells display separate receptors for papillomavirus VLPs and for soluble L1 capsid protein. Virology 1996,216:35-45.
    10. McMillan NA, Payne E, Frazer IH, Evander M:Expression of the alpha6 integrin confers papillomavirus binding upon receptor-negative B-cells. Virology 1999,261:271-279.
    11. Yoon CS, Kim KD, Park SN, Cheong SW:alpha(6) Integrin is the main receptor of human papillomavirus type 16 VLP. Biochem Biophys Res Commun 2001,283:668-673.
    12. Giancotti, F. G., M. A. Stepp, S. Suzuki, E. Engvall, and E. Ruoslahti.1992. Proteolytic processing of endogenous and recombinant beta 4 integrin subunit. J. Cell Biol.118:951-959.
    13. Kajiji S, Tamura RN, Quaranta V:A novel integrin (alpha E beta 4) from human epithelial cells suggests a fourth family of integrin adhesion receptors. EMBO J 1989,8:673-680.
    14. Kurpakus MA, Quaranta V, Jones JC:Surface relocation of alpha 6 beta 4 integrins and assembly of hemidesmosomes in an in vitro model of wound healing. J Cell Biol 1991,115:1737-1750.
    15. Bretscher MS:Cells can use their transferrin receptors for locomotion. EMBO J 1992,11:383-389.
    16. Sonnenberg A, Calafat J, Janssen H, Daams H, van der Raaij-Helmer LM, Falcioni R, Kennel SJ, Aplin JD, Baker J, Loizidou M, et al.: Integrin alpha 6/beta 4 complex is located in hemidesmosomes, suggesting a major role in epidermal cell-basement membrane adhesion. J Cell Biol 1991,113:907-917.
    17. Selinka HC, Giroglou T, Nowak T, Christensen ND, Sapp M:Further evidence that papillomavirus capsids exist in two distinct onformations.J Virol 2003,77:12961-12967.
    18. Knappe M, Bodevin S, Selinka HC, Spillmann D, Streeck RE, Chen XS, Lindahl U, Sapp M:Surface-exposed amino acid residues of HPV16 L1 protein mediating interaction with cell surface heparan sulfate.J Biol Chem 2007,282:27913-27922.
    19. Joyce JG, Tung JS, Przysiecki CT, Cook JC, Lehman ED, Sands JA, Jansen KU, Keller PM:The L1 major capsid protein of human papillomavirus type 11 recombinant virus-like particles interacts with heparin and cell-surface glycosaminoglycans on human keratinocytes.J Biol Chem 1999,274:5810-5822.
    20. Giroglou T, Florin L, Schafer F, Streeck RE, Sapp M:Human papillomavirus infection requires cell surface heparan sulfate.J Virol 2001,75:1565-1570.
    21. Combita AL, Touze A, Bousarghin L, Sizaret PY, Munoz N, Coursaget P:Gene transfer using human papillomavirus pseudovirions varies according to virus genotype and requires cell surface heparan sulfate. FEMS Microbiol Lett 2001,204:183-188.
    22. Selinka HC, Giroglou T, Sapp M:Analysis of the infectious entry pathway of human papillomavirus type 33 pseudovirions. Virology 2002, 299:279-287.
    23. Shafti-Keramat S, Handisurya A, Kriehuber E, Meneguzzi G, Slupetzky K, Kirnbauer R:Different heparan sulfate proteoglycans serve as cellular receptors for human papillomaviruses. J Virol 2003, 77:13125-13135.
    24. Rommel O, Dillner J, Fligge C, Bergsdorf C, Wang X, Selinka HC, Sapp M:Heparan sulfate proteoglycans interact exclusively with conformationally intact HPV L1 assemblies:basis for a virus-like particle ELISA. J Med Virol 2005,75:114-121.
    25. Chen XS, Garcea RL, Goldberg I, Casini G, Harrison SC:Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16. Mol Cell 2000,5:557-567.
    26. Modis Y, Trus BL, Harrison SC:Atomic model of the papillomavirus capsid. EMBO J 2002,21:4754-4762.
    27. Day PM, Thompson CD, Buck CB, Pang YY, Lowy DR, Schiller JT: Neutralization of human papillomavirus with monoclonal antibodies reveals different mechanisms of inhibition.J Virol 2007,81:8784-8792.
    28. Carter JJ, Wipf GC, Benki SF, Christensen ND, Galloway DA: Identification of a human papillomavirus type 16-specific epitope on the C-terminal arm of the major capsid protein L1.J Virol 2003, 77:11625-11632.
    29. Sibbet G, Romero-Graillet C, Meneguzzi G, Campo MS:alpha6 integrin is not the obligatory cell receptor for bovine papillomavirus type 4. J Gen Virol 2000,81:327-334.
    30. Johnson KM, Kines RC, Roberts JN, Lowy DR, Schiller JT, Day PM: Role of heparan sulfate in attachment to and infection of the murine female genital tract by human papillomavirus.J Virol 2009,83:2067-2074.
    31. Mudhakir D, Harashima H:Learning from the viral journey:how to enter cells and how to overcome intracellular barriers to reach the nucleus. AAPS J 2009,11:65-77.
    32. Sieczkarski SB, Whittaker GR:Dissecting virus entry via endocytosis. J Gen Virol 2002,83:1535-1545.
    33. Day PM, Lowy DR, Schiller JT:Papillomaviruses infect cells via a clathrin-dependent pathway. Virology 2003,307:1-11.
    34. Bousarghin L, Touze A, Sizaret PY, Coursaget P:Human papillomavirus types 16,31, and 58 use different endocytosis pathways to enter cells.J Virol 2003,77:3846-3850.
    35. Hindmarsh PL, Laimins LA:Mechanisms regulating expression of the HPV 31 L1 and L2 capsid proteins and pseudovirion entry. Virol J 2007, 4:19.
    36. Smith JL, Campos SK, Ozbun MA:Human papillomavirus type 31 uses a caveolin 1- and dynamin 2-mediated entry pathway for infection of human keratinocytes. J Virol 2007,81:9922-9931.36. Laniosz V, Holthusen KA, Meneses PI:Bovine papillomavirus type 1:from clathrin to caveolin.J Virol 2008,82:6288-6298.
    37. Smith JL, Campos SK, Wandinger-Ness A, Ozbun MA:Caveolin-1-dependent infectious entry of human papillomavirus type 31 in human keratinocytes proceeds to the endosomal pathway for pH-dependent uncoating.J Virol 2008,82:9505-9512.
    38. Laniosz V, Holthusen KA, Meneses PI:Bovine papillomavirus type 1: from clathrin to caveolin. J Virol 2008,82:6288-6298.
    39. Abban CY, Bradbury NA, Meneses PI:HPV16 and BPV1 infection can be blocked by the dynamin inhibitor dynasore. Am J Ther 2008,15:304-311.
    40. Spoden G, Freitag K, Husmann M, Boller K, Sapp M, Lambert C, Florin L:Clathrin-and caveolin-independent entry of human papillomavirus type 16--involvement of tetraspanin-enriched microdomains (TEMs). PLoS One 2008,3:e3313.
    41. Hemler ME:Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Dev Biol 2003,19:397-422.
    42. Levy S, Shoham T:Protein-protein interactions in the tetraspanin web. Physiology (Bethesda) 2005,20:218-224.
    43. Day PM, Lowy DR, Schiller JT:Heparan sulfate-independent cell binding and infection with furin-precleaved papillomavirus capsids.J Virol 2008,82:12565-12568.
    44. Richards RM, Lowy DR, Schiller JT, Day PM:Cleavage of the papillomavirus minor capsid protein, L2, at a furin consensus site is necessary for infection. Proc Natl Acad Sci USA 2006,103:1522-1527.
    45. Kamper N, Day PM, Nowak T, Selinka HC, Florin L, Bolscher J, Hilbig L, Schiller JT, Sapp M:A membrane-destabilizing peptide in capsid protein L2 is required for egress of papillomavirus genomes from endosomes.J Virol 2006,80:759-768.
    1. Sourvinos G, Rizos E, Spandidos DA. p53 Codon 72 polymorphism is linked to the development and not the progression of benign and malignant laryngeal tumours. Oral Oncol.2001 Oct;37(7):572-8.
    2. Garcia-Milian R, Hernandez H, Panade L, et al. Detection and typing of human papillomavirus DNA in benign and malignant tumours of laryngeal epithelium. Acta Otolaryngol.1998 Sep;118(5):754-8.
    3. Wang WM, Chung MH, Huang SM. Regulation of nuclear receptor activities by two human papillomavirus type 18 oncoproteins, E6 and E7. Biochem Biophys Res Commun.2003 Apr 11;303 (3):932-9.
    4.仓尧卿,朱若英.人乳头瘤病毒及其疫苗的研究[J].微生物学免疫学进展,2000,28(4):69-73.
    5. Munger K, Howley PM. Human papillomavirus immortalization and transformation functions.Virus Res.2002 Nov;89(2):213-28.
    6.Huibregtse JM, Beaudenon SL. Mechanism of HPV E6 proteins in cellular transformation. Semin Cancer Biol.1996 Dec;7(6):317-26.
    7. Tong X, Salgia R, Li JL, et al. The bovine papillomavirus E6 protein binds to the LD motif repeats of paxillin and blocks its interaction with vinculin and the focal adhesion kinase. J Biol Chem.1997 Dec 26;272 (52):33373-6.
    8. Ronco LV, Karpova AY, Vidal M, et al. Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity. Genes Dev.1998 Jul 1;12(13):2061-72.
    9. Kiyono T, Hiraiwa A, Fujita M, et al. Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein.Proc Natl Acad Sci U S A.1997 Oct 14;94(21):11612-6.
    10. Crawford L, Tommasino M. Oncogenes and antioncogenes in the development of HPV associated tumors. Clin Dermatol.1997 Mar-Apr; 15(2):207-15.
    11.Ludlow JW, Skuse GR. Tumour suppressor genes in disease and therapy. Lancet.1995 Apr 8;345(8954):902-6.
    12.Stoppler MC,Straight SW, Tsao G, et al. The E5 gene of HPV-16 enhances keratinocyte immortalization by full-length DNA. Virology. 1996 Sep 1;223(1):251-4.
    13. Tomakidi P, Cheng H, Kohl A, et al. Modulation of the epidermal growth factor receptor by the human papillomavirus type 16 E5 protein in raft cultures of human keratinocytes. Eur J Cell Biol.2000 Jun;79(6):407-12
    14. Ashby AD, Meagher L, Gagnon E, et al. E5 transforming proteins of papillomaviruses do not disturb the activity of the vacuolar H(+)-ATPase. J Gen Virol.2001 Oct;82(Pt 10):2353-62.
    15. Cohen BD, Lowy DR, Schiller JT. The conserved C-terminal domain of the bovine papillomavirus E5 oncoprotein can associate with an alpha-adaptin-like molecule:a possible link between growth factor receptors and viral transformation. Mol Cell Biol.1993 Oct;13(10):6462-8.
    16. Ashrafi GH, Tsirmonaki E, Marchetti B, et al. Down-regulation of MHC class Ⅰ by bovine papillomavirus E5 oncoproteins. Oncogene.2002 Jan 10; 21 (2):248-59.
    17.Marchetti B, Ashrafi GH, Tsirmonaki E, et al. The bovine papillomavirus oncoprotein E5 retains MHC class Ⅰ molecules in the Golgi apparatus and prevents their transport to the cell surface. Oncogene.2002 Nov 7;21 (51):7808-16.
    18. Marchetti B, Ashrafi GH, Doman ES, et al. The E5 protein of BPV-4 interacts with the heavy chain of MHC class Ⅰ and irreversibly retains the MHC complex in the Golgi apparatus. Oncogene.2006 Apr 6; 25 (15):2254-63.
    19. Ashrafi Gh, Hagnshenas M, Marchetti B, et al. E5 protein of human papillomavirus type 16 selectively downregulates surface HLA class Ⅰ.Int J Cancer.2005 Jan 10; 113 (2):276-83.
    20. Schapiro F, Sparkowski J, Adduci A, et al. Golgi alkalinization by the papillomavirus E5 oncoprotein. J Cell Biol.2000 Jan 24; 148 (2):305-15.
    21. Ashrafi Gh, Hagnshenas M, Marchetti B, et al. E5 protein of human papillomavirus 16 downregulates HLA class Ⅰ and interacts with the heavy chain via its first hydrophobic domain. Int J Cancer.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700