用户名: 密码: 验证码:
核基质结合蛋白SATB1对胃癌生物学行为的影响及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:胃癌是全世界排名第四个最普遍被诊断的癌症,而且死亡率排名第二,被视为危害人类健康最常见的恶性肿瘤之一。目前对于胃癌的发病和其出现侵袭转移的机制尚不明确。有研究发现核基质结合蛋白SATB1在部分肿瘤中表达异常,且在介导乳腺癌的侵袭转移中发挥关键性作用,表达SATB1的乳腺癌细胞的中SATB1被沉默抑制时,有侵袭转移能力的乳腺癌细胞丧失侵袭转移的能力;而本不具备侵袭转移能力的乳腺癌细胞转染SATB1基因使其高表达可以使乳腺癌细胞获得侵袭转移能力。提示SATB1在肿瘤的侵袭转移或者其它生物学功能中扮演重要角色。我们研究发现SATB1的胃癌中也存在异常表达,而且且表达水平与肝素酶的表达水平具有一致性。我们运用转录因子分析软件Mat-inspector发现,在肝素酶上游启动子区域中有8个高度可能与SATB1蛋白结合的位点,提示二者之间可能存在联系。
     目的:明确SATB1在胃癌组织和胃癌细胞中的表达水平,明确SATB1的表达的变化对胃癌细胞生物学行为和肝素酶表达的影响,初步明确其在胃癌的发生和发展中的作用,为胃癌的诊断治疗提供新思路。
     方法:免疫组化和RT-PCR检测胃癌组织和癌旁组织中SATB1蛋白和mRNA的表达水平;RT-PCR和Western Blot法检测不同侵袭能力细胞系(MDA-MB-435S、AGS、SGC-7901和GES-1)中SATB1 mRNA和蛋白的表达水平差异;构建SATB1的真核表达载体pcDNA3.0-SATB1,双酶切和细胞转染检测表达水平变化鉴定pcDNA3.0-SATB1,转染SGC-7901细胞48小时后,MTT法检测细胞增殖活性,流式细胞术检测转染前后细胞周期、凋亡水平变化,transwell小室法检测细胞侵袭能力变化,RT-PCR和Western Blot法检测转染前后细胞肝素酶表达水平的变化;设计SATB1的aiRNA和siRNA干扰序列,转染AGS细胞48小时后,MTT法检测细胞增殖活性,流式细胞术检测转染前后细胞周期、凋亡水平变化,transwell小室法检测细胞侵袭能力变化,RT-PCR和Western Blot法检测转染前后细胞肝素酶表达水平的变化。
     结果:免疫组化显示SATB1在胃癌组织中呈高阳性表达,48例胃癌标本中有41例为阳性表达,阳性率为85.42%(41/48),癌旁组织中阳性率为4.17%(2/48),胃癌组织中SATB1蛋白表达明显上调(p<0.01);RT-PCR显示,胃癌组织中出现SATB1 mRNA表达的阳性率为87.50%(42/48),对应的癌旁组织阳性率为6.25%(3/48),胃癌组织组织与癌旁组织比较有统计学差异(p<0.01);RT-PCR显示,MDA-MB-435S、AGS、SGC-7901和GES-1四组细胞SATB1/β-actin比值依次为:0.437±0.021:0.269±0.017:0.019±0.006:0.011±0.003,高侵袭性的细胞系AGS中SATB1 mRNA的表达水平SGC-7901比较有统计学差异(p<0.01);Western Blot发现SATB1蛋白在AGS细胞系中表达水平高于其在SGC-7901中表达水平(p<0.01);双酶切鉴定真核表达载体pcDNA3.0-SATB1构建成功,SGC-7901细胞转染pcDNA3.0-SATB148小时后, RT-PCR检测pcDNA3.0-SATB1转染组和对照组SATB1/β-actin的比值分别为:0.537±0.028和0.098±0.007,pcDNA3.0-SATB1转染组与空白对照组比较有统计学差异(p<0.01),Western Blot结果显示pcDNA3,0-SATB1转染组和对照组SATB1/β-actin的比值分别为:0.196±0.013和0.067±0.008。pcDNA3.0-SATB1转染组与空白对照组SATB1的蛋白表达量比较有统计学差异(p<0.01),MTT结果显示转染SATB1可以促进SGC-7901细胞增殖,空白对照组、pcDNA3.0转染组和pcDNA3.0-SATB1转染组的各周期的分布分别为:(G0/G1:65.27±5.38、78.36±4.64、52.28±4.13;S:24.52±1.68、10.25±1.13、27.95±0.31;G2/M:10.21±1.13、11.39±0.96、19.77±1.02),pcDNA3.0-SATB1转染组G2/M比例增加(p<0.05),各组的凋亡百分比分别为:2.88±0.07、2.29±0.12和2.92±0.14,组间比较没有统计学差异(p>0.05),Transwell小室法检测各组SGC-7901细胞数目分别为:47.26±3.39、44.65±3.11和128.67±9.13,pcDNA3.0-SATB1转染组与空白对照组和空质粒组比较均有统计学差异(p<0.05),RT-PCR结果显示Heparanase/β-actin的比值分别为:0.154±0.017、0.169±0.011和3.46±0.018,pcDNA3.0-SATB1转染组的肝素酶表达水平与对照组和空质粒组比较均有统计学差异(p<0.05),Western Blot结果显示,SGC-7901细胞肝素酶(Heparanase)蛋白表达水平也同时上调,空白对照组、pcDNA3.0转染组和pcDNA3.0-SATB1转染组Heparanase/β-actin的比值分别为:0.108±0.008、0.113±0.009和2.25±0.016。pcDNA3.0-SATB1转染组的肝素酶蛋白表达水平与对照组和空质粒组比较均有统计学差异(p<0.05);AGS细胞转染SATB1-siRNA或者SATB1-aiRNA后,SATB1mRNA表达水平明显下降,对照组、siRNA组和aiRNA组SATB1/β-actin的比值分别为:0.649±0.021、0.104±0.016和0.072±0.009。siRNA组和aiRNA组与对照组比较均有统计学差异(p<0.01),aiRNA组与siRNA组比较也有统计学差异(p<0.05),Western blot显示对照组、siRNA组和aiRNA组SATB1/β-actin的比值分别为:0.231±0.016、0.075±0.008和0.063±0.011,siRNA组和aiRNA组与对照组比较均有统计学差异(p<0.01),aiRNA组与siRNA组比较没有统计学差异(p<0.05),MTT结果显示抑制SATB1的表达可以抑制AGS细胞增殖,与对照组比较,siRNA组和aiRNA组G0/G1比例均出现不同程度的增加(p<0.05);相应的S期和G2/M比例均出现下调(p<0.05),提示沉默SATB1的表达以后AGS细胞出现G0/G1阻滞,对照组、siRNA组和aiRNA组的凋亡百分比分别为:2.69±0.09、6.37±0.42和10.12±0.61,组间比较有统计学差异(p<0.05),Transwell小室法检测各组AGS细胞侵袭性发现,对照组、siRNA组和aiRNA组的细胞数目分别为:137.67±12.36、73.54±10.61和31.55±4.27,后两组与对照组比较有统计学差异(p<0.05),RT-PCR和Western blot结果显示,沉默SATB1的表达以后,AGS细胞肝素酶mRNA和蛋白表达水平均下调(p<0.05)。
     结论:SATB1在胃癌组织中呈异常高表达,在高侵袭性的AGS胃癌细胞中表达水平高于低侵袭性的SGC-7901细胞;上调SATB1的表达能够促进SGC-7901细胞增殖,加快细胞进入活跃周期,增强SGC-7901细胞侵袭能力,增加肝素酶的表达水平;aiRNA能够有效地沉默SATB1的表达,沉默SATB1的表达后,AGS细胞增殖活性减弱,出现G0/G1阻滞,凋亡比例增加,细胞侵袭能力下降,肝素酶表达水平下调。显示SATB1可能参与胃癌的发生发展和侵袭转移,可能成为评价胃癌预后的重要指标之一,可能成为胃癌治疗的新靶点。
Background:Stomach cancer is the fourth most common cancer worldwide. It is a disease with a high death rate making it the second most common cause of cancer death worldwide after lung cancer. The mechanism of gastric cancer incidence、invasion and metastasis is still unclear. There is study reported that nuclear matrix protein SATB1 was abnormal expression in some tumor. RNA-interference-mediated knockdown of SATB1 in highly aggressive (MDA-MB-231) cancer cells reversed tumorigenesis by restoring breast-like acinar polarity and inhibited tumor growth and metastasis in vivo. Conversely, ectopic SATB1 expression in non-aggressive (SK-BR-3) cells led to gene expression patterns consistent with aggressive-tumour phenotypes, acquiring metastatic activity in vivo. SATB1 functions as a genome organizer during tumorigenesis to reprogramme expression and promote metastasis. Our studies have found that SATB1 was also abnormal expression in gastric cancer, and its expression was consistent with the expression of heparanase. We used transcription factor binding site analysis Software Mat-inspector and found that there are 8 sites in the upstream promoter region of heparanase may combine with SATB1 protein, indicating possible link between them.
     Objective:investigate the expression of SATB1 in gastric cancer and Gastric cancer cell lines. Regulate the expression of SATB1 to know the changes in the biological behavior and the heparanase expression of gastric cancer cell line. It may provide new idea for the diagnosis and treatment of gastric cancer.
     Method:Immunohistochemistry and RT-PCR detect the expression of SATB1 protein and mRNA in gastric cancer and adjacent tissues; RT-PCR and Western blot detect the expression of SATB1 mRNA and protein in MDA-MB-435S、AGS、SGC-7901 and GES-1 cell line. Construction the eukaryotic expression vector pcDNA3.0-SATB1 and DNA double restriction enzyme digestion identification of plasmid. After transient transfection of SGC-7901 cells 48 h, RT-PCR and Western blot detection the expression of SATB1 mRNA and protein; MTT assay detection the cell proliferation; Flow cytometry analysis of cell-cycle arrest and apoptosis; transwell chamber assay detection the cell invasion; RT-PCR and Western blot detection the expression of heparanase. Design and synthesis of SATB1 siRNA oligonucleotides, After transient transfection of AGS cells 48 h, RT-PCR and Western blot detection the expression of SATB1 mRNA and protein; MTT assay detection the cell proliferation; Flow cytometry analysis of cell-cycle arrest and apoptosis; transwell chamber assay detection the cell invasion; RT-PCR and Western blot detection the expression of heparanase.
     Results:Immunohistochemical analysis of 48 gastric cancer samples showed that 41 samples were positively expressed and the positive rate was 85.42%(41/48), however, the positive rate was only 4.17%(2/48) in adjacent tissues. RT-PCR showed in cancer samples and adjacent tissues the positive expression of SATB1 mRNA were 87.50%(42/48) and 25 %(3/48), respectively (p<0.01). The SATB1/β-actin mRNA rate in MDA-MB-435S, AGS, SGC-7901 and GES-1 cell lines were 0.437±0.021; 0.269±0.017; 0.019±0.006 and 0.011±0.003, respectively. Western Blot showed that the expression of SATB1 protein in AGS cell was higher than that in SGC-7901 cell (p<0.01). After transient transfection of SGC-7901 cells 48 h, RT-PCR showed that the SATB1/β-actin mRNA was 0.537±0.028 in pcDNA3.0-SATB1 transfection group and 0.098±0.007 in blank control group(p<0.05). Western Blot showed the SATB1/β-actin protein was 0.196±0.013 in pcDNA3.0-SATB1 transfection group and 0.067±0.008 in blank control group (p<0.05). MTT assay showed the proliferation ability of the SGC-7901 cell line in pcDNA3.0-SATB1 transfection group was enhanced (p<0.05).Flow cytometry showed that cycle distribution (G0/G1, S, G2/M) of blank control group, pcDNA3.0 transfection group and pcDNA3.0-SATB1 transfection group were G0/G1:65.27±5.38,78.36±4.64,52.28±4.13; S:24.52±1.68,10.25±1.13, 27.95±0.31, G2/M:10.21±1.13,11.39±0.96,19.77±1.02, respectively; the rate of G2/M in pcDNA3.0-SATB1 group increased (p<0.05). The apoptosis rates of three group were similar (p>0.05). Transwell chamber assay showed that the cell in blank control group, pcDNA3.0 transfection group and pcDNA3.0-SATBl transfection group were 47.26±3.39, 44.65±3.11 and 128.67±9.13, respectively. The cell number in pcDNA3.0-SATB1 transfection group was higher than those of other two group (p<0.05). RT-PCR and Western Blot showed that the expression of heparanase was unregulated in pcDNA3.0-SATB1 transfection group (p<0.05). aiRNA transfection could effectively silence gene expression. When AGS cell was transfected with SATB1-siRNA or SATB1-aiRNA, the expression of SATB1 was down-regulated in both group compared with control group (p<0.05), and SATB1-aiRNA could more effectively silence SATB1 mRNA expression (p<0.05). MTT assay showed the proliferation of the AGS cell line in SATBl-siRNA and SATB1-aiRNA transfection group was inhibited (p<0.05). Flow cytometry showed that percentage of G0/G1 was increased in SATBl-siRNA and SATBl-aiRNA transfection group (p<0.05), indicating of G0/G1 arrest. The apoptosis rate in control, SATB1-siRNA and SATBl-aiRNA transfection group was 2.69±0.09,6.37±0.42,10.12±0.61, respectively (p<0.05). Transwell chamber assay showed that the cells in control group, SATB1-siRNA and SATB1-aiRNA transfection group were 137.67±12.36,73.54±10.61 and 31.55±4.27, respectively (p<0.05). RT-PCR and Western Blot showed that the expression of heparanase were both down-regulated in SATB1-siRNA and SATB1-aiRNA transfection group (p<0.05).
     Conclusion:The SATB1 gene was high positive expression in gastric cancer, and the expression of SATB1 is higher in AGS cell line than in SGC-7901 cell line. Up-regulation the expression of SATB1 in SGC-7901 cell could induce the cell proliferation, accelerate cell cycle progression, enhance invasive potential, and increase the expression of heparanase; however, down-regulation the expression of SATB1 in AGS cell could inhibit the cell proliferation, induce G0/G1 cell cycle arrest and cell apoptosis, reduce invasive potential and decrease the expression of heparanase. SATB1 could be involved in the progression of gastric cancer. It may be a new important prognostic indicators and therapeutic target of gastric cancer.
引文
1. Brenner H, Rothenbacher D, Arndt V. Epidemiology of stomach cancer. Methods Mol Biol.2009; 472:467-77.
    2. Strong VE, Song KY, Park CH, Jacks LM, Gonen M, Shah M, Coit DG, Brennan MF. Comparison of gastric cancer survival following R0 resection in the United States and Korea using an internationally validated nomogram. Ann Surg.2010 Apr; 251(4):640-6.
    3. Shitara K, Muro K. Histological subtype of gastric cancer in Japan. Lancet Oncol.2010 Feb;11(2):115-6.
    4. Zhao P, Dai M, Chen W, Li N.Cancer trends in China. Jpn J Clin Oncol.2010 Apr; 40(4):281-5.
    5. Yamaguchi H, Tateno M, Yamasaki K. Solution structure and DNA-binding mode of the matrix attachment region-binding domain of the transcription factor SATB1 that regulates the T-cell maturation. J Biol Chem.2006 Feb 24; 281(8):5319-527.
    6. Kumar PP, Bischof O, Purbey PK, Notani D, Urlaub H, Dejean A, Galande S. Functional interaction between PML and SATB1 regulates chromatin-loop architecture and transcription of the MHC class I locus. Nat Cell Biol.2007 Jan; 9(1):45-56.
    7. Han HJ, Russo J, Kohwi Y, Kohwi-Shigematsu T. SATB1 reprogrammes gene expression to promote breast tumour growth and metastasis. Nature.2008 Mar 13; 452(7184):187-193.
    8. Li QQ, Chen ZQ, Xu JD, Cao XX, Chen Q, Liu XP, Xu ZD. Overexpression and involvement of special AT-rich sequence binding protein 1 in multidrug resistance in human breast carcinoma cells. Cancer Sci.2010 Jan; 101(1):80-6.
    9. Xie ZJ, Liu Y, Jia LM, He YC. Heparanase expression, degradation of basement membrane and low degree of infiltration by immunocytes correlate with invasion and progression of human gastric cancer. World J Gastroenterol.2008 Jun 28; 14(24):3812-3818.
    10. Wang Z, Xu H, Jiang L, Zhou X, Lu C, Zhang X.. Positive association of heparanase expression with tumor invasion and lymphatic metastasis in gastric carcinoma. Mod Pathol.2005 Feb; 18(2):205-211.
    11. Takaoka M, Naomoto Y, Ohkawa T, Uetsuka H, Shirakawa Y, Uno F, Fujiwara T, Gunduz M, Nagatsuka H, Nakajima M, Tanaka N, Haisa M. Heparanase expression correlates with invasion and poor prognosis in gastric cancers.. Lab Invest.2003 May; 83(5):613-622.
    12. Sun X, Rogoff HA, Li CJ. Asymmetric RNA duplexes mediate RNA interference in mammalian cells. Nat Biotechnol.2008 Dec;26(12):1379-1382.
    13. Tschuch C, Schulz A, Pscherer A, Werft W, Benner A, Hotz-Wagenblatt A, Barrionuevo LS, Lichter P, Mertens D. Off-target effects of siRNA specific for GFP. BMC Mol Biol. 2008 Jun 24; 9:60.
    14. Anderson E, Boese Q, Khvorova A, Karpilow J. Identifying siRNA-induced off-targets by microarray analysis. Methods Mol Biol.2008; 442:45-63.
    15. Svoboda P. Off-targeting and other non-specific effects of RNAi experiments in mammalian cells. Curr Opin Mol Ther.2007 Jun; 9(3):248-257.
    1. Brenner H, Rothenbacher D, Arndt V. Epidemiology of stomach cancer. Methods Mol Biol.2009; 472:467-77.
    2. Strong VE, Song KY, Park CH, Jacks LM, Gonen M, Shah M, Coit DG, Brennan MF. Comparison of gastric cancer survival following R0 resection in the United States and Korea using an internationally validated nomogram. Ann Surg.2010 Apr; 251(4):640-6.
    3. Shitara K, Muro K. Histological subtype of gastric cancer in Japan. Lancet Oncol.2010 Feb; 11 (2):115-6.
    4. Han HJ, Russo J, Kohwi Y and Kohwi-Shigematsu T. SATB1 reprogrammes gene expression to promote breast tumour growth and metastasis. Nature.2008 Mar 13; 452(7184):187-93.
    5. Ma C, Zhang J, Durrin LK, Lv J, Zhu D, et al. The BCL-2 major breakpoint region (mbr) regulates gene expression. Oncogene,2007,26:2649-2657.
    6. Patani N, Jiang W, Mansel R, Newbold R, Mokbel K. The mRNA expression of SATB1 and SATB2 in human breast cancer. Cancer Cell Int.2009 Jul 30; 9:18.
    7. Agrelo R, Souabni A, Novatchkova M, Haslinger C, Leeb M, Komnenovic V, Kishimoto H, Gresh L, Kohwi-Shigematsu T, Kenner L, Wutz A. SATB1 defines the developmental context for gene silencing by Xist in lymphoma and embryonic cells. Dev Cell.2009 Apr; 16(4):507-16.
    8. Zhao P, Dai M, Chen W, Li N.Cancer trends in China. Jpn J Clin Oncol.2010 Apr; 40(4):281-5.
    9. Lee LY, Wu CM, Wang CC, Yu JS, Liang Y, Huang KH, Lo CH, Hwang TL.Expression of matrix metalloproteinases MMP-2 and MMP-9 in gastric cancer and their relation to claudin-4 expression. Histol Histopathol.2008 May; 23(5):515-21.
    10. Jiang W, Kahn SM, Guillem JG, Lu SH, Weinstein IB. Rapid detection of ras oncogenes in human tumors:applications to colon, esophageal, and gastric cancer. Oncogene. 1989 Jul; 4(7):923-8.
    11. Sanz-Ortega J, Steinberg SM, Moro E, Saez M, Lopez JA, Sierra E, Sanz-Esponera J, Merino MJ. Comparative study of tumor angiogenesis and immunohistochemistry for p53, c-ErbB2, c-myc and EGFr as prognostic factors in gastric cancer. Histol Histopathol.2000 Apr; 15(2):455-62.
    12. Kaji M, Yonemura Y, Harada S, Liu X, Terada I, Yamamoto H. Participation of c-met in the progression of human gastric cancers:anti-c-met oligonucleotides inhibit proliferation or invasiveness of gastric cancer cells. Cancer Gene Ther.1996, 3(6):393-404.
    13. Masaki Tsujie, Hirofumi Yamamoto, Naohiro Tomita, Yurika Sugita, Masayuki Ohue, et al. Expression of Tumor Suppressor Gene p16INK4 Products in Primary Gastric Cancer.Oncology 2000;58:126-136
    14. Yamaguchi H, Tateno M, Yamasaki K. Solution structure and DNA-binding mode of the matrix attachment region-binding domain of the transcription factor SATB1 that regulates the T-cell maturation. J Biol Chem.2006 Feb 24; 281(8):5319-527.
    15. Kumar PP, Bischof O, Purbey PK, Notani D, Urlaub H, Dejean A, Galande S. Functional interaction between PML and SATB1 regulates chromatin-loop architecture and transcription of the MHC class I locus. Nat Cell Biol.2007 Jan;9(1):45-56.
    16. Li QQ, Chen ZQ, Xu JD, Cao XX, Chen Q, Liu XP, Xu ZD. Overexpression and involvement of special AT-rich sequence binding protein 1 in multidrug resistance in human breast carcinoma cells. Cancer Sci.2010 Jan; 101(1):80-6. Epub 2009 Sep 26.
    17.周来勇,刘芳,童健,陈群请,张福伟,郭琳琅.实时荧光定量RT-PCR分析非小细胞肺癌SATB1的表达和临床病理意义.南方医科大学学报;2009;29(3);534-537.
    1. Sabine Geisse, Hermann Gram, Beate Kleuser and Hans P. Kocher. Eukaryotic Expression Systems:A Comparison.Protein Expression and Purification. Volume 8, Issue 3, November 1996, Pages 271-282.
    2. Cullen BR. Use of eukaryotic expression technology in the functional analysis of cloned genes. Methods Enzymol.1987; 152:684-704.
    3. Li M, Hays FA, Roe-Zurz Z, Vuong L, Kelly L, Ho CM, et al. Selecting optimum eukaryotic integral membrane proteins for structure determination by rapid expression and solubilization screening. J Mol Biol.2009 Jan 23; 385(3):820-30.
    4. Han HJ, Russo J, Kohwi Y, Kohwi-Shigematsu T. SATB1 reprogrammes gene expression to promote breast tumour growth and metastasis. Nature.2008 Mar 13; 452(7184):187-93.
    5. Li QQ, Chen ZQ, Xu JD, Cao XX, Chen Q, Liu XP, Xu ZD. Overexpression and involvement of special AT-rich sequence binding protein 1 in multidrug resistance in human breast carcinoma cells. Cancer Sci.2010 Jan; 101(1):80-6. Epub 2009 Sep 26.
    6. Patani N, Jiang W, Mansel R, Newbold R, Mokbel K. The mRNA expression of SATB1 and SATB2 in human breast cancer. Cancer Cell Int.2009 Jul 30; 9:18.
    7. Takeshi Sano, Mitsuru Sasako, and Seiichiro Yamamoto, et al. Gastric Cancer Surgery: Morbidity and Mortality Results From a Prospective Randomized Controlled Trial Comparing D2 and Extended Para-Aortic Lymphadenectomy-Japan Clinical Oncology Group Study 9501. Journal of Clinical Oncology,2004, Vol 22, No 14, 2767-2773.
    8.詹文华、韩方海.我国胃癌外科治疗的现状和思考.实用肿瘤杂志,2008,Vol 23,No2,91-93.
    9. Parker, B.& Sukumar, S. Distant metastasis in breast cancer:molecular mechanisms and therapeutic targets. Cancer Biol. Ther.2,14-21 (2003).
    10. Chambers, A. F., Groom, A. C.& MacDonald, I. C. Dissemination and growth of cancer cells in metastatic sites. Nature Rev. Cancer 2,563-572 (2002).
    11.Fidler, I. J. The pathogenesis of cancer metastasis:the'seed and soil'hypothesis revisited. Nature Rev. Cancer,2003,3,453-458.
    12. K. Ryu, K. Shim, Y. Joo, H. Song, Y. Na, S. Baik, H. Jung, J. Jung, C. Ha, S. Kim. Clinical Significance of Expression of COX-2 and Cadherin in Gastric Cancer Gastrointestinal Endoscopy, Volume 67, Issue 5, Pages AB280-AB281.
    13. Lee LY, Wu CM, Wang CC, Yu JS, Liang Y, Huang KH, Lo CH, Hwang TL.Expression of matrix metalloproteinases MMP-2 and MMP-9 in gastric cancer and their relation to claudin-4 expression. Histol Histopathol.2008 May; 23(5):515-21.
    14. Zheng L, Jiang G, Mei H, Pu J, Dong J, Hou X, Tong Q. Small RNA interference-mediated gene silencing of heparanase abolishes the invasion, metastasis and angiogenesis of gastric cancer cells. BMC Cancer.2010 Feb 5; 10:33.
    15.Xie ZJ, Liu Y, Jia LM, He YC. Heparanase expression, degradation of basement membrane and low degree of infiltration by immunocytes correlate with invasion and progression of human gastric cancer. World J Gastroenterol.2008 Jun 28; 14(24):3812-3818.
    16. Wang Z, Xu H, Jiang L, Zhou X, Lu C, Zhang X.. Positive association of heparanase expression with tumor invasion and lymphatic metastasis in gastric carcinoma. Mod Pathol.2005 Feb;18(2):205-211.
    17. Takaoka M, Naomoto Y, Ohkawa T, Uetsuka H, Shirakawa Y, Uno F, Fujiwara T, Gunduz M, Nagatsuka H, Nakajima M, Tanaka N, Haisa M. Heparanase expression correlates with invasion and poor prognosis in gastric cancers.. Lab Invest.2003 May; 83(5):613-622.
    1. de Fougerolles, A., Vornlocher, H.P., Maraganore, J. and Lieberman, J. Interfering with disease:a progress report on siRNA-based therapeutics. Nat. Rev. Drug Discov.2007,6, 443-453.
    2. Grimm, D. and Kay, M.A. Therapeutic application of RNAi:is mRNA targeting finally ready for prime time? J. Clin. Invest.2007,117,3633-3641.
    3. Hohjoh, H. Enhancement of RNAi activity by improved siRNA duplexes. FEBS Lett. 2004,557,193-198.
    4. Zamore, P.D., Tuschl, T., Sharp, P.A.& Bartel, D.P. RNAi:double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell. 2000,101,25-33.
    5. Jackson, A.L. et al. Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol.2000,21,635-637.
    6. Ui-Tei, K. et al. Functional dissection of siRNA sequence by systematic DNA substitution:modified siRNA with a DNA seed arm is a powerful tool for mammalian gene silencing with significantly reduced off-target effect. Nucleic Acids Res.2008,36, 2136-2151.
    7. Chen, P.Y. et al. Strand-specific 5'-O-methylation of siRNA duplexes controls guide strand selection and targeting specificity. RNA,2008,14,263-274.
    8. Clark, P.R., Pober, J.S. and Kluger, M.S. Knockdown of TNFR1 by the sense strand of an ICAM-1 siRNA:dissection of an off-target effect. Nucleic Acids Res.2008,36, 1081-1097.
    9. Sun X, Rogoff HA, Li CJ. Asymmetric RNA duplexes mediate RNA interference in mammalian cells. Nat Biotechnol.2008 Dec;26(12):1379-82.
    10. Grimm D. Asymmetry in siRNA design. Gene Ther.2009 Jul; 16(7):827-9.
    11. Shimada Y. Jpn J Clin Oncol. JGCA (The Japan Gastric Cancer Association). Gastric cancer treatment guidelines.2004 Jan; 34(1):58.
    12. Theodore Liakakos, MD and Dimitrios H. Roukos. More Controversy than Ever Challenges and Promises Towards Personalized Treatment of Gastric CancerAnn Surg Oncol.2008; 15(4):956-960.
    13. Chari RV.Targeted cancer therapy:conferring specificity to cytotoxic drugs. Acc Chem Res.2008;41(1):98-107.
    14. Friday BB, Adjei AA. Advances in targeting the Ras/Raf/MEK/Erk mitogen-activated protein kinase cascade with MEK inhibitors for cancer therapy. Clin Cancer Res.2008 Jan 15; 14(2):342-6.
    15. Coiffier B, Haioun C, Ketterer N, Engert A, Tilly H, Ma D, Johnson P. Rituximab (anti-CD20 monoclonal antibody) for the treatment of patients with relapsing or refractory aggressive lymphoma:a multicenter phase Ⅱ study. Blood.1998 Sep 15; 92(6):1927-32.
    16. Savage DG, Antman KH. Imatinib mesylate--a new oral targeted therapy. N Engl J Med. 2002 Feb 28; 346(9):683-93.
    17. Evans SS, Lee DB, Han T, Tomasi TB, Evans RL. Monoclonal antibody to the interferon-inducible protein Leu-13 triggers aggregation and inhibits proliferation of leukemic B cells. Blood.1990; 76(12):2583-93.
    18. Dickinson LA, Joh T, Kohwi Y, Kohwi-Shigematsu T. A tissue-specific MAR/SAR DNA-binding protein with unusual binding site recognition. Cell.1992; 70(4):631-45.
    19. Han HJ, Russo J, Kohwi Y and Kohwi-Shigematsu T. SATB1 reprogrammes gene expression to promote breast tumour growth and metastasis. Nature.2008 Mar 13;452(7184):187-93
    20. Cai, S., Han, H.J. and Kohwi-Shigematsu, T. Tissue-specific nuclear architecture and gene expression regulated by SATB1. Nat Genet,2003,34,42-51.
    1. R Berezney, DS Coffey. Identification of a nuclear protein matrix. Biochemical and biophysical research. Volume 60, Issue 4,23 October 1974,1410-1417.
    2. Elena M. Ciejek, Ming-Jer Tsai& Bert W. O'Malley. Actively transcribed genes are associated with the nuclear matrix. Nature,1983,306,607-609
    3. Amelia K. Linnemann, Adrian E. Platts and Stephen A. Krawetz. Differential nuclear scaffold/matrix attachment marks expressed genes. Human Molecular Genetics; 2009,18(4):645-654.
    4. Alfonso-Parra C, Maggert KA. Drosophila SAF-B links the nuclear matrix, chromosomes, and transcriptional activity. PLoS One,2010, Apr 20;5(4).
    5. Jun Yang, Yanping Li, Thaer Khoury, Sadir Alrawi, David W. Goodrich, and Dongfeng Tan. Relationships of hHprl/p84/Thocl Expression to Clinicopatholog-ic Characteristics and Prognosis in Non-small Cell Lung Cancer. Ann Clin Lab Sci. 2008; 38(2):105-112.
    6. LA Dickinson and T Kohwi-Shigematsu. Nucleolin is a matrix attachment region DNA-binding protein that specifically recognizes a region with high base-unpairing potential.Mol. Cell. Biol., Jan 1995,456-465, Vol 15, No.1.
    7. J Liu, D Bramblett, Q Zhu, M Lozano, R Kobayashi, SR Ross and JP Dudley.The matrix attachment region-binding protein SATB1 participates in negative regulation of tissue-specific gene expression. Mol. Cell. Biol.,09 1997,5275-5287, Vol 17, No. 9
    8. Dickinson LA, Joh T, Kohwi Y, Kohwi-Shigematsu T. A tissue-specific MAR/SAR DNA-binding protein with unusual binding site recognition. Cell.1992; 70(4):631-45.
    9. Sandra Broll, Andre Oumard, Kathrin Hahn, Axel Schambach and Juergen Bode. Minicircle Performance Depending on S/MAR-Nuclear Matrix Interactions. Journal of Molecular Biology. Volume 395, Issue 5,5 February 2010,950-965
    10. Kohwi-Shigematsu, T.& Kohwi, Y. Torsional stress stabilizes extended base unpairing in suppressor sites flanking immunoglobulin heavy chain enhancer. Biochemistry.1990,29,9551-60.
    11. Seo J, Lozano MM, Dudley JP. Nuclear matrix binding regulates SATB1-mediated transcriptional repression. J Biol Chem.2005 Jul 1;280(26):24600-9.
    12. Galande S, Dickinson LA, Mian SI, Sikorska M, Kohwi-Shigematsu T. SATB1 cleavage by caspase 6 disrupts PDZ domain-mediated dimerization causing detachment from chromatin early in T cell apoptosis. Mol Cell Biol.2001,21: 5591-5604.
    13. Purbey PK, Singh S, Kumar PP, Mehta S, Ganesh KN, et al. PDZ domain-mediated dimerization and homeodomain-directed specificity are required for high-affinity DNA binding by SATB1. Nucleic Acids Res.2008,36:2107-2122.
    14. Dickinson LA, Dickinson CD, Kohwi-Shigematsu T (1997) An atypical homeodomain in SATB1 promotes specific recognition of the key structural element in a matrix attachment region. J Biol Chem 272:11463-11470.
    15. Han HJ, Russo J, Kohwi Y and Kohwi-Shigematsu T. SATB1 reprogrammes gene expression to promote breast tumour growth and metastasis. Nature.2008 Mar 13; 452(7184):187-93.
    16. Yasui, D., Miyano, M., Cai, S., Varga-Weisz, P. and Kohwi-Shigematsu, T. SATB1 targets chromatin remodelling to regulate genes over long distances. Nature,2002, 419,641-5.
    17. Cai, S., Han, H.J. and Kohwi-Shigematsu, T. Tissue-specific nuclear architecture and gene expression regulated by SATB1. Nat Genet,2003,34,42-51.
    18. Galande S, Purbey PK, Notani D, Kumar PP.The third dimension ofgene regulation: organization of dynamic chromatin loopscape by SATB1. CurrOpin Genet Dev. 2007,27:408-414.
    19. Thomas Brocker. Survival of Mature CD4+ T Lymphocytes Is Dependent on Major Histocompatibility Complex Class II-expressing Dendritic Cells. J Exp Med.1997 October 20; 186(8):1223-1232.
    20. Nagasawa T, Sano K, Ike F, Kishimoto H, Nakayama T, Asano Y, Ishikawa I, Tada T. Negative selection of thymus-dependent CD4+8+ intestinal intraepithelial lymphocytes by internal superantigens. Cell Immunol.1993; 147(1):158-66.
    21. K Honda, H Takada, Y Nagatoshi, K Akazawa, S Ohga, E Ishii, J Okamura and T Hara. Thymus-independent expansion of T lymphocytes in children after allogeneic bone marrow transplantation. March 2000, Volume 25, Number 6,647-652.
    22. Jeffrey Laurence. T-Cell Subsets in Health, Infectious Disease, and Idiopathic CD4+T Lymphocytopenia. Ann Intern Med. July 1,1993 vol.119 no.1,55-62.
    23. Alvarez J D, Yasui D H, Niida H, et al. The MAR-binding protein SATB1 orchestrates temporal and spatial expression of multiple genes during T-cell development. Genes Dev,2000,14(5):521-535
    24. Sanjeev Galande, Liliane A. Dickinson, I. Saira Mian, Marianna Sikorska, and Terumi Kohwi-Shigematsu. SATB1 Cleavage by Caspase 6 Disrupts PDZ Domain-Mediated Dimerization, Causing Detachment from Chromatin Early in T-Cell Apoptosis Mol Cell Biol.2001 August; 21(16):5591-5604.
    25. Notani D, Gottimukkala KP, Jayani RS, Limaye AS, Damle MV, et al. (2010) Global Regulator SATB 1 Recruits b-Catenin and Regulates TH2 Differentiation in Wnt-Dependent Manner. PLoS Biol 8(1):1-23.
    26. Nie H, Yao X, Maika SD, Tucker PW.SATB1 is required for CD8 coreceptor reversal. Mol Immunol.2008 Nov; 46(1):207-11.
    27. Wen J, Huang S, Rogers H, Dickinson LA, Kohwi-Shigematsu T, Noguchi CT. SATB1 family protein expressed during early erythroid differentiation modifies globin gene expression. Blood.2005 Apr 15; 105(8):3330-9.
    28. Bode J, Kohwi Y, Dickinson L, Joh T, Klehr D, Mielke C, Kohwi-Shigematsu T. Biological significance of unwinding capability of nuclear matrix-associa-ting DNAs. Science.1992 Jan 10; 255(5041):195-7.
    29. Weerkamp F, Beart MR, Naber BA, Koster EE, da Haas EF, et al. Wnt signaling in the thymus is regulated by differential expression of intracellular signaling molecules. Proc Natl Acad Sci USA.2006,103:3322-3326.
    30. Katharine H. Wrighton. Cell signalling:Telomerase gets Wnt talking Nature Reviews Molecular Cell Biology 2009,10,504-505.
    31. Ekat Kritikou. Cell signalling:AKTing in Wnt pathway. Nature Reviews Molecular Cell Biology.2008,9,584.
    32. Zerlin M, Julius MA, Kitajewski J.Wnt/Frizzled signaling in angiogenesis. Angiogenesis.2008; 11(1):63-69.
    33. Diego J. Rodriguez Gil and Charles A. Greer. Wnt/Frizzled Family Members Mediate Olfactory Sensory Neuron Axon Extension. J Comp Neurol.2008 November 20; 511(3):301-317.
    34. Luca Gattinoni, Xiao-Song Zhong, Douglas C Palmer, et al. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nature Medicine,2009,15,808-813.
    35. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol.2004,20:781-810.
    36. Staal FJ, Clevers HC. Wnt signaling in the thymus. Curr Opin Immunol.2003 15(2): 204-208.
    37. Itoh K, Krupnik VE, Sokol SY. Axis determination in Xenopus involvesbiochemical interactions of axin, glycogen synthase kinase 3 and beta-catenin. Curr Biol,1998, 8:591-594.
    38. Liu C, Kato Y, Zhang Z, Do VM, Yankner BA, et al. Beta-Trcp couple beta-catenin phosphorylation-degradation and regulates Xenopus axis formation. Proc Natl Acad Sci USA,1999,96:6273-6278.
    39. Staal FJT, Vaan Noort M, Strous GJ, Clevers HC. Wnt signals are transmitted through its N-terminally dephosphorylated beta-catenin. EMBO Rep,2002,3: 63-68.
    40. Kumar PP, Purbey PK, Sinha CK, Notani D, Limaye A, et al. Phosphorylation of SATB1, a global gene regulator, acts as a molecular switch regulating its transcriptional activity in vivo. Mol Cell,2006,22:231-243.
    41. Ma C, Zhang J, Durrin LK, Lv J, Zhu D, et al. The BCL-2 major breakpoint region (mbr) regulates gene expression. Oncogene,2007,26:2649-2657.
    42. Patani N, Jiang W, Mansel R, Newbold R, Mokbel K. The mRNA expression of SATB1 and SATB2 in human breast cancer. Cancer Cell Int.2009 Jul 30; 9:18.
    43. Agrelo R, Souabni A, Novatchkova M, Haslinger C, Leeb M, Komnenovic V, Kishimoto H, Gresh L, Kohwi-Shigematsu T, Kenner L, Wutz A.SATB1 defines the developmental context for gene silencing by Xist in lymphoma and embryonic cells. Dev Cell.2009 Apr; 16(4):507-16.
    44. Han HJ, Russo J, Kohwi Y, Kohwi-Shigematsu T. SATB1 reprogrammes gene expression to promote breast tumour growth and metastasis. Nature.2008 Mar 13; 452(7184):187-93.
    45. Li QQ, Chen ZQ, Xu JD, Cao XX, Chen Q, Liu XP, Xu ZD. Overexpression and involvement of special AT-rich sequence binding protein 1 in multidrug resistance in human breast carcinoma cells. Cancer Sci.2010 Jan; 101(1):80-6.
    46. K. Li, R. Cai, B.B. Dai, X.Q. Zhang, H.J. Wang, S.F. Ge, W.R. Xuand J. Lu. SATB1 regulates SPARC expression in K562 cell line through binding to a specific sequence in the third intron. Biochemical and Biophysical Research Communications, Volume 356, Issue 1,27 April 2007, Pages 6-12.
    47. P.A. Brekken, E.H. Sage. SPARC, a matricellular protein:at the crossroads of cell-matrix communication, Matrix Biol.2000,19,816-827.
    48.X. Li, J. Wong, S.Y. Tsai, M.J. Bert, B.W. OOMalley, Progesterone and glucocorticoid receptors recruit distinct coactivator complexes and promote distinct patterns of local chromatin modification, Mol. Cell. Biol.2003,23.3763-3773.
    49. K. Motamed, E.H. Sage, SPARC inhibits endothelial cell adhesion but not proliferation through a tyrosine phosphorylation-dependent pathway, J. Cell. Biochem.1998,70,543-552.
    50. Gotzmann J, Meissner M, Gerner C.The fate of the nuclear matrix-associated-region-binding protein SATB1 during apoptosis. Cell Death Differ.2000 May; 7(5):425-38.
    51.周来勇,刘芳,童健,陈群请,张福伟,郭琳琅.实时荧光定量RT-PCR分析非小细胞肺癌SATB1的表达和临床病理意义.南方医科大学学报;2009;29(3);534-537.
    52. Rygiel AM, Davelaar AL, Milano F, Fockens P, Krishnadath KK. SATB1 influences expression of cytokines in colorectal cell lines and is associated with a more aggressive phenotype. AGA abstracts 2009; S2050.
    53. Bailin Wang, Zhenyu Xiao, Xiaoping Chen and Shuping Zhai. Studies on the Relationship between Multidrug Resistance 1 Gene and Pancreatic Cancer. The Chinese-German Journal of Clinical Oncology,2004, Volume 3, Number 1,15-19.
    54. GM Kolfschoten, TM Hulscher, HM Pinedo and E Boven. Drug resistance features and S-phase fraction as possible determinants for drug response in a panel of human ovarian cancer xenografts. British Journal of Cancer,2000,83(7),921-927.
    55. Biedler JL, Riehm H. Cellular resistance to actinomycin D in Chinese hamster cells in vitro:cross-resistance, radioautographic, and cytogenetic studies. Cancer Res. 1970 Apr; 30(4):1174-84.
    56. de Figueiredo-Pontes LL, Pintao MC, Oliveira LC, Dalmazzo LF, Jacomo RH, Garcia AB, Falcao RP and Rego EM. Determination of P-glycoprotein, MDR-related protein 1, breast cancer resistance protein, and lung-resistance protein expression in leukemic stem cells of acute myeloid leukemia. Cytometry B Clin Cytom.2008 May; 74(3):163-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700