用户名: 密码: 验证码:
RACK1对肝癌化疗耐药的调控及其相互作用蛋白CLEC-2的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分RACK1对肝癌细胞化疗耐药的调控及其机制研究
     肝癌是目前全世界范围内最常见的并且具有高度致死性的肿瘤之一,在恶性肿瘤导致的死亡中居第三位。虽然常规的普查和监护可以使得肝癌在早期可以得到诊断和治疗,但由于肝癌细胞具有高度增殖的特性,绝大多数肝癌患者都是在进展期甚至在晚期发现;而此时,多数肿瘤已不能被切除而患者必须接受姑息治疗。化疗作为一种常用的姑息疗法,对于肝癌患者缺乏很好的效果。因为肝癌普遍对常用的化疗药物具有内在的抵抗性,全身性或者局部动脉内给药并不能达到抑制肿瘤生长和延长患者生存的效果。目前,肝癌细胞内在化疗耐药的机制尚不清楚。
     我们研究发现,构架蛋白RACK1 (receptor for activated C-kinase 1)在正常肝脏中高度表达,并且在肝癌患者中普遍表达增高。RACK1的表达增高可以促进肝癌细胞株对阿霉素的化疗抵抗,而且这一过程是依赖于其核糖体定位的,因为非核糖体定位的RACK1的突变体甚至可以促进阿霉素诱导的肝癌细胞株的凋亡。进一步研究表明,核糖体定位的RACK1可以促进肝癌细胞总体蛋白翻译水平的增加,其机制可能是通过作用于真核细胞翻译起始因子eIF4E来实现的。核糖体定位的RACK1可以与eIF4E相互作用,并且通过招募PKCβⅡ来促进eIF4E的209位丝氨酸的磷酸化并增强eIF4E的活性。随着eIF4E活性的增强,可以选择性的促进很多与细胞增殖和生存相关蛋白的翻译,包括cyclin D1、c-myc、surviving和Bcl-2。在肝癌患者的标本中,我们也发现RACK1的表达水平与cyclin D1、c-myc、surviving和Bcl-2的表达呈正相关。使用翻译的抑制剂CHX,或者抑制eIF4E的表达或者其活性,则可以抑制野生型RACK1介导的化疗抵抗。同时我们还发现,在化疗药物处理的情况下,过表达野生型RACK1可以介导应激颗粒的形成,而过表达其非核糖体定位的突变体则没有影响。抑制RACK1的表达或者过表达非核糖体定位的突变体可以抑制G3BP介导的应激颗粒的形成,提示RACK1及其核糖体定位与应激颗粒的形成密切相关。另外,RACK1的表达增高可以促进肝癌细胞中AKT和ERK的活化,并引起肝癌细胞的增殖。综上所述,我们第一次对RACK1在肝癌中的功能作了系统的研究,并为解释肝癌细胞内在的化疗抵抗的特性奠定了一定的基础。
     第二部分RACK1对C型凝集素样受体CLEC-2表达调控的研究
     CLEC-2是通过使用含有免疫学功能的C型凝集素结构域筛选基因组数据库时被鉴定的。人的CLEC-2 (hCLEC-2)是一个Ⅱ型跨膜的C型凝集素样受体,并且可以被N-糖基化修饰。其中胞外段含有单个的C型凝集素样结构域和一个颈部区,胞浆尾部含有非经典的免疫受体酪氨酸活化基序(D-x-Y-x-x-L)。最近研究表明,CLEC-2能够识别外源性配体蛇毒Rhodocytin和内源性配体Podoplanin,导致D-x-Y-x-x-L基序中的酪氨酸磷酸化,招募Syk酪氨酸激酶并激活血小板。另外,它还能够协同DC-SIGN促进血小板捕获HIV-1。鼠的CLEC-2 (mCLEC-2)与hCLEC-2具有高度的同源性,我们研究发现mCLEC-2有两个剪切异构体,同时mCLEC-2的全长形式可以形成同源二聚体并且其胞外段可以被剪切成可溶性形式。mCLEC-2在中性粒细胞表面也有表达,并且发挥着介导内化和活化中性粒细胞的功能。虽然目前对CLEC-2的功能已有一定的阐明,但是除Syk外与CLEC-2胞浆段相互作用的分子并没有报道。
     我们以hCLEC-2的胞浆段作为诱饵,利用Ga14酵母双杂交系统筛选人的白血病cDNA文库。经过三轮营养缺陷筛选,我们鉴定了构架蛋白RACK1作为与hCLEC-2的一个相互作用蛋白。通过体外结合实验我们证实了RACK1与hCLEC-2胞浆段之间直接的相互作用,体内实验中也通过免疫共沉淀证实了RACK1与hCLEC-2的相互作用,免疫荧光共聚焦分析也揭示了它们在细胞浆中存在共定位。进一步实验表明,RACK1可以通过降低hCLEC-2的蛋白稳定性来抑制hCLEC-2的表达,包括其未糖基化和糖基化两种修饰形式。体内泛素化实验表明,RACK1可以通过增强hCLEC-2的泛素化来促进其通过蛋白酶体途径降解;使用蛋白酶体抑制剂MG132和lactacystin可以逆转RACK1对hCLEC-2的表达抑制,而使用溶酶体抑制剂chloroquine则没有影响。虽然RACK1可以抑制细胞内总的糖基化CLEC-2的表达水平,但是却不影响细胞表面CLEC-2的表达及其所介导的细胞内总酪氨酸的磷酸化。这也提示了RACK1可能参与了糖蛋白CLEC-2的内质网折叠和蛋白质质量控制的过程,也为研究内源性CLEC-2的蛋白水平的调控奠定了基础。
     第三部分CLEC-2识别CD74在B-CLL白血病细胞中的功能研究
     人的CLEC-2 (hCLEC-2)是一种Ⅱ型跨膜的C型凝集素样受体,在肝脏、血小板、自然杀伤细胞和抗原提呈细胞中都有表达。然而,目前仅在血小板和巨核细胞表面检测到其分布。人血小板表面的CLEC-2有32kD和40kD两种修饰形式,其中32kD占主要形式。最近研究表明,CLEC-2能够识别外源性配体蛇毒Rhodocytin和内源性配体Podoplanin,导致D-x-Y-x-x-L基序中的酪氨酸磷酸化,招募Syk酪氨酸激酶从而激活血小板。另外,它还能够协同DC-SIGN促进血小板捕获HIV-1。
     为了进一步研究CLEC-2的生物学功能,我们以hCLEC-2的胞外段作为诱饵,利用Gal4酵母双杂交系统筛选人的白血病cDNA文库。经过三轮营养缺陷筛选,我们鉴定了CD74作为与hCLEC-2的一个相互作用蛋白。CD74又称为MHCⅡ类分子恒定链,在抗原提呈过程中发挥着重要功能。近些年研究表达,部分CD74分子可以定位到细胞表面,作为一个受体分子发挥信号传导功能。尤其是CD74在B淋巴细胞白血病(B-CLL)细胞表面高表达,可以促进白血病细胞的增殖。我们表达并纯化了CD74的胞外段与IgG1的Fc段的融合蛋白(Fc-CD74),体外结合实验证实Fc-CD74重组蛋白能够选择性地与40kD修饰形式的hCLEC-2相互作用,而不能与32kD修饰形式的hCLEC-2结合。通过生物素标记实验证实了32kD和40kD两种修饰的CLEC-2在细胞表面的分布,荧光共聚焦分析也揭示了Fc-CD74融合蛋白与hCLEC-2在细胞表面存在共定位。我们在CHO细胞中转染了hCLEC-2的真核表达载体,并且将其与人B细胞淋巴瘤细胞株Raji共孵育。结果显示,过表达hCLEC-2可以促进CHO细胞与Raji细胞的粘附,同时也可以促进Raji细胞中ERK信号的活化;使用CD74的拮抗性抗体LN2则可以抑制CHO/hCLEC-2所介导的Raji细胞中ERK磷酸化的增强。细胞周期和CFSE标记实验表明,CHO/hCLEC-2细胞也以CD74依赖的方式促进Raji细胞进入S期和增殖。同样,人巨核细胞株Dami也可以促进Raji细胞的增殖,而这一过程可以被hCLEC-2或者CD74单克隆抗体抑制。这些数据揭示了40kD修饰的hCLEC-2可以识别CD74并促进其下游信号传导,并且提示了血小板可能通过hCLEC-2与CD74之间相互作用来促进B-CLL细胞的增殖,从而为B-CLL病人的治疗提供新的依据和潜在的靶点。
PartⅠStudy on the role of RACK1 in the innate chemotherapy resistance of hepatocellular carcinoma
     Hepatocellular carcinoma (HCC) is among the most common and lethal cancers in the human population, ranked the third most common cause of cancer-related death worldwide. Though routine surveillance can lead to early diagnosis and treatment when the tumor might be resectable, most HCC patients are diagnosed at advanced or late stages and could only receive palliative treatments, possibly due to the rapid progression of HCC. However, chemotherapy, serving as a common choice of palliative therapy, showed little benefit in the treatment of HCC patients. HCC generally displays inherent high resistance to chemotherapeutic drugs, and systemic or selective intra-arterial administration of any chemotherapy agent, which has marginal anti-tumor activity and shows no benefit for survival, is not recommended in clinical practice. At present, the underlying mechanism of the inherent high chemotherapy resistance of HCC remains unclear.
     In our study, we demonstrate that RACK1, the receptor for activated C-kinase 1, is highly expressed in normal liver and frequently up-regulated in HCC. Aberrant expression of RACK1 contributes to the chemotherapy resistance of HCC relying on its ribosome localization in vitro and in vivo, and the non-ribosome-binding mutant of RACK1 even sensitizes HCC cells to chemotherapy-induced apoptosis. Further study reveals that ribosome-associated RACK1 promotes the global protein synthesis, probably by acting on the eukaryotic initiation factor 4E (eIF4E). Ribosomal RACK1 directly associates with eIF4E in vitro and in vivo, and modulates the activity of eIF4E by recruiting PKCβⅡand promoting the phosphorylation of eIF4E on Ser 209. With the elevation of eIF4E activity, ribosomal RACK1 preferentially enhances translation of select mRNAs, many of which encode potent growth and survival factors, such as cyclin D1, c-myc, surviving and Bcl-2. This effect is also observed in vivo that the protein level of RACK1 positively correlates with the expression of cyclin D1, c-myc, surviving and Bcl-2. Translation suppression by CHX, or inhibiting the expression or activity of eIF4E, abolishes the anti-apoptotic effect of RACK1. We also observe that wild-type RACK1, but not its non-ribosome-binding mutant, promotes the formation of stress granules (SGs) upon the chemotherapeutic stress. Depletion of RACK1, or overexpression of the non-ribosome-binding mutant, even suppress the G3BP-induced SGs formation, suggesting that RACK1 and its ribosome localization are required for the assembly of SGs. Moreover, overexpression of RACK1 promotes the activation of AKT and ERK, and induces the proliferation of HCC cells. Our research first gain insight into the role of RACK1 in HCC, and provide clues to understanding the underlying mechanism of inherent chemotherapy resistance in HCC.
     PartⅡStudy on the role of RACK1 in the regulation of CLEC-2 expression
     CLEC-2 was first identified as one member of non-classical C-type lectins by sequence similarity to C-type lectin-like molecules with immune functions. Human CLEC-2 is a typeⅡtransmembrane receptor with N-glycosylation, displaying a single extracellular C-type lectin-like domain (CTLD) connected to transmembrane region by a stalk and a non-classic immunoreceptor tyrosine-based activation motif (D-x-Y-x-x-L motif, ITAM) in its cytoplasmic tail. Recently, CLEC-2 has been demonstrated as a novel activating receptor that is likely to underlie platelet activation by the snake toxin Rhodocytin and endogenous ligand Podoplanin through the phosphorylation of ITAM and recruitment of Syk to initiate downstream signaling pathway. Additionally, CLEC-2 also co-operates with DC-SIGN to facilitate the capture of HIV-1 by platelets. Mouse CLEC-2 (mCLEC-2) shares high homology with human counterpart. We have reported two new alternatively spliced transcripts of mCLEC-2, the homologous dimerization of full-length mCLEC-2 and its cleavage into a soluble form. MCLEC-2 is also expressed on the surface of murine peripheral blood neutrophils, mediating internalization as well as the activation of neutrophils. So far, there is no report about the interacting partners with the cytoplasmic region of CLEC-2 except for Syk.
     In this study, by using the cytoplasmic region of human CLEC-2 (hCLEC-2) as bait, we perform a yeast two-hybrid screening in human leukemia cDNA library and identify the scaffold protein RACK1 as a potential interacting partner with hCLEC-2 in yeast. The direct interaction between RACK1 and hCLEC-2 is further identified by GST pull-down assay in vitro and co-immunoprecipation in vivo. Confocal analysis also reveals that RACK1 and hCLEC-2 co-localize in the cytoplasm of cells. Further research demonstrate that RACK1 decreases the stability of hCLEC-2 and inhibits the expression of both the unglycosylated and glycosylated forms of hCLEC-2. In vivo ubiquitination assay indicates that RACK1 promotes the proteosome-mediated degradation of hCLEC-2 by enhancing its ubiquitination. Proteosome inhibitors MG132 and lactacystin attenuate the degradation of CLEC-2 mediated by RACK1, while the treatment of choloquine, a lysosome inhibitor, shows little effect. Though RACK1 decreases the expression of glycosylated CLEC-2 in whole cell lysates, it does not impair the surface expression and signaling of CLEC-2. Taken together, these results suggest that RACK1 might be involved in the folding and protein quality control of CLEC-2, and provide clues to the understanding of the regulation of endogenous CLEC-2 expression.
     Part III Study on the recognition of CD74 by CLEC-2 and its functional effect on B-CLL leukemia cells
     CLEC-2 is a type II transmembrane C-type lectin-like receptor, mainly distributed in liver, platelet, megakaryocyte, natural killer cells (NK cells) and antigen presentation cells (APC cells). However, surface expression CLEC-2 is only readily detected on platelet and megakaryocyte. In human platelet, CLEC-2 is detected as a doublet by western blot, with a major band migrating at 32kD and a minor band at 40kD. Recent studies demonstrate that CLEC-2 recognizes snake venom Rhodocytin as an exogenous ligand and Podoplanin as the endogenous ligand. In addition, CLEC-2 also co-operates with DC-SIGN to facilitate the capture of HIV-1 by platelets.
     In this study, to explore the potential endogenous ligand of CLEC-2 and gain insight into its biological function, we perform a yeast two-hybrid screening in human leukemia cDNA library by using the extracellular region of human CLEC-2 (hCLEC-2) as bait. We identify CD74 as a potential ligand for CLEC-2 in yeast. CD74, which is originally known as the MHC class II invariant chain, plays a critical role in the process of antigen presentation. Recent studies reveal that CD74 is also expressed on cell surface and functions as receptor to initiate downstream signaling. Importantly, CD74 is highly expressed on the surface of and mediated the proliferation of B chronic lymphocyte leukemia (B-CLL) cells. By expressing and purifying the recombinant protein of the extracellular part of CD74 fused to the Fc region of IgG1 (Fc-CD74), we identify in vitro that CD74 selectively binds to the 40kD form of hCLEC-2, but not its 32kD form. Confocal analysis also reveales that Fc-CD74 fusion protein co-localizes well with CLEC-2 on cell surface. We also transfect the hCLEC-2 construct into CHO cells (CHO/hCLEC-2), and co-culture them with Raji (B lymphoma cell line) cells. Results indicate that overexpression of CLEC-2 in CHO cells promotes the Raji adhesion, and enhances the activation of ERK in Raji cells. Blocking CD74 by using its antagonist antibody LN2 attenuates the ERK activation induced by CHO/hCLEC-2 cells. Cell cycle analysis and CFSE labeling assay demonstrate that co-culture with CHO/hCLEC-2 facilitates the S phase progression and proliferation of Raji cells in CD74-dependent manner. A megakaryocytic leukemia cell line, Dami, also promotes the proliferation of Raji cells through direct contact, while this effect could be blocked by using the CLEC-2 or CD74 monoclonal antibody. These results indicate that the 40kD form of CLEC-2 recognizes CD74 and promotes the initiation of its downstream signaling, and suggest that platelet may be involved in the progression and development of B-CLL by CLEC-2-CD74 interaction, thus providing CLEC-2 as a potential target for the treatment of B-CLL patients.
引文
1. Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet 2003;362:1907-1917.
    2. Parkin DM. Global cancer statistics in the year 2000. Lancet Oncol 2001;2:533-543.
    3. Bruix J, Boix L, Sala M, Llovet JM. Focus on hepatocellular carcinoma. Cancer Cell 2004;5:215-219.
    4. Parkin DM, Bray F, Ferlay J, Pisani P. Estimating the world cancer burden: Globocan 2000. Int J Cancer 2001;94:153-156.
    5. El-Serag HB, Rudolph KL. Hepatocellular carcinoma:epidemiology and molecular carcinogenesis. Gastroenterology 2007; 132:2557-2576.
    6. Bruix J, Sherman M. Management of hepatocellular carcinoma. Hepatology 2005;42:1208-1236.
    7. Llovet JM, Real MI, Montana X, Planas R, Coll S, Aponte J, Ayuso C, et al. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma:a randomised controlled trial. Lancet 2002;359:1734-1739.
    8. Okada S. Chemotherapy in hepatocellular carcinoma. Hepatogastroenterology 1998;45 Suppl 3:1259-1263.
    9. Kawai S, Tani M, Okamura J, Ogawa M, Ohashi Y, Monden M, Hayashi S, et al. Prospective and randomized trial of lipiodol-transcatheter arterial chemoembolization for treatment of hepatocellular carcinoma:a comparison of epirubicin and doxorubicin (second cooperative study). The Cooperative Study Group for Liver Cancer Treatment of Japan. Semin Oncol 1997;24:S6-38-S36-45.
    10. Liu L, Cao Y, Chen C, Zhang X, McNabola A, Wilkie D, Wilhelm S, et al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res 2006;66:11851-11858.
    11. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008;359:378-390.
    12. Lu SC. Where are we in the chemoprevention of hepatocellular carcinoma? Hepatology 2010;51:734-736.
    13. Bruix J, Llovet JM. Major achievements in hepatocellular carcinoma. Lancet 2009;373:614-616.
    14. Ron D, Chen CH, Caldwell J, Jamieson L, Orr E, Mochly-Rosen D. Cloning of an intracellular receptor for protein kinase C:a homolog of the beta subunit of G proteins. Proc Natl Acad Sci U S A 1994;91:839-843.
    15. McCahill A, Warwicker J, Bolger GB, Houslay MD, Yarwood SJ. The RACK1 scaffold protein:a dynamic cog in cell response mechanisms. Mol Pharmacol 2002;62:1261-1273.
    16. Link AJ, Eng J, Schieltz DM, Carmack E, Mize GJ, Morris DR, Garvik BM, et al. Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 1999;17:676-682.
    17. Sengupta J, Nilsson J, Gursky R, Spahn CM, Nissen P, Frank J. Identification of the versatile scaffold protein RACK1 on the eukaryotic ribosome by cryo-EM. Nat Struct Mol Biol 2004; 11:957-962.
    18. Baum S, Bittins M, Frey S, Seedorf M. Asc1p, a WD40-domain containing adaptor protein, is required for the interaction of the RNA-binding protein Scp160p with polysomes. Biochem J 2004;380:823-830.
    19. Ceci M, Gaviraghi C, Gorrini C, Sala LA, Offenhauser N, Marchisio PC, Biffo S. Release of eIF6 (p27BBP) from the 60S subunit allows 80S ribosome assembly. Nature 2003;426:579-584.
    20. Berns H, Humar R, Hengerer B, Kiefer FN, Battegay EJ. RACK1 is up-regulated in angiogenesis and human carcinomas. FASEB J 2000; 14:2549-2558.
    21. Wang Z, Zhang B, Jiang L, Zeng X, Chen Y, Feng X, Guo Y, et al. RACK1, an excellent predictor for poor clinical outcome in oral squamous carcinoma, similar to Ki67. Eur J Cancer 2009;45:490-496.
    22. Cao XX, Xu JD, Liu XL, Xu JW, Wang WJ, Li QQ, Chen Q, et al. RACK1:A superior independent predictor for poor clinical outcome in breast cancer. Int J Cancer 2009.
    23. Nagashio R, Sato Y, Matsumoto T, Kageyama T, Satoh Y, Shinichiro R, Masuda N, et al. Expression of RACK1 is a novel biomarker in pulmonary adenocarcinomas. Lung Cancer 2009.
    24. Cao XX, Xu JD, Xu JW, Liu XL, Cheng YY, Wang WJ, Li QQ, et al. RACK1 promotes breast carcinoma proliferation and invasion/metastasis in vitro and in vivo. Breast Cancer Res Treat 2009.
    25. Zhang W, Cheng GZ, Gong J, Hermanto U, Zong CS, Chan J, Cheng JQ, et al. RACK1 and CIS mediate the degradation of BimEL in cancer cells. J Biol Chem 2008;283:16416-16426.
    26. Lopez-Bergami P, Habelhah H, Bhoumik A, Zhang W, Wang LH, Ronai Z. RACK1 mediates activation of JNK by protein kinase C [corrected]. Mol Cell 2005;19:309-320.
    27. Anderson P, Kedersha N. Stress granules. Curr Biol 2009; 19:R397-398.
    28. Arimoto K, Fukuda H, Imajoh-Ohmi S, Saito H, Takekawa M. Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways. Nat Cell Biol 2008; 10:1324-1332.
    29. Kiely PA, Baillie GS, Lynch MJ, Houslay MD, O'Connor R. Tyrosine 302 in RACK1 is essential for insulin-like growth factor-I-mediated competitive binding of PP2A and betal integrin and for tumor cell proliferation and migration. J Biol Chem 2008;283:22952-22961.
    30. Kiely PA, Baillie GS, Barrett R, Buckley DA, Adams DR, Houslay MD, O'Connor R. Phosphorylation of RACK1 on tyrosine 52 by c-Abl is required for insulin-like growth factor I-mediated regulation of focal adhesion kinase. J Biol Chem 2009;284:20263-20274.
    31. Mamidipudi V, Zhang J, Lee KC, Cartwright CA. RACK1 regulates G1/S progression by suppressing Src kinase activity. Mol Cell Biol 2004;24:6788-6798.
    32. Kapp LD, Lorsch JR. The molecular mechanics of eukaryotic translation. Annu Rev Biochem 2004;73:657-704.
    33. Gebauer F, Hentze MW. Molecular mechanisms of translational control. Nat Rev Mol Cell Biol 2004;5:827-835.
    34. Holcik M, Sonenberg N. Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 2005;6:318-327.
    35. De Benedetti A, Graff JR. eIF-4E expression and its role in malignancies and metastases. Oncogene 2004;23:3189-3199.
    36. Mamane Y, Petroulakis E, Martineau Y, Sato TA, Larsson O, Rajasekhar VK, Sonenberg N. Epigenetic activation of a subset of mRNAs by eIF4E explains its effects on cell proliferation. PLoS One 2007;2:e242.
    37. Graff JR, Konicek BW, Vincent TM, Lynch RL, Monteith D, Weir SN, Schwier P, et al. Therapeutic suppression of translation initiation factor eIF4E expression reduces tumor growth without toxicity. J Clin Invest 2007;117:2638-2648.
    38. Meric F, Hunt KK. Translation initiation in cancer:a novel target for therapy. Mol Cancer Ther 2002; 1:971-979.
    39. Tam KH, Yang ZF, Lau CK, Lam CT, Pang RW, Poon RT. Inhibition of mTOR enhances chemosensitivity in hepatocellular carcinoma. Cancer Lett 2009;273:201-209.
    40. Mondesire WH, Jian W, Zhang H, Ensor J, Hung MC, Mills GB, Meric-Bernstam F. Targeting mammalian target of rapamycin synergistically enhances chemotherapy-induced cytotoxicity in breast cancer cells. Clin Cancer Res 2004; 10:7031-7042.
    41. Bordeleau ME, Robert F, Gerard B, Lindqvist L, Chen SM, Wendel HG, Brem B, et al. Therapeutic suppression of translation initiation modulates chemosensitivity in a mouse lymphoma model. J Clin Invest 2008; 118:2651-2660.
    42. Cencic R, Carrier M, Trnkus A, Porco JA, Jr., Minden M, Pelletier J. Synergistic effect of inhibiting translation initiation in combination with cytotoxic agents in acute myelogenous leukemia cells. Leuk Res 2010;34:535-541.
    43. Kiely PA, Sant A, O'Connor R. RACK1 is an insulin-like growth factor 1 (IGF-1) receptor-interacting protein that can regulate IGF-1-mediated Akt activation and protection from cell death. J Biol Chem 2002;277:22581-22589.
    44. Vomastek T, Iwanicki MP, Schaeffer HJ, Tarcsafalvi A, Parsons JT, Weber MJ. RACK1 targets the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway to link integrin engagement with focal adhesion disassembly and cell motility. Mol Cell Biol 2007;27:8296-8305.
    45. Wei Y, Liu D, Zhou F, Ge Y, Xu J, Yun X, Gu J, et al. Identification of beta-1,4-galactosyltransferase I as a target gene of HBx-induced cell cycle progression of hepatoma cell. J Hepatol 2008;49:1029-1037.
    46. Jiejie X, Xiaojing Y, Jianhai J, Yuanyan W, Yihong W, Wei Z, Yeheng L, et al. Hepatitis B virus X protein blunts senescence-like growth arrest of human hepatocellular carcinoma via reducing Notch1 cleavage. Hepatology 2010.
    47. Ruggero D, Pandolfi PP. Does the ribosome translate cancer? Nat Rev Cancer 2003;3:179-192.
    48. Silvera D, Formenti SC, Schneider RJ. Translational control in cancer. Nat Rev Cancer 2010; 10:254-266.
    49. Sonenberg N, Pause A. Signal transduction. Protein synthesis and oncogenesis meet again. Science 2006;314:428-429.
    50. Shuda M, Kondoh N, Tanaka K, Ryo A, Wakatsuki T, Hada A, Goseki N, et al. Enhanced expression of translation factor mRNAs in hepatocellular carcinoma. Anticancer Res 2000;20:2489-2494.
    51. Eberle J, Krasagakis K, Orfanos CE. Translation initiation factor eIF-4Al mRNA is consistently overexpressed in human melanoma cells in vitro. Int J Cancer 1997;71:396-401.
    52. Nilsson J, Sengupta J, Frank J, Nissen P. Regulation of eukaryotic translation by the RACK1 protein:a platform for signalling molecules on the ribosome. EMBO Rep 2004;5:1137-1141.
    53. Wendel HG, Silva RL, Malina A, Mills JR, Zhu H, Ueda T, Watanabe-Fukunaga R, et al. Dissecting eIF4E action in tumorigenesis. Genes Dev 2007;21:3232-3237.
    54. Scheper GC, Proud CG. Does phosphorylation of the cap-binding protein eIF4E play a role in translation initiation? Eur J Biochem 2002;269:5350-5359.
    55. Silva RL, Wendel HG. MNK, EIF4E and targeting translation for therapy. Cell Cycle 2008;7:553-555.
    56. Bjornsti MA, Houghton PJ. The TOR pathway:a target for cancer therapy. Nat Rev Cancer 2004;4:335-348.
    57. Villanueva A, Chiang DY, Newell P, Peix J, Thung S, Alsinet C, Tovar V, et al. Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterology 2008;135:1972-1983,1983 e1971-1911.
    58. Brunn GJ, Hudson CC, Sekulic A, Williams JM, Hosoi H, Houghton PJ, Lawrence JC, Jr., et al. Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science 1997;277:99-101.
    59. Gingras AC, Kennedy SG, O'Leary MA, Sonenberg N, Hay N.4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev 1998;12:502-513.
    60. Holcik M, Sonenberg N, Korneluk RG. Internal ribosome initiation of translation and the control of cell death. Trends Genet 2000; 16:469-473.
    61. Graber TE, Holcik M. Cap-independent regulation of gene expression in apoptosis. Mol Biosyst 2007;3:825-834.
    1. Drickamer K. C-type lectin-like domains. Curr Opin Struct Biol 1999;9:585-590.
    2. Weis WI, Taylor ME, Drickamer K. The C-type lectin superfamily in the immune system. Immunol Rev 1998; 163:19-34.
    3. Zelensky AN, Gready JE. The C-type lectin-like domain superfamily. FEBS J 2005;272:6179-6217.
    4. Day AJ. The C-type carbohydrate recognition domain (CRD) superfamily. Biochem Soc Trans 1994;22:83-88.
    5. Robinson MJ, Sancho D, Slack EC, LeibundGut-Landmann S, Reis e Sousa C. Myeloid C-type lectins in innate immunity. Nat Immunol 2006;7:1258-1265.
    6. Drickamer K. Evolution of Ca(2+)-dependent animal lectins. Prog Nucleic Acid Res Mol Biol 1993;45:207-232.
    7. Colonna M, Samaridis J, Angman L. Molecular characterization of two novel C-type lectin-like receptors, one of which is selectively expressed in human dendritic cells. Eur J Immunol 2000;30:697-704.
    8. Chaipan C, Soilleux EJ, Simpson P, Hofmann H, Gramberg T, Marzi A, Geier M, et al. DC-SIGN and CLEC-2 mediate human immunodeficiency virus type 1 capture by platelets. J Virol 2006;80:8951-8960.
    9. Sobanov Y, Bernreiter A, Derdak S, Mechtcheriakova D, Schweighofer B, Duchler M, Kalthoff F, et al. A novel cluster of lectin-like receptor genes expressed in monocytic, dendritic and endothelial cells maps close to the NK receptor genes in the human NK gene complex. Eur J Immunol 2001;31:3493-3503.
    10. Suzuki-Inoue K, Fuller GL, Garcia A, Eble JA, Pohlmann S, Inoue O, Gartner TK, et al. A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood 2006; 107:542-549.
    11. Hughes CE, Pollitt AY, Mori J, Eble JA, Tomlinson MG, Hartwig JH, O'Callaghan CA, et al. CLEC-2 activates Syk through dimerization. Blood; 115:2947-2955.
    12. Suzuki-Inoue K, Kato Y, Inoue O, Kaneko MK, Mishima K, Yatomi Y, Yamazaki Y, et al. Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. J Biol Chem 2007;282:25993-26001.
    13. Christou CM, Pearce AC, Watson AA, Mistry AR, Pollitt AY, Fenton-May AE, Johnson LA, et al. Renal cells activate the platelet receptor CLEC-2 through podoplanin. Biochem J 2008;411:133-140.
    14. Bertozzi CC, Schmaier AA, Mericko P, Hess PR, Zou Z, Chen M, Chen CY, et al. Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling. Blood 2010.
    15. Xie J, Wu T, Guo L, Ruan Y, Zhou L, Zhu H, Yun X, et al. Molecular characterization of two novel isoforms and a soluble form of mouse CLEC-2. Biochem Biophys Res Commun 2008;371:180-184.
    16. Kerrigan AM, Dennehy KM, Mourao-Sa D, Faro-Trindade I, Willment JA, Taylor PR, Eble JA, et al. CLEC-2 is a phagocytic activation receptor expressed on murine peripheral blood neutrophils. J Immunol 2009;182:4150-4157.
    17. O'Callaghan CA. Thrombomodulation via CLEC-2 targeting. Curr Opin Pharmacol 2009;9:90-95.
    18. Parent A, Laroche G, Hamelin E, Parent JL. RACK1 regulates the cell surface expression of the G protein-coupled receptor for thromboxane A(2). Traffic 2008;9:394-407.
    19. Kiely PA, Sant A, O'Connor R. RACK1 is an insulin-like growth factor 1 (IGF-1) receptor-interacting protein that can regulate IGF-1-mediated Akt activation and protection from cell death. J Biol Chem 2002;277:22581-22589.
    20. Yaka R, Thornton C, Vagts AJ, Phamluong K, Bonci A, Ron D. NMDA receptor function is regulated by the inhibitory scaffolding protein, RACK1. Proc Natl Acad Sci U S A 2002;99:5710-5715.
    21. Liu YV, Baek JH, Zhang H, Diez R, Cole RN, Semenza GL. RACK1 competes with HSP90 for binding to HIF-1 alpha and is required for O(2)-independent and HSP90 inhibitor-induced degradation of HIF-1 alpha. Mol Cell 2007;25:207-217.
    22. Zhang W, Cheng GZ, Gong J, Hermanto U, Zong CS, Chan J, Cheng JQ, et al. RACK1 and CIS mediate the degradation of BimEL in cancer cells. J Biol Chem 2008;283:16416-16426.
    23. Acconcia F, Sigismund S, Polo S. Ubiquitin in trafficking:the network at work. Exp Cell Res 2009;315:1610-1618.
    24. Vembar SS, Brodsky JL. One step at a time:endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol 2008;9:944-957.
    25. Yoshida H. ER stress and diseases. FEBS J 2007;274:630-658.
    26. Unterberger U, Hoftberger R, Gelpi E, Flicker H, Budka H, Voigtlander T. Endoplasmic reticulum stress features are prominent in Alzheimer disease but not in prion diseases in vivo. J Neuropathol Exp Neurol 2006;65:348-357.
    27. Kahle PJ, Haass C. How does parkin ligate ubiquitin to Parkinson's disease? EMBO Rep 2004;5:681-685.
    28. Gomes-Alves P, Neves S, Coelho AV, Penque D. Low temperature restoring effect on F508del-CFTR misprocessing:A proteomic approach. J Proteomics 2009;73:218-230.
    29. Hirsch C, Blom D, Ploegh HL. A role for N-glycanase in the cytosolic turnover of glycoproteins. EMBO J 2003;22:1036-1046.
    30. May F, Hagedorn I, Pleines I, Bender M, Vogtle T, Eble J, Elvers M, et al. CLEC-2 is an essential platelet-activating receptor in hemostasis and thrombosis. Blood 2009;114:3464-3472.
    1. Colonna M, Samaridis J, Angman L. Molecular characterization of two novel C-type lectin-like receptors, one of which is selectively expressed in human dendritic cells. Eur J Immunol 2000;30:697-704.
    2. Chaipan C, Soilleux EJ, Simpson P, Hofmann H, Gramberg T, Marzi A, Geier M, et al. DC-SIGN and CLEC-2 mediate human immunodeficiency virus type 1 capture by platelets. J Virol 2006;80:8951-8960.
    3. Suzuki-Inoue K, Fuller GL, Garcia A, Eble JA, Pohlmann S, Inoue O, Gartner TK, et al. A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood 2006; 107:542-549.
    4. Huang TF, Liu CZ, Yang SH. Aggretin, a novel platelet-aggregation inducer from snake (Calloselasma rhodostoma) venom, activates phospholipase C by acting as a glycoprotein Ia/IIa agonist. Biochem J 1995;309 (Pt 3):1021-1027.
    5. Navdaev A, Clemetson JM, Polgar J, Kehrel BE, Glauner M, Magnenat E, Wells TN, et al. Aggretin, a heterodimeric C-type lectin from Calloselasma rhodostoma (malayan pit viper), stimulates platelets by binding to alpha 2beta 1 integrin and glycoprotein Ib, activating Syk and phospholipase Cgamma 2, but does not involve the glycoprotein VI/Fc receptor gamma chain collagen receptor. J Biol Chem 2001;276:20882-20889.
    6. Suzuki-Inoue K, Ozaki Y, Kainoh M, Shin Y, Wu Y, Yatomi Y, Ohmori T, et al. Rhodocytin induces platelet aggregation by interacting with glycoprotein Ⅰa/Ⅱa (GPⅠa/Ⅱa, Integrin alpha 2beta 1). Involvement of GPⅠa/Ⅱa-associated src and protein tyrosine phosphorylation. J Biol Chem 2001;276:1643-1652.
    7. Christou CM, Pearce AC, Watson AA, Mistry AR, Pollitt AY, Fenton-May AE, Johnson LA, et al. Renal cells activate the platelet receptor CLEC-2 through podoplanin. Biochem J 2008;411:133-140.
    8. Suzuki-Inoue K, Kato Y, Inoue O, Kaneko MK, Mishima K, Yatomi Y, Yamazaki Y, et al. Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. J Biol Chem 2007;282:25993-26001.
    9. Bertozzi CC, Schmaier AA, Mericko P, Hess PR, Zou Z, Chen M, Chen CY, et al. Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling. Blood 2010.
    10. Matza D, Kerem A, Shachar I. Invariant chain, a chain of command. Trends Immunol 2003;24:264-268.
    11. Lotteau V, Teyton L, Peleraux A, Nilsson T, Karlsson L, Schmid SL, Quaranta V, et al. Intracellular transport of class Ⅱ MHC molecules directed by invariant chain. Nature 1990;348:600-605.
    12. Cresswell P. Assembly, transport, and function of MHC class Ⅱ molecules. Annu Rev Immunol 1994;12:259-293.
    13. Roche PA, Cresswell P. Proteolysis of the class Ⅱ-associated invariant chain generates a peptide binding site in intracellular HLA-DR molecules. Proc Natl Acad Sci U S A 1991;88:3150-3154.
    14. Freisewinkel IM, Schenck K, Koch N. The segment of invariant chain that is critical for association with major histocompatibility complex class Ⅱ molecules contains the sequence of a peptide eluted from class Ⅱ polypeptides. Proc Natl Acad Sci U S A 1993;90:9703-9706.
    15. Ghosh P, Amaya M, Mellins E, Wiley DC. The structure of an intermediate in class Ⅱ MHC maturation:CLIP bound to HLA-DR3. Nature 1995;378:457-462.
    16. Roche PA, Teletski CL, Stang E, Bakke O, Long EO. Cell surface HLA-DR-invariant chain complexes are targeted to endosomes by rapid internalization. Proc Natl Acad Sci U S A 1993;90:8581-8585.
    17. Sant AJ, Cullen SE, Schwartz BD. Biosynthetic relationships of the chondroitin sulfate proteoglycan with Ia and invariant chain glycoproteins. J Immunol 1985;135:416-422.
    18. Sant AJ, Cullen SE, Giacoletto KS, Schwartz BD. Invariant chain is the core protein of the Ia-associated chondroitin sulfate proteoglycan. J Exp Med 1985;162:1916-1934.
    19. Miller J, Hatch JA, Simonis S, Cullen SE. Identification of the glycosaminoglycan-attachment site of mouse invariant-chain proteoglycan core protein by site-directed mutagenesis. Proc Natl Acad Sci U S A 1988;85:1359-1363.
    20. Leng L, Metz CN, Fang Y, Xu J, Donnelly S, Baugh J, Delohery T, et al. MIF signal transduction initiated by binding to CD74. J Exp Med 2003; 197:1467-1476.
    21. Shi X, Leng L, Wang T, Wang W, Du X, Li J, McDonald C, et al. CD44 is the signaling component of the macrophage migration inhibitory factor-CD74 receptor complex. Immunity 2006;25:595-606.
    22. Gore Y, Starlets D, Maharshak N, Becker-Herman S, Kaneyuki U, Leng L, Bucala R, et al. Macrophage migration inhibitory factor induces B cell survival by activation of a CD74-CD44 receptor complex. J Biol Chem 2008;283:2784-2792.
    23. Naujokas MF, Morin M, Anderson MS, Peterson M, Miller J. The chondroitin sulfate form of invariant chain can enhance stimulation of T cell responses through interaction with CD44. Cell 1993;74:257-268.
    24. Starlets D, Gore Y, Binsky I, Haran M, Harpaz N, Shvidel L, Becker-Herman S, et al. Cell-surface CD74 initiates a signaling cascade leading to cell proliferation and survival. Blood 2006; 107:4807-4816.
    25. Beswick EJ, Bland DA, Suarez G, Barrera CA, Fan X, Reyes VE. Helicobacter pylori binds to CD74 on gastric epithelial cells and stimulates interleukin-8 production. Infect Immun 2005;73:2736-2743.
    26. Becker-Herman S, Arie G, Medvedovsky H, Kerem A, Shachar I. CD74 is a member of the regulated intramembrane proteolysis-processed protein family. Mol Biol Cell 2005;16:5061-5069.
    27. Binsky I, Haran M, Starlets D, Gore Y, Lantner F, Harpaz N, Leng L, et al. IL-8 secreted in a macrophage migration-inhibitory factor-and CD74-dependent manner regulates B cell chronic lymphocytic leukemia survival. Proc Natl Acad Sci U S A 2007;104:13408-13413.
    28. Burton JD, Ely S, Reddy PK, Stein R, Gold DV, Cardillo TM, Goldenberg DM. CD74 is expressed by multiple myeloma and is a promising target for therapy. Clin Cancer Res 2004;10:6606-6611.
    29. Ishigami S, Natsugoe S, Tokuda K, Nakajo A, Iwashige H, Aridome K, Hokita S, et al. Invariant chain expression in gastric cancer. Cancer Lett 2001; 168:87-91.
    30. McClelland M, Zhao L, Carskadon S, Arenberg D. Expression of CD74, the receptor for macrophage migration inhibitory factor, in non-small cell lung cancer. Am J Pathol 2009; 174:638-646.
    31. Lin Z, Jin A, Ozawa T, Tajiri K, Obata T, Ishida I, Jin F, et al. Post-translational modification of TRAIL receptor type 1 on various tumor cells and the susceptibility of tumors to TRAIL-induced apoptosis. Biochem Biophys Res Commun.
    1. Martin KC, Ephrussi A. mRNA localization:gene expression in the spatial dimension. Cell 2009;136:719-730.
    2. Coller J, Parker R. Eukaryotic mRNA decapping. Annu Rev Biochem 2004;73:861-890.
    3. Holmes LE, Campbell SG, De Long SK, Sachs AB, Ashe MP. Loss of translational control in yeast compromised for the major mRNA decay pathway. Mol Cell Biol 2004;24:2998-3010.
    4. Anderson P, Kedersha N. RNA granules. J Cell Biol 2006; 172:803-808.
    5. Parker R, Sheth U. P bodies and the control of mRNA translation and degradation. Mol Cell 2007;25:635-646.
    6. Anderson P. Post-transcriptional control of cytokine production. Nat Immunol 2008;9:353-359.
    7. Kiebler MA, Bassell GJ. Neuronal RNA granules:movers and makers. Neuron 2006;51:685-690.
    8. Seydoux G, Braun RE. Pathway to totipotency:lessons from germ cells. Cell 2006;127:891-904.
    9. Arimoto K, Fukuda H, Imajoh-Ohmi S, Saito H, Takekawa M. Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways. Nat Cell Biol 2008;10:1324-1332.
    10. Collier NC, Schlesinger MJ. The dynamic state of heat shock proteins in chicken embryo fibroblasts. J Cell Biol 1986; 103:1495-1507.
    11. Nover L, Scharf KD, Neumann D. Cytoplasmic heat shock granules are formed from precursor particles and are associated with a specific set of mRNAs. Mol Cell Biol 1989;9:1298-1308.
    12. Kedersha N, Cho MR, Li W, Yacono PW, Chen S, Gilks N, Golan DE, et al. Dynamic shuttling of TIA-1 accompanies the recruitment of mRNA to mammalian stress granules. J Cell Biol 2000;151:1257-1268.
    13. Kedersha N, Chen S, Gilks N, Li W, Miller IJ, Stahl J, Anderson P. Evidence that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules. Mol Biol Cell 2002; 13:195-210.
    14. Kimball SR, Horetsky RL, Ron D, Jefferson LS, Harding HP. Mammalian stress granules represent sites of accumulation of stalled translation initiation complexes. Am J Physiol Cell Physiol 2003;284:C273-284.
    15. Mazroui R, Sukarieh R, Bordeleau ME, Kaufman RJ, Northcote P, Tanaka J, Gallouzi I, et al. Inhibition of ribosome recruitment induces stress granule formation independently of eukaryotic initiation factor 2alpha phosphorylation. Mol Biol Cell 2006; 17:4212-4219.
    16. Grousl T, Ivanov P, Frydlova I, Vasicova P, Janda F, Vojtova J, Malinska K, et al. Robust heat shock induces eIF2alpha-phosphorylation-independent assembly of stress granules containing eIF3 and 40S ribosomal subunits in budding yeast, Saccharomyces cerevisiae. J Cell Sci 2009;122:2078-2088.
    17. Hoyle NP, Castelli LM, Campbell SG, Holmes LE, Ashe MP. Stress-dependent relocalization of translationally primed mRNPs to cytoplasmic granules that are kinetically and spatially distinct from P-bodies. J Cell Biol 2007; 179:65-74.
    18. Buchan JR, Muhlrad D, Parker R. P bodies promote stress granule assembly in Saccharomyces cerevisiae. J Cell Biol 2008; 183:441-455.
    19. Hofmann I, Casella M, Schnolzer M, Schlechter T, Spring H, Franke WW. Identification of the junctional plaque protein plakophilin 3 in cytoplasmic particles containing RNA-binding proteins and the recruitment of plakophilins 1 and 3 to stress granules. Mol Biol Cell 2006;17:1388-1398.
    20. Kim WJ, Back SH, Kim V, Ryu I, Jang SK. Sequestration of TRAF2 into stress granules interrupts tumor necrosis factor signaling under stress conditions. Mol Cell Biol 2005;25:2450-2462.
    21. Kedersha NL, Gupta M, Li W, Miller I, Anderson P. RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J Cell Biol 1999; 147:1431-1442.
    22. Srivastava SP, Kumar KU, Kaufman RJ. Phosphorylation of eukaryotic translation initiation factor 2 mediates apoptosis in response to activation of the double-stranded RNA-dependent protein kinase. J Biol Chem 1998;273:2416-2423.
    23. Sonenberg N, Hinnebusch AG. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 2009;136:731-745.
    24. Kedersha N, Anderson P. Stress granules:sites of mRNA triage that regulate mRNA stability and translatability. Biochem Soc Trans 2002;30:963-969.
    25. Sheth U, Parker R. Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 2003;300:805-808.
    26. Teixeira D, Sheth U, Valencia-Sanchez MA, Brengues M, Parker R. Processing bodies require RNA for assembly and contain nontranslating mRNAs. Rna 2005;11:371-382.
    27. Eystathioy T, Chan EK, Tenenbaum SA, Keene JD, Griffith K, Fritzler MJ. A phosphorylated cytoplasmic autoantigen, GW182, associates with a unique population of human mRNAs within novel cytoplasmic speckles. Mol Biol Cell 2002;13:1338-1351.
    28. Eystathioy T, Jakymiw A, Chan EK, Seraphin B, Cougot N, Fritzler MJ. The GW182 protein colocalizes with mRNA degradation associated proteins hDcp1 and hLSm4 in cytoplasmic GW bodies. Rna 2003;9:1171-1173.
    29. Ingelfinger D, Arndt-Jovin DJ, Luhrmann R, Achsel T. The human LSm1-7 proteins colocalize with the mRNA-degrading enzymes Dcpl/2 and Xrnl in distinct cytoplasmic foci. Rna 2002;8:1489-1501.
    30. van Dijk E, Cougot N, Meyer S, Babajko S, Wahle E, Seraphin B. Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. Embo J 2002;21:6915-6924.
    31. Kedersha N, Stoecklin G, Ayodele M, Yacono P, Lykke-Andersen J, Fritzler MJ, Scheuner D, et al. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 2005;169:871-884.
    32. Wilczynska A, Aigueperse C, Kress M, Dautry F, Weil D. The translational regulator CPEB1 provides a link between dcp1 bodies and stress granules. J Cell Sci 2005;118:981-992.
    33. Dang Y, Kedersha N, Low WK, Romo D, Gorospe M, Kaufman R, Anderson P, et al. Eukaryotic initiation factor 2alpha-independent pathway of stress granule induction by the natural product pateamine A. J Biol Chem 2006;281:32870-32878.
    34. Mokas S, Mills JR, Garreau C, Fournier MJ, Robert F, Arya P, Kaufman RJ, et al. Uncoupling stress granule assembly and translation initiation inhibition. Mol Biol Cell 2009;20:2673-2683.
    35. Mazroui R, Huot ME, Tremblay S, Filion C, Labelle Y, Khandjian EW. Trapping of messenger RNA by Fragile X Mental Retardation protein into cytoplasmic granules induces translation repression. Hum Mol Genet 2002; 11:3007-3017.
    36. Gilks N, Kedersha N, Ayodele M, Shen L, Stoecklin G, Dember LM, Anderson P. Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol Biol Cell 2004;15:5383-5398.
    37. De Leeuw F, Zhang T, Wauquier C, Huez G, Kruys V, Gueydan C. The cold-inducible RNA-binding protein migrates from the nucleus to cytoplasmic stress granules by a methylation-dependent mechanism and acts as a translational repressor. Exp Cell Res 2007;313:4130-4144.
    38. Ohn T, Kedersha N, Hickman T, Tisdale S, Anderson P. A functional RNAi screen links O-GlcNAc modification of ribosomal proteins to stress granule and processing body assembly. Nat Cell Biol 2008;10:1224-1231.
    39. McEwen E, Kedersha N, Song B, Scheuner D, Gilks N, Han A, Chen JJ, et al. Heme-regulated inhibitor kinase-mediated phosphorylation of eukaryotic translation initiation factor 2 inhibits translation, induces stress granule formation, and mediates survival upon arsenite exposure. J Biol Chem 2005;280:16925-16933.
    40. Tourriere H, Chebli K, Zekri L, Courselaud B, Blanchard JM, Bertrand E, Tazi J. The RasGAP-associated endoribonuclease G3BP assembles stress granules. J Cell Biol 2003;160:823-831.
    41. Stoecklin G, Stubbs T, Kedersha N, Wax S, Rigby WF, Blackwell TK, Anderson P. MK2-induced tristetraprolin:14-3-3 complexes prevent stress granule association and ARE-mRNA decay. Embo J 2004;23:1313-1324.
    42. Hua Y, Zhou J. Survival motor neuron protein facilitates assembly of stress granules. FEBS Lett 2004;572:69-74.
    43. Cougot N, Babajko S, Seraphin B. Cytoplasmic foci are sites of mRNA decay in human cells. J Cell Biol 2004; 165:31-40.
    44. Fenger-Gron M, Fillman C, Norrild B, Lykke-Andersen J. Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Mol Cell 2005;20:905-915.
    45. Fillman C, Lykke-Andersen J. RNA decapping inside and outside of processing bodies. Curr Opin Cell Biol 2005;17:326-331.
    46. Yu JH, Yang WH, Gulick T, Bloch KD, Bloch DB. Ge-1 is a central component of the mammalian cytoplasmic mRNA processing body. Rna 2005;11:1795-1802.
    47. Anderson P, Kedersha N. Stressful initiations. J Cell Sci 2002;115:3227-3234.
    48. Unterholzner L, Izaurralde E. SMG7 acts as a molecular link between mRNA surveillance and mRNA decay. Mol Cell 2004; 16:587-596.
    49. Fukuhara N, Ebert J, Unterholzner L, Lindner D, Izaurralde E, Conti E. SMG7 is a 14-3-3-like adaptor in the nonsense-mediated mRNA decay pathway. Mol Cell 2005;17:537-547.
    50. Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 2005;7:719-723.
    51. Sen GL, Blau HM. Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat Cell Biol 2005;7:633-636.
    52. Jakymiw A, Lian S, Eystathioy T, Li S, Satoh M, Hamel JC, Fritzler MJ, et al. Disruption of GW bodies impairs mammalian RNA interference. Nat Cell Biol 2005;7:1267-1274.
    53. Liu J, Rivas FV, Wohlschlegel J, Yates JR,3rd, Parker R, Hannon GJ. A role for the P-body component GW182 in microRNA function. Nat Cell Biol 2005;7:1261-1266.
    54. Rehwinkel J, Behm-Ansmant I, Gatfield D, Izaurralde E. A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. RNA 2005;11:1640-1647.
    55. Anderson P, Kedersha N. RNA granules:post-transcriptional and epigenetic modulators of gene expression. Nat Rev Mol Cell Biol 2009; 10:430-436.
    56. Kwon S, Zhang Y, Matthias P. The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response. Genes Dev 2007;21:3381-3394.
    57. Fujimura K, Katahira J, Kano F, Yoneda Y, Murata M. Microscopic dissection of the process of stress granule assembly. Biochim Biophys Acta 2009; 1793:1728-1737.
    58. Loschi M, Leishman CC, Berardone N, Boccaccio GL. Dynein and kinesin regulate stress-granule and P-body dynamics. J Cell Sci 2009;122:3973-3982.
    59. Moeller BJ, Cao Y, Li CY, Dewhirst MW. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors:role of reoxygenation, free radicals, and stress granules. Cancer Cell 2004;5:429-441.
    60. Tsai NP, Ho PC, Wei LN. Regulation of stress granule dynamics by Grb7 and FAK signalling pathway. EMBO J 2008;27:715-726.
    61. Mazroui R, Di Marco S, Kaufman RJ, Gallouzi IE. Inhibition of the ubiquitin-proteasome system induces stress granule formation. Mol Biol Cell 2007; 18:2603-2618.
    62. Laroia G, Cuesta R, Brewer G, Schneider RJ. Control of mRNA decay by heat shock-ubiquitin-proteasome pathway. Science 1999;284:499-502.
    63. Hilgers V, Teixeira D, Parker R. Translation-independent inhibition of mRNA deadenylation during stress in Saccharomyces cerevisiae. RNA 2006;12:1835-1845.
    64. Gowrishankar G, Winzen R, Dittrich-Breiholz O, Redich N, Kracht M, Holtmann H. Inhibition of mRNA deadenylation and degradation by different types of cell stress. Biol Chem 2006;387:323-327.
    65. Spriggs KA, Stoneley M, Bushell M, Willis AE. Re-programming of translation following cell stress allows IRES-mediated translation to predominate. Biol Cell 2008;100:27-38.
    66. Guil S, Long JC, Caceres JF. hnRNP A1 relocalization to the stress granules reflects a role in the stress response. Mol Cell Biol 2006;26:5744-5758.
    67. Fujimura K, Kano F, Murata M. Identification of PCBP2, a facilitator of IRES-mediated translation, as a novel constituent of stress granules and processing bodies. RNA 2008;14:425-431.
    68. Bonnal S, Pileur F, Orsini C, Parker F, Pujol F, Prats AC, Vagner S. Heterogeneous nuclear ribonucleoprotein Al is a novel internal ribosome entry site trans-acting factor that modulates alternative initiation of translation of the fibroblast growth factor 2 mRNA. J Biol Chem 2005;280:4144-4153.
    69. Bedard KM, Walter BL, Semler BL. Multimerization of poly(rC) binding protein 2 is required for translation initiation mediated by a viral IRES. RNA 2004;10:1266-1276.
    70. Baguet A, Degot S, Cougot N, Bertrand E, Chenard MP, Wendling C, Kessler P, et al. The exon-junction-complex-component metastatic lymph node 51 functions in stress-granule assembly. J Cell Sci 2007; 120:2774-2784.
    71. Eisinger-Mathason TS, Andrade J, Groehler AL, Clark DE, Muratore-Schroeder TL, Pasic L, Smith JA, et al. Codependent functions of RSK2 and the apoptosis-promoting factor TIA-1 in stress granule assembly and cell survival. Mol Cell 2008;31:722-736.
    72. Tian Q, Taupin J, Elledge S, Robertson M, Anderson P. Fas-activated serine/threonine kinase (FAST) phosphorylates TIA-1 during Fas-mediated apoptosis. J Exp Med 1995; 182:865-874.
    73. Yu C, York B, Wang S, Feng Q, Xu J, O'Malley BW. An essential function of the SRC-3 coactivator in suppression of cytokine mRNA translation and inflammatory response. Mol Cell 2007;25:765-778.
    74. Brengues M, Teixeira D, Parker R. Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science 2005;310:486-489.
    75. Coller J, Parker R. General translational repression by activators of mRNA decapping. Cell 2005;122:875-886.
    76. Dunand-Sauthier I, Walker C, Wilkinson C, Gordon C, Crane R, Norbury C, Humphrey T. Suml, a component of the fission yeast eIF3 translation initiation complex, is rapidly relocalized during environmental stress and interacts with components of the 26S proteasome. Mol Biol Cell 2002; 13:1626-1640.
    77. Pillai RS, Bhattacharyya SN, Artus CG, Zoller T, Cougot N, Basyuk E, Bertrand E, et al. Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 2005;309:1573-1576.
    78. Brengues M, Parker R. Accumulation of polyadenylated mRNA, Pablp, eIF4E, and eIF4G with P-bodies in Saccharomyces cerevisiae. Mol Biol Cell 2007; 18:2592-2602.
    79. Mollet S, Cougot N, Wilczynska A, Dautry F, Kress M, Bertrand E, Weil D. Translationally repressed mRNA transiently cycles through stress granules during stress. Mol Biol Cell 2008; 19:4469-4479.
    80. Bhattacharyya SN, Habermacher R, Martine U, Closs El, Filipowicz W. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 2006;125:1111-1124.
    81. van der Houven van Oordt W, Diaz-Meco MT, Lozano J, Krainer AR, Moscat J, Caceres JF. The MKK(3/6)-p38-signaling cascade alters the subcellular distribution of hnRNP A1 and modulates alternative splicing regulation. J Cell Biol 2000; 149:307-316.
    82. Lund MK, Guthrie C. The DEAD-box protein Dbp5p is required to dissociate Mex67p from exported mRNPs at the nuclear rim. Mol Cell 2005;20:645-651.
    83. Yedavalli VS, Neuveut C, Chi YH, Kleiman L, Jeang KT. Requirement of DDX3 DEAD box RNA helicase for HIV-1 Rev-RRE export function. Cell 2004;119:381-392.
    84. Serman A, Le Roy F, Aigueperse C, Kress M, Dautry F, Weil D. GW body disassembly triggered by siRNAs independently of their silencing activity. Nucleic Acids Res 2007;35:4715-4727.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700