用户名: 密码: 验证码:
钙调蛋白抑制剂对钾离子通道的直接阻断作用和离子通道与前脂肪细胞增殖的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的:N-(6-Aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7)是一种众所周知的钙调蛋白(calmodulin)抑制剂,一般被用做研究calmodulin调节细胞内钙信号相关的通路的工具药。本课题旨在利用稳定表达hERG (Kv11.1), hKvl.5和Kir2.1钾通道的HEK293细胞,研究W-7是否对上述电流的直接抑制作用。比较研究了W-7对野生型hERG通道与三种突变型的hERG通道的作用,以明确W-7与hERG通道结合的分子机制。同时也研究了另外一种钙调蛋白抑制剂(W-13)对hERG电流以及hKv1.5和Kir 2.1电流的作用。采用全细胞膜片钳技术记录表达于HEK293细胞的hERG钾电流,hKv1.5和Kir 2.1钾电流。
     结果:CaM抑制剂W-7可以抑制hERG钾电流,hKv1.5和Kir 2.1电流。W-7浓度依赖性的抑制hERG电流,半数最大效应浓度IC50为3.5μM。W-7对hERG电流的抑制也具有电压依赖性特点,在+10 mV到+60 mV之间抑制作用更加明显。W-7可使hERG电流电压依赖性稳态激活和失活曲线左移,失活速度加快。电极内液给予10μM W-7对hERG电流产生微弱的抑制作用,弱于细胞外液给予W-7对hERG的抑制作用。在不含EGTA的电极内液中渗透给予500nM CaM(以确保细胞内游离Ca2+维持在生理水平)对hERG电流没有明显的作用,而且不影响细胞外液给予W-7对hERG电流的抑制程度。hERG钾通道S6跨膜结构域的氨基酸突变位点Y652A和F656V,以及孔道区域突变位点S631A可改变W-7对hERG通道的敏感性,W-7对3种突变hERG通道的半数抑制浓度(IC50S)分别为5.5μM,9.8μM和25.4μM。此外W-7也可抑制hKv1.5和Kir2.1电流,其IC50分别为6.5μM和13.4μM。另外一种钙调蛋白抑制剂W-13也可抑制hERG电流,hKv1.5和Kir 2.1电流,IC50分别为19.8μM,75.54μM,43.75μM。
     结论:以上研究结果提示钙调蛋白抑制剂W-7可直接阻断表达于HEK293细胞上的hERG钾电流,hKv1.5和Kir 2.1电流。因此在解释W-7对离子通道的影响时需谨慎。
     背景和目的:小鼠3T3-L1前脂肪细胞被广泛用作代谢方面的研究,然而,其细胞生理(如功能性离子通道的表达)还未被阐明。本研究主要采用全细胞膜片钳技术,RT-PCR,免疫印迹(western blot),细胞增殖检测方法来探索3T3-L1前脂肪细胞离子通道的表达以及离子通道是否参与细胞增殖调节。
     结果:我们发现3T3-L1前脂肪细胞表达三种类型的离子通道,39%的细胞可记录到中电导的钙激活的钾电流(Ca2+-activated K+current(IKca)),15%的细胞记录到内向整流钾电流(Kir),在等渗(1T)条件下只有8%的细胞可记录到氯通道电流,而有趣的是,在低渗透压(0.8T)条件下几乎所有的细胞可记录到氯电流,提示该氯通道为容量激活的氯通道。3T3-L1细胞所记录到的IKir电流可被Ba2+阻断;IKc。电流可以被中等电导的钙激活的钾电流阻断剂clotrimazole阻断,提示所记录到钙激活的钾电流为IKC。电流。Icl可以被氯通道阻断剂DIDS阻断。RT-PCR结果表明了3种通道mRNAs的显著表达,KCa3.1基因(IKca),Kir2.1基因(IKir),和Clcn3(ICl.vol)。我们采用免疫印迹的方法可检测到这三种通道蛋白的表达。MTT和3H胸腺嘧啶渗入法检测细胞增殖结果表明,IKCa阻断剂clotrimazole和ICl.vol阻断剂DIDS均可浓度依赖性的抑制3T3-L1前脂肪细胞的增殖,clotrimazole(3μM)和DIDS (200μM)对细胞增殖的抑制率分别为(10.55±2.97%和60.98±1.79%,P<0.01 vs control)。使用特异性的RNA干扰(short interference)序列,将KCa3.1或Clcn3基因沉默,KCa3.1或Clcn3 siRNA (100nM)均可显著下调IKC。或Icl.vol的mRNA和蛋白表达,并可抑制细胞增殖,最大抑制率分别为(11.29±2.5%和12.76.29±2.7%, P<0.05 vs control)。流式细胞仪分析细胞周期结果表明,clotrimazole和DIDS均可浓度依赖性的增加G0/G1期细胞比例,clotrimazole (3μM)和DIDS (200μM)可使G0/G1期细胞停滞,分别使G0/G1期细胞比例从对照组的50.93±1.64%增加至55.29±3.13%(P<0.01)和70.21±4.09%(P<0.01),并可降低S期的细胞比例。特异性的KCa3.1和Clcn3 siRNA干扰序列将通道基因沉默后可得到与特异性阻断剂相似的结果,与control siRNA组相比,特异性的KCa3.1 siRNA(100nM)使G0/G1期的细胞比例从44.38±4.5%增加至48.56±4.89%(n=3,P<0.01),而Clcn3 siRNA (100nM)可使从G0/G1期的细胞比例从53.64±0.68%(control siRNA)增加到60.54±0.82%(n=3,P<0.05)
     结论:这些实验结果首次表明了三种功能性的离子通道包括:中电导的钙激活的钾通道(IKCa),容量敏感的氯通道(Icl.vol)和内向整流钾通道(Kir2.1)共同存在于3T3-L1前脂肪细胞上,其中IKC。和ICl.vol通道可参与调节细胞增殖。
Part I The Calmodulin inhibitors directly blocks potassium channels(hERG, hKvl.5 and Kir 2.1) stably expressed in HEK 293 cells
     Background and purpose:N-(6-Aminohexyl)-5-chloro-l-naphthalenesulfonamide (W-7) is a well-known calmodulin inhibitor used as a tool to study calmodulin regulation of intracellular Ca2+ signaling-related process. The present study was to determine whether W-7 would inhibit human ether a-go-go-related gene (hERG or Kv11.1) potassium channel, hKv1.5 channel or hKir2.1 channel expressed in HEK 293 cells. The effect of W-7 on WT hERG channel and three hERG mutants were proformed to identify the molecular determinants of W-7 block of hERG channels.We also investigate the effect of W-13, another camlodulin inhibitor on hERG, hKv1.5 or hKir2.1 potassium channels. The hERG channel current, hKvl.5 channel current or hKir2.1 channel current was recorded with a whole-cell patch-clamp technique.
     Results:It was found that the calmodulin inhibitor W-7 blocked hERG, hKv1.5, and hKir2.1 channels. W-7 decreased the hERG current (IhERG) in a concentration-dependent manner (IC50:3.5μM) and voltage-dependent manner, and the inhibition was more significant at depolarization potentials between+10 and+60 mV. The stedy-state activation and inactivation curve of hERG current were negatively shifted and the inactivation of hERG channel was accerlated by W-7. Pipette inclusion of W-7 induced a slow reduction of IhERG.tail, and the inhibitory effect was weaker than bath application of W-7. We included 500 nM calmodulin in an EGTA-free pipette solution (to ensure intracellular free Ca2+ at physiological level) and no significant change in the current was observed in dialysized cells with calmodulin. The hERG mutations in the S6 region Y652A and F656V, and in the pore helix S631A, had the IC50S of 5.5μM,9.8μM, and 25.4μM, respectively. In addition, the compound inhibited hKvl.5 and hKir2.1 channels with IC50S of 6.5 and 13.4μM respectively. W-13 also suppressed these K+ currents; however, the inhibitory effect was remarkably reduced, compared with W-7 with IC50s of 19.8,75.54 and 43.75μM.
     Conclusion and implication:These results indicate that the calmodulin inhibitor W-7 exerts a direct channel blocking effect on hERG, hKv1.5 and hKir2.1 channels stably expressed in HEK 293 cells. The caution should be taken in the interpretation of calmodulin regulation of ion channels with W-7.
     Part II Ion channels and their role in cell proliferation of 3T3-L1 preadipocytes
     Background and Purpose:Mouse 3T3-L1 peradipocytes are widely used for metabolic study; however, cellular physiology (e.g. functional ion channel expression) is not fully understood. The present study was to investigate ion channel expression and functional role of them in regulating cell proliferation using whole cell patch voltage clamp technique, RT-PCR, Western blot, and cell proliferation assay in undifferentiated 3T3-L1 preadipocytes.
     Results:We found that three types of ionic currents were present in 3T3-L1 preadi pocytes, including a Ca2+-activated K+ current (IKCa) in 39% cells, an inwardly-rectifying K+ current (IKir) in 15% cells, and a chloride current (ICl) only in 8% cells under isotonic conditions. Interestingly, ICl was observed in all cells with hypotonic (0.8T) insult, suggesting that it is a volume-sensitive ICl (ICl.vol).IKir was inhibited by Ba2+, and IKCa was inhibited by the intermediate conductance IKCa channel blocker clotrimazole. ICl was reduced by the chloride channel blockers DIDS. RT-PCR revealed significant expression of mRNAs:KCa3.1 for IKCa, Kir2.1 for IKir, and Clcn3 for ICl.vol.Proteins of these channels were detected using western blot analysis. Proliferation assay demonstrated that blockade of IKCa with clotrimazole or ICl.vol with DIDS inhibited cell proliferation in a concentration-dependent manner. Knockdown of KCa3.1 or Clcn3 with specific short interference (si)RNAs significantly reduced IKCa or ICl.vol mRNA and channel protein and produced a remarkable suppression of cell proliferation (by 12.76.29±2.7% and 11.29±2.5%, respectively, P<0.05 vs control). Flowcytometry analysis showed that clotrimazole (3μM) and DIDS (200μM) accumulated the cells at G0/G1 phase (from control 50.93±1.64% to 55.29±3.13% for clotrimazole, P<0.01; to 70.21±4.09% for DIDS, P< 0.01). Similar results were obtained with specific siRNAs targeting to KCa3.1 and Clcn3. Specific siRNA increased the cell number of G0/G1 phase(from control siRNA 44.38±4.5% to 48.56±4.89% for KCa3.1 siRNA, P<0.05; from control siRNA 53.64±0.68% to 60.54±0.82% for Clcn3 siRNA, P<0.01).
     Conclusions:These results demonstrate the first information that three types of functional ion channel currents, including intermediate-conductance IKCa, ICl.vol, and IKir, are heterogeneously present in 3T3-L1 preadipocytes. IKCa and ICl.vol participate in the regulation of cell proliferation.
引文
(1)Rakhilin S V, Olson PA, Nishi A et al. A network of control mediated by regulator of calcium/calmodulin-dependent signaling. Science 2004 October 22;306(5696):698-701.
    (2)Means AR, Tash JS, Chafouleas JG. Physiological implications of the presence, distribution, and regulation of calmodulin in eukaryotic cells. Physiol Rev 1982 January;62(1):1-39.
    (3)Anderson ME. Calmodulin and the philosopher's stone:Changing Ca2+ into arrhythmias. J Cardiovasc Electrophysiol 2002 February; 13(2):195-7.
    (4)Dzhura I, Wu Y, Colbran RJ, Balser JR, Anderson ME. Calmodulin kinase determines calcium-dependent facilitation of L-type calcium channels. Nat Cell Biol 2000 March;2(3):173-7.
    (5)Wu Y, Kimbrough JT, Colbran RJ, Anderson ME. Calmodulin kinase is functionally targeted to the action potential plateau for regulation of L-type Ca2+ current in rabbit cardiomyocytes. J Physiol 2004 January 1;554(Pt 1):145-55.
    (6)Deschenes I, Neyroud N, DiSilvestre D, Marban E, Yue DT, Tomaselli GF. Isoform-specific modulation of voltage-gated Na(+) channels by calmodulin. Circ Res 2002 March 8;90(4):E49-E57.
    (7)Maltsev VA, Reznikov V, Undrovinas NA, Sabbah HN, Undrovinas A. Modulation of late sodium current by Ca2+, calmodulin, and CaMKII in normal and failing dog cardiomyocytes:similarities and differences. Am JPhysiol Heart Circ Physiol 2008 April;294(4):H1597-H1608.
    (8)Wagner S, Dybkova N, Rasenack EC et al. Ca2+/calmodulin-dependent protein kinase II regulates cardiac Na+ channels. J Clin Invest 2006 December; 116(12):3127-38.
    (9)Li J, Marionneau C, Zhang R et al. Calmodulin kinase Ⅱ inhibition shortens action potential duration by upregulation of K+ currents. Circ Res 2006 November 10;99(10):1092-9.
    (10)Li J, Marionneau C, Koval O et al. Calmodulin kinase Ⅱ inhibition enhances ischemic preconditioning by augmenting ATP-sensitive K+ current. Channels (Austin) 2007 September;1(5):387-94.
    (11)Ziechner U, Schonherr R, Born AK et al. Inhibition of human ether a go-go potassium channels by Ca2+/calmodulin binding to the cytosolic N-and C-termini. FEBS J 2006 March;273(5):1074-86.
    (12)Qu YJ, Bondarenko VE, Xie C et al. W-7 modulates Kv4.3:pore block and Ca2+-calmodulin inhibition. Am JPhysiol Heart Circ Physiol 2007 May;292(5):H2364-H2377.
    (13)Colinas O, Gallego M, Setien R, Lopez-Lopez JR, Perez-Garcia MT, Casis O. Differential modulation of Kv4.2 and Kv4.3 channels by calmodulin-dependent protein kinase II in rat cardiac myocytes. Am J Physiol Heart Circ Physiol 2006 October;291(4):H1978-H1987.
    (14)Schonherr R, Lober K, Heinemann SH. Inhibition of human ether a go-go potassium channels by Ca(2+)/calmodulin. EMBO J 2000 July 3; 19(13):3263-71.
    (15)Anderson ME. Calmodulin kinase signaling in heart:an intriguing candidate target for therapy of myocardial dysfunction and arrhythmias. Pharmacol Ther 2005 April;106(1):39-55.
    (16)Hait WN, Lazo JS. Calmodulin:a potential target for cancer chemotherapeutic agents. J Clin Oncol 1986 June;4(6):994-1012.
    (17)Osawa M, Swindells MB, Tanikawa J et al. Solution structure of calmodulin-W-7 complex:the basis of diversity in molecular recognition. J Mol Biol 1998 February 13;276(1):165-76.
    (18)Gbadebo TD, Trimble RW, Khoo MS, Temple J, Roden DM, Anderson ME. Calmodulin inhibitor W-7 unmasks a novel electrocardiographic parameter that predicts initiation of torsade de pointes. Circulation 2002 February 12;105(6):770-4.
    (19)Wu Y, Roden DM, Anderson ME. Calmodulin kinase inhibition prevents development of the arrhythmogenic transient inward current. Circ Res 1999 April 30;84(8):906-12.
    (20)Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT. A molecular basis for cardiac arrhythmia:HERG mutations cause long QT syndrome. Cell 1995 March 10;80(5):795-803.
    (21)Zhou Z, Gong Q, Ye B et al. Properties of HERG channels stably expressed in HEK 293 cells studied at physiological temperature. Biophys J 1998 January;74(1):230-41.
    (22)Lu Y, Mahaut-Smith MP, Varghese A, Huang CL, Kemp PR, Vandenberg JI. Effects of premature stimulation on HERG K(+) channels. J Physiol 2001 December 15;537(Pt 3):843-51.
    (23)Tseng GN. I(Kr):the hERG channel. JMol Cell Cardiol 2001 May;33(5):835-49.
    (24)Sanguinetti MC, Mitcheson JS. Predicting drug-hERG channel interactions that cause acquired long QT syndrome. Trends Pharmacol Sci 2005 March;26(3):119-24.
    (25)Clarke CE, Hill AP, Zhao J et al. Effect of S5P alpha-helix charge mutants on inactivation of hERG K+ channels. J Physiol 2006 June 1;573(Pt 2):291-304.
    (26)Tang Q, Jin MW, Xiang JZ et al. The membrane permeable calcium chelator BAPTA-AM directly blocks human ether a-go-go-related gene potassium channels stably expressed in HEK 293 cells. Biochem Pharmacol 2007 December 3;74(11):1596-607.
    (27)Tian M, Dong MQ, Chiu SW, Lau CP, Li GR. Effects of the antifungal antibiotic clotrimazole on human cardiac repolarization potassium currents. Br J Pharmacol 2006 February; 147(3):289-97.
    (28)Zhang DY, Wang Y, Lau CP, Tse HF, Li GR. Both EGFR kinase and Src-related tyrosine kinases regulate human ether-a-go-go-related gene potassium channels. Cell Signal 2008 October;20(10):1815-21.
    (29)Zhou Z, Gong Q, Ye B et al. Properties of HERG channels stably expressed in HEK 293 cells studied at physiological temperature. Biophys J 1998 January;74(1):230-41.
    (30)Tong J, McCarthy TV, MacLennan DH. Measurement of resting cytosolic Ca2+ concentrations and Ca2+ store size in HEK-293 cells transfected with malignant hyperthermia or central core disease mutant Ca2+ release channels. J Biol Chem 1999 January 8;274(2):693-702.
    (31)Teruel MN, Chen W, Persechini A, Meyer T. Differential codes for free Ca(2+)-calmodulin signals in nucleus and cytosol. Curr Biol 2000 January 27;10(2):86-94.
    (32)Zhang S, Zhou Z, Gong Q, Makielski JC, January CT. Mechanism of block and identification of the verapamil binding domain to HERG potassium channels. Circ Res 1999 May 14;84(9):989-98.
    (33)Spector PS, Curran ME, Zou A, Keating MT, Sanguinetti MC. Fast inactivation causes rectification of the IKr channel. J Gen Physiol 1996 May;107(5):611-9.
    (34)Smith PL, Baukrowitz T, Yellen G. The inward rectification mechanism of the HERG cardiac potassium channel. Nature 1996 February 29;379(6568):833-6.
    (35)Guo J, Gang H, Zhang S. Molecular determinants of cocaine block of human ether-a-go-go-related gene potassium channels. J Pharmacol Exp Ther 2006 May;317(2):865-74.
    (36)Gao Z, Lau CP, Chiu SW, Li GR. Inhibition of ultra-rapid delayed rectifier K+ current by verapamil in human atrial myocytes. J Mol Cell Cardiol 2004 February;36(2):257-63.
    (37)Lu HR, Vlaminckx E, Van de WA, Gallacher DJ. Calmodulin antagonist W-7 prevents sparfloxacin-induced early afterdepolarizations (EADs) in isolated rabbit purkinje fibers: importance of beat-to-beat instability of the repolarization. J Cardiovasc Electrophysiol 2006 April;17(4):415-22.
    (38)Herzog RI, Liu C, Waxman SG, Cummins TR. Calmodulin binds to the C terminus of sodium channels Nav1.4 and Navl.6 and differentially modulates their functional properties. JNeurosci 2003 September 10;23(23):8261-70.
    (39)Lee-Kwon W, Goo JH, Zhang Z, Silldorff EP, Pallone TL. Vasa recta voltage-gated Na+ channel Navl.3 is regulated by calmodulin. Am J Physiol Renal Physiol 2007 January;292(1):F404-F414.
    (40)Chang MC, Khanna R, Schlichter LC. Regulation of Kv1.3 channels in activated human T lymphocytes by Ca(2+)-dependent pathways. Cell Physiol Biochem 2001;11(3):123-34.
    (41)Shamgar L, Ma L, Schmitt N et al. Calmodulin is essential for cardiac IKS channel gating and assembly:impaired function in long-QT mutations. Circ Res 2006 April 28;98(8):1055-63.
    (42)Rigg L, Mattick PA, Heath BM, Terrar DA. Modulation of the hyperpolarization-activated current (I(f)) by calcium and calmodulin in the guinea-pig sino-atrial node. Cardiovasc Res 2003 February;57(2):497-504.
    (43)Chatelier A, Renaudon B, Bescond J, El CA, Demion M, Bois P. Calmodulin antagonist W7 directly inhibits f-type current in rabbit sino-atrial cells. Eur J Pharmacol 2005 October 3;521(1-3):29-33.
    (44)Anderson ME, Braun AP, Schulman H, Premack BA. Multifunctional Ca2+/calmodulin-dependent protein kinase mediates Ca(2+)-induced enhancement of the L-type Ca2+ current in rabbit ventricular myocytes. Circ Res 1994 November;75(5):854-61.
    (45)Caulfield MP, Robbins J, Sim JA, Brown DA, Mac NS, Blackburn GM. The naphthalenesulphonamide calmodulin antagonist W7 and its 5-iodo-l-C8 analogue inhibit potassium and calcium currents in NG108-15 neuroblastoma x glioma cells in a manner possibly unrelated to their antagonism of calmodulin. Neurosci Lett 1991 April 15;125(1):57-61.
    (46)Nakajima T, Katoh A. Selective calmodulin inhibition toward myosin light chain kinase by a new cerebral circulation improver, Ro 22-4839. Mol Pharmacol 1987 July;32(1):140-6.
    (47)Mazur A, Roden DM, Anderson ME. Systemic administration of calmodulin antagonist W-7 or protein kinase A inhibitor H-8 prevents torsade de pointes in rabbits. Circulation 1999 December 14;100(24):2437-42.
    (48)Milnes JT, Crociani O, Arcangeli A, Hancox JC, Witchel HJ. Blockade of HERG potassium currents by fluvoxamine:incomplete attenuation by S6 mutations at F656 or Y652. Br J Pharmacol 2003 July;139(5):887-98.
    (49)Caballero R, Moreno I, Gonzalez T et al. Spironolactone and its main metabolite, canrenoic acid, block human ether-a-go-go-related gene channels. Circulation 2003 February 18;107(6):889-95.
    (50)Spector PS, Curran ME, Keating MT, Sanguinetti MC. Class III antiarrhythmic drugs block HERG, a human cardiac delayed rectifier K+ channel. Open-channel block by methanesulfonanilides. Circ Res 1996 March;78(3):499-503.
    (51)Ridley JM, Milnes JT, Hancox JC, Witchel HJ. Clemastine, a conventional antihistamine, is a high potency inhibitor of the HERG K+ channel. JMol Cell Cardiol 2006 January;40(1):107-18.
    (52)Tang Q, Li ZQ, Li W et al. The 5-HT(2) antagonist ketanserin is an open channel blocker of human cardiac ether-a-go-go-related gene (hERG) potassium channels. Br J Pharmacol 2008 June 23;155:265-73.
    (53)Su Z, Chen J, Martin RL et al. Block of hERG channel by ziprasidone:biophysical properties and molecular determinants. Biochem Pharmacol 2006 January 12;71(3):278-86.
    (54)Sanguinetti MC, Jiang C, Curran ME, Keating MT. A mechanistic link between an inherited and an acquired cardiac arrhythmia:HERG encodes the IKr potassium channel. Cell 1995 April 21;81(2):299-307.
    (55)Lees-Miller JP, Duan Y, Teng GQ, Duff HJ. Molecular determinant of high-affinity dofetilide binding to HERG1 expressed in Xenopus oocytes:involvement of S6 sites. Mol Pharmacol 2000 February;57(2):367-74.
    (56)Mitcheson JS, Chen J, Lin M, Culberson C, Sanguinetti MC. A structural basis for drug-induced long QT syndrome. Proc Natl Acad Sci U S A 2000 October 24;97(22):12329-33.
    (57)Warmke JW, Ganetzky B. A family of potassium channel genes related to eag in Drosophila and mammals. Proc Natl Acad Sci USA 1994 April 12;91(8):3438-42.
    (58)Mitcheson JS, Chen J, Lin M, Culberson C, Sanguinetti MC. A structural basis for drug-induced long QT syndrome. Proc Natl Acad Sci USA 2000 October 24;97(22):12329-33.
    (59)Lees-Miller JP, Duan Y, Teng GQ, Duff HJ. Molecular determinant of high-affinity dofetilide binding to HERG1 expressed in Xenopus oocytes:involvement of S6 sites. Mol Pharmacol 2000 February;57(2):367-74.
    (60)Kamiya K, Mitcheson JS, Yasui K, Kodama I, Sanguinetti MC. Open channel block of HERG K(+) channels by vesnarinone. Mol Pharmacol 2001 August;60(2):244-53.
    (61)Dumaine R, Roy ML, Brown AM. Blockade of HERG and Kvl.5 by ketoconazole. J Pharmacol Exp Ther 1998 August;286(2):727-35.
    (62)Peukert S, Brendel J, Pirard B et al. Identification, synthesis, and activity of novel blockers of the voltage-gated potassium channel Kvl.5. JMed Chem 2003 February 13;46(4):486-98.
    (63)Nerbonne JM, Kass RS. Molecular physiology of cardiac repolarization. Physiol Rev 2005 October;85(4):1205-53.
    (64)Peukert S, Brendel J, Pirard B et al. Identification, synthesis, and activity of novel blockers of the voltage-gated potassium channel Kv1.5. JMed Chem 2003 February 13;46(4):486-98.
    (65)Nattel S, Carlsson L. Innovative approaches to anti-arrhythmic drug therapy. Nat Rev Drug Discov 2006 December;5(12):1034-49.
    (66)Rezazadeh S, Claydon TW, Fedida D. KN-93 (2-[N-(2-hydroxyethyl)]-N-(4-methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine), a calcium/calmodulin-dependent protein kinase II inhibitor, is a direct extracellular blocker of voltage-gated potassium channels. J Pharmacol Exp Ther 2006 April;317(l):292-9.
    (67)Wyszynski M, Lin J, Rao A et al. Competitive binding of alpha-actinin and calmodulin to the NMDA receptor. Nature 1997 January 30;385(6615):439-42.
    (68)Levitan IB. It is calmodulin after all! Mediator of the calcium modulation of multiple ion channels. Neuron 1999 April;22(4):645-8.
    (69)Cukovic D, Lu GW, Wible B, Steele DF, Fedida D. A discrete amino terminal domain of Kvl.5 and Kv1.4 potassium channels interacts with the spectrin repeats of alpha-actinin-2. FEBS Lett 2001 June 1;498(1):87-92.
    (70)Slawsky MT, Castle NA. K+ channel blocking actions of flecainide compared with those of propafenone and quinidine in adult rat ventricular myocytes. J Pharmacol Exp Ther 1994 April;269(1):66-74.
    (71)Mazur A, Roden DM, Anderson ME. Systemic administration of calmodulin antagonist W-7 or protein kinase A inhibitor H-8 prevents torsade de pointes in rabbits. Circulation 1999 December 14;100(24):2437-42.
    (72)Sengupta P, Ruano MJ, Tebar F et al. Membrane-permeable calmodulin inhibitors (e.g. W-7/W-13) bind to membranes, changing the electrostatic surface potential:dual effect of W-13 on epidermal growth factor receptor activation. JBiol Chem 2007 March 16;282(11):8474-86.
    (73)Schofl C, Mader T, Kramer C et al. Ca2+/calmodulin inhibition and phospholipase C-linked Ca2+ Signaling in clonal beta-cells. Endocrinology 1999 December;140(12):5516-23.
    (74)Sengupta P, Ruano MJ, Tebar F et al. Membrane-permeable calmodulin inhibitors (e.g. W-7/W-13) bind to membranes, changing the electrostatic surface potential:dual effect of W-13 on epidermal growth factor receptor activation. JBiol Chem 2007 March 16;282(11):8474-86.
    (1)Drolet R, Richard C, Sniderman AD et al. Hypertrophy and hyperplasia of abdominal adipose tissues in women. Int J Obes (Lond)%2008 Feb;32 (2):283-91 Epub 2007 Aug 28 2008 February;(Lond):Epub.
    (2)Hausman DB, DiGirolamo M, Bartness TJ, Hausman GJ, Martin RJ. The biology of white adipocyte proliferation. Obes Rev %2001 Nov;2(4):239-54(4:239-54).
    (3)Gregoire FM; Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol Rev %1998 Jul;78 (3):783-809(3:783-809).
    (4)Prins JB, O'Rahilly S. Regulation of adipose cell number in man. Clin Sci (Lond)%1997 Jan;92 (1):3-11 1997 January;(Lond).
    (5)Litthauer D, Serrero G. The primary culture of mouse adipocyte precursor cells in defined medium. Comp Biochem Physiol A Comp Physiol %1992;101 (1):59-64(1:59-64).
    (6)Loffler G, Hauner H. Adipose tissue development:the role of precursor cells and adipogenic factors. Part Ⅱ:The regulation of the adipogenic conversion by hormones and serum factors. Klin Wochenschr%1987 Sep 1;65 (17):812-7(17:812-7).
    (7)Ramsay TG, Rao SV, Wolverton CK. In vitro systems for the analysis of the development of adipose tissue in domestic animals. JNutr%1992 Mar; 122 (3 Suppl):806-17(3 Suppl:806-17).
    (8)Gregoire F, Todoroff G, Hauser N, Remacle C. The stroma-vascular fraction of rat inguinal and epididymal adipose tissue and the adipoconversion of fat cell precursors in primary culture. Biol Cell %1990;69 (3):215-22(3:215-22).
    (9)Cornelius P, MacDougald OA, Lane MD. Regulation of adipocyte development. Annu Rev Nutr %1994; 14:99-1291994.
    (10)Wang YW, Jones PJ. Conjugated linoleic acid and obesity control:efficacy and mechanisms. Int J Obes Relat Metab Disord%2004 Aug;28 (8):941-55(8:941-55).
    (11)Pardo LA. Voltage-gated potassium channels in cell proliferation. Physiology (Bethesda)%2004 Oct,19:285-92 2004 October;(Bethesda).
    (12)Wonderlin WF, Strobl JS. Potassium channels, proliferation and G1 progression. JMembr Biol %1996 Nov;154 (2):91-107(2:91-107).
    (13)Schlichter LC, Sakellaropoulos G, Ballyk B, Pennefather PS, Phipps DJ. Properties of K+ and Cl-channels and their involvement in proliferation of rat microglial cells. Glia %1996 Jul;17(3):225-36(3:225-36).
    (14)Soroceanu L, Manning TJ, Jr., Sontheimer H. Modulation of glioma cell migration and invasion using Cl(-) and K(+) ion channel blockers. JNeurosci%1999Jul 15;19 (14):5942-54(14:5942-54).
    (15)Wang XT, Nagaba Y, Cross HS, Wrba F, Zhang L, Guggino SE. The mRNA of L-type calcium channel elevated in colon cancer:protein distribution in normal and cancerous colon. Am J Pathol %2000 Nov;157 (5):1549-62(5:1549-62).
    (16)Wang Z. Roles of K+ channels in regulating tumour cell proliferation and apoptosis. Pflugers Arch %2004 Jun;448 (3):274-86 Epub 2004 Mar 27(3:274-86):Epub.
    (17)Hu H, He ML, Tao R et al. Characterization of ion channels in human preadipocytes. J Cell Physiol %2009 Feb;218 (2):427-35(2:427-35).
    (18)Zhang LL, Yan LD, Ma LQ et al. Activation of transient receptor potential vanilloid type-1 channel prevents adipogenesis and obesity. Circ Res%2007 Apr 13,100 (7):1063-70 Epub 2007 Mar 8(7:1063-70):Epub.
    (19)Ku HC, Chang HH, Liu HC et al. Green tea (-)-epigallocatechin gallate inhibits insulin stimulation of 3T3-L1 preadipocyte mitogenesis via the 67-kDa laminin receptor pathway. Am J Physiol Cell Physiol %2009 Jul;297 (1):C121-32 Epub 2009 Jan 28(1:C121-32):Epub.
    (20)Saito T, Abe D, Sekiya K. Flavanone exhibits PPARgamma ligand activity and enhances differentiation of 3T3-L1 adipocytes. Biochem Biophys Res Commun %2009 Mar 6;380 (2):281-5 Epub 2009 Jan 22(2:281-5):Epub.
    (21)Green H, Kehinde O. Spontaneous heritable changes leading to increased adipose conversion in 3T3 cells. Cell %1976 Jan;7 (1):105-13(1:105-13).
    (22)Li GR, Sun H, Deng X, Lau CP. Characterization of ionic currents in human mesenchymal stem cells from bone marrow. Stem Cells %2005 Mar;23(3):371-82(3:371-82).
    (23)Tao R, Lau CP, Tse HF, Li GR. Functional ion channels in mouse bone marrow mesenchymal stem cells. Am J Physiol Cell Physiol %2007 Nov;293 (5):C1561-7 Epub 2007 Aug 15(5:C1561-7):Epub.
    (24)Du XL, Gao Z, Lau CP et al. Differential effects of tyrosine kinase inhibitors on volume-sensitive chloride current in human atrial myocytes:evidence for dual regulation by Src and EGFR kinases. J Gen Physiol %2004 Apr;123 (4):427-39 Epub 2004 Mar 15(4:427-39):Epub.
    (25)Neylon CB, Lang RJ, Fu Y, Bobik A, Reinhart PH. Molecular cloning and characterization of the intermediate-conductance Ca(2+)-activated K(+) channel in vascular smooth muscle:relationship between K(Ca) channel diversity and smooth muscle cell function. Circ Res %1999 Oct 29;85 (9):e33-43(9:e33-43).
    (26)Kohler R, Degenhardt C, Kuhn M, Runkel N, Paul M, Hoyer J. Expression and function of endothelial Ca(2+)-activated K(+) channels in human mesenteric artery:A single-cell reverse transcriptase-polymerase chain reaction and electrophysiological study in situ. Circ Res %2000 Sep 15;87 (6):496-503(6:496-503).
    (27)Ghanshani S, Wulff H, Miller MJ et al. Up-regulation of the IKCal potassium channel during T-cell activation. Molecular mechanism and functional consequences. JBiol Chem %2000 Nov 24;275 (47):37137-49(47:37137-49).
    (28)MacFarlane SN, Sontheimer H. Changes in ion channel expression accompany cell cycle progression of spinal cord astrocytes. Glia %2000 Mar;30 (1):39-48(1:39-48).
    (29)Nilius B. Chloride channels go cell cycling. JPhysiol %2001 May 1;532 (Pt 3):581(Pt 3:581).
    (30)Okada Y, Shimizu T, Maeno E, Tanabe S, Wang X, Takahashi N. Volume-sensitive chloride channels involved in apoptotic volume decrease and cell death. JMembr Biol%2006 Jan;209 (1):21-9 Epub 2006 Apr 17(1:21-9):Epub.
    (31)Voets T, Szucs G, Droogmans G, Nilius B. Blockers of volume-activated Cl-currents inhibit endothelial cell proliferation. Pflugers Arch %1995 Nov;431 (1):132-4(1:132-4).
    (32)Gerard V, Rouzaire-Dubois B, Dilda P, Dubois JM. Alterations of ionic membrane permeabilities in multidrug-resistant neuroblastoma x glioma hybrid cells. J Exp Biol %1998 Jan;201 (Pt 1):21-31(Pt 1:21-31).
    (33)Zheng YJ, Furukawa T, Tajimi K, Inagaki N. Cl-channel blockers inhibit transition of quiescent (GO) fibroblasts into the cell cycle. J Cell Physiol %2003 Mar,194 (3):376-83(3:376-83).
    (34)Chen L, Wang L, Zhu L et al. Cell cycle-dependent expression of volume-activated chloride currents in nasopharyngeal carcinoma cells. Am J Physiol Cell Physiol%2002 Oct;283 (4):C1313-23(4:C1313-23).
    (35)Wang GL, Wang XR, Lin MJ, He H, Lan XJ, Guan YY. Deficiency in ClC-3 chloride channels prevents rat aortic smooth muscle cell proliferation. Circ Res %2002 Nov 15;91 (10):E28-32(10:E28-32).
    (36)Shirihai O, Attali B, Dagan D, Merchav S. Expression of two inward rectifier potassium channels is essential for differentiation of primitive human hematopoietic progenitor cells. J Cell Physiol%1998 Nov;177 (2):197-205(2:197-205).
    (37)Tao R, Lau CP, Tse HF, Li GR. Regulation of cell proliferation by intermediate-conductance Ca2+-activated potassium and volume-sensitive chloride channels in mouse mesenchymal stem cells. Am J Physiol Cell Physiol %2008 Nov;295 (5):C1409-16Epub 2008 Sep 24(5:C1409-16):Epub.
    (38)Beeton C, Wulff H, Barbaria J et al. Selective blockade of T lymphocyte K(+) channels ameliorates experimental autoimmune encephalomyelitis, a model for multiple sclerosis. Proc Natl Acad Sci US A %2001 Nov 20;98 (24):13942-7(24:13942-7).
    (39)Lewis RS, Cahalan MD. Potassium and calcium channels in lymphocytes. Annu Rev Immunol %1995,13:623-53 1995.
    (40)Tharp DL, Wamhoff BR, Turk JR, Bowles DK. Upregulation of intermediate-conductance Ca2+-activated K+ channel (IKCal) mediates phenotypic modulation of coronary smooth muscle. Am JPhysiol Heart Circ Physiol %2006 Nov;291 (5):H2493-503 Epub 2006 Jun 23(5:H2493-503):Epub.
    (41)Kohler R, Wulff H, Eichler I et al. B lockade of the intermediate-conductance calcium-activated potassium channel as a new therapeutic strategy for restenosis. Circulation %2003 Sep 2;108 (9):1119-25 Epub 2003 Aug 25(9:1119-25):Epub.
    (42)Grgic I, Eichler I, Heinau P et al. Selective blockade of the intermediate-conductance Ca2+-activated K+ channel suppresses proliferation of microvascular and macrovascular endothelial cells and angiogenesis in vivo. Arterioscler Thromb Vasc Biol %2005 Apr;25 (4):704-9 Epub 2005 Jan 20(4:704-9):Epub.
    (43)Toyama K, Wulff H, Chandy KG et al. The intermediate-conductance calcium-activated potassium channel KCa3.1 contributes to atherogenesis in mice and humans. J Clin Invest %2008 Sep;118 (9):3025-37(9:3025-37).
    (44)Duan D, Winter C, Cowley S, Hume JR, Horowitz B. Molecular identification of a volume-regulated chloride channel. Nature %1997 Nov 27;390 (6658):417-21(6658:417-21).
    (45)Lemonnier L, Shuba Y, Crepin A et al. Bcl-2-dependent modulation of swelling-activated Cl-current and ClC-3 expression in human prostate cancer epithelial cells. Cancer Res %2004 Jul 15;64 (14):4841-8(14:4841-8).
    (46)Hara-Chikuma M, Yang B, Sonawane ND, Sasaki S, Uchida S, Verkman AS. ClC-3 chloride channels facilitate endosomal acidification and chloride accumulation. JBiol Chem%2005 Jan 14;280 (2):1241-7 Epub 2004 Oct 25(2:1241-7):Epub.
    (47)Okamoto F, Kajiya H, Toh K et al. Intracellular ClC-3 chloride channels promote bone resorption in vitro through organelle acidification in mouse osteoclasts. Am J Physiol Cell Physiol%2008 Mar;294 (3):C693-701 Epub 2008 Jan 30(3:C693-701):Epub.
    (48)Hume JR, Duan D, Collier ML, Yamazaki J, Horowitz B. Anion transport in heart. Physiol Rev %2000 Jan;80 (1):31-81(1:31-81).
    (49)Lang F, Foller M, Lang K et al. Cell volume regulatory ion channels in cell proliferation and cell death. Methods Enzymol %2007;428:209-25 2007.
    (50)Robinson NC, Huang P, Kaetzel MA, Lamb FS, Nelson DJ. Identification of an N-terminal amino acid of the CLC-3 chloride channel critical in phosphorylation-dependent activation of a CaMKII-activated chloride current. J Physiol %2004 Apr 15;556 (Pt 2):353-68 Epub 2004 Jan 30(Pt 2:353-68):Epub.
    (51)Malhi H, Irani AN, Rajvanshi P et al. KATP channels regulate mitogenically induced proliferation in primary rat hepatocytes and human liver cell lines. Implications for liver growth control and potential therapeutic targeting. JBiol Chem %2000 Aug 25;275 (34):26050-7(34:26050-7).
    (52)Wondergem R, Gong W, Monen SH et al. Blocking swelling-activated chloride current inhibits mouse liver cell proliferation. JPhysiol %2001 May 1;532 (Pt 3):661-72(Pt 3:661-72).
    (53)Tang YB, Liu YJ, Zhou JG, Wang GL, Qiu QY, Guan YY. Silence of ClC-3 chloride channel inhibits cell proliferation and the cell cycle via G/S phase arrest in rat basilar arterial smooth muscle cells. Cell Prolif %2008 Oct;41 (5):775-85(5:775-85).
    (54)Jirsch J, Deeley RG, Cole SP, Stewart AJ, Fedida D. Inwardly rectifying K+ channels and volume-regulated anion channels in multidrug-resistant small cell lung cancer cells. Cancer Res %1993 Sep 15;53 (18):4156-60(18:4156-60).
    (55)Shuba YM, Prevarskaya N, Lemonnier L et al. Volume-regulated chloride conductance in the LNCaP human prostate cancer cell line. Am J Physiol Cell Physiol %2000 Oct;279 (4):C1144-54(4:C1144-54).
    (56)King KL, Cidlowski JA. Cell cycle and apoptosis:common pathways to life and death. J Cell Biochem %1995 Jun;58 (2):175-80(2:175-80).
    (57)Shankland SJ, Wolf G. Cell cycle regulatory proteins in renal disease:role in hypertrophy, proliferation, and apoptosis. Am J Physiol Renal Physiol 2000 April;278(4):F515-F529.
    (58)Pardo LA, del CD, Sanchez A et al. Oncogenic potential of EAG K(+) channels. Embo J %1999 Oct 15;18 (20):5540-7(20:5540-7).
    (59)Hegle AP, Marble DD, Wilson GF. A voltage-driven switch for ion-independent signaling by ether-a-go-go K+ channels. Proc Natl Acad Sci U S A%2006 Feb 21;103 (8):2886-91 Epub 2006 Feb 13(8:2886-91):Epub.
    (1)Osawa M, Swindells MB, Tanikawa J et al. Solution structure of calmodulin-W-7 complex:the basis of diversity in molecular recognition. J Mol Biol 1998 February 13;276(1):165-76.
    (2)Levitan IB. It is calmodulin after all! Mediator of the calcium modulation of multiple ion channels. Neuron 1999 April;22(4):645-8.
    (3)Jett MF, Schworer CM, Bass M, Soderling TR. Identification of membrane-bound calcium, calmodulin-dependent protein kinase Ⅱ in canine heart. Arch Biochem Biophys 1987 June;255(2):354-60.
    (4)Braun AP, Schulman H. The multifunctional calcium/calmodulin-dependent protein kinase:from form to function. Annu Rev Physiol 1995;57:417-45.:417-45.
    (5)Hook SS, Means AR. Ca(2+)/CaM-dependent kinases:from activation to function. Annu Rev Pharmacol Toxicol 2001;41:471-505.:471-505.
    (6)Kennedy MB, Greengard P. Two calcium/calmodulin-dependent protein kinases, which are highly concentrated in brain, phosphorylate protein I at distinct sites. Proc Natl Acad Sci USA 1981 February;78(2):1293-7.
    (7)Zhang T, Brown JH. Role of Ca2+/calmodulin-dependent protein kinase II in cardiac hypertrophy and heart failure. Cardiovasc Res 2004 August 15;63(3):476-86.
    (8)Brehm P, Eckert R. Calcium entry leads to inactivation of calcium channel in Paramecium. Science 1978 December 15;202(4373):1203-6.
    (9)Gurney AM, Charnet P, Pye JM, Nargeot J. Augmentation of cardiac calcium current by flash photolysis of intracellular caged-Ca2+ molecules. Nature 1989 September 7;341(6237):65-8.
    (10)McDonald TF, Pelzer S, Trautwein W, Pelzer DJ. Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. Physiol Rev 1994 April;74(2):365-507.
    (11)Nie HG, Hao LY, Xu JJ, Minobe E, Kameyama A, Kameyama M. Distinct roles of CaM and Ca(2+)/CaM-dependent protein kinase II in Ca(2+)-dependent facilitation and inactivation of cardiac L-type Ca(2+) channels. J Physiol Sci 2007 June;57(3):167-73.
    (12)Zuhlke RD, Pitt GS, Tsien RW, Reuter H. Ca2+-sensitive inactivation and facilitation of L-type Ca2+ channels both depend on specific amino acid residues in a consensus calmodulin-binding motif in the(alpha)1C subunit. JBiol Chem 2000 July 14;275(28):21121-9.
    (13)Zuhlke RD, Pitt GS, Deisseroth K, Tsien RW, Reuter H. Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature 1999 May 13;399(6732):159-62.
    (14)Pate P, Mochca-Morales J, Wu Y et al. Determinants for calmodulin binding on voltage-dependent Ca2+ channels. JBiol Chem 2000 December 15;275(50):39786-92.
    (15)Putkey JA, Kleerekoper Q, Gaertner TR, Waxham MN. A new role for IQ motif proteins in regulating calmodulin function. JBiol Chem 2003 December 12;278(50):49667-70.
    (16)Peterson BZ, DeMaria CD, Adelman JP, Yue DT. Calmodulin is the Ca2+ sensor for Ca2+-dependent inactivation of L-type calcium channels. Neuron 1999 March;22(3):549-58.
    (17)Pitt GS, Zuhlke RD, Hudmon A, Schulman H, Reuter H, Tsien RW. Molecular basis of calmodulin tethering and Ca2+-dependent inactivation of L-type Ca2+ channels. JBiol Chem 2001 August 17;276(33):30794-802.
    (18)Mouton J, Feltz A, Maulet Y. Interactions of calmodulin with two peptides derived from the c-terminal cytoplasmic domain of the Ca(v)1.2 Ca2+ channel provide evidence for a molecular switch involved in Ca2+-induced inactivation. JBiol Chem 2001 June 22;276(25):22359-67.
    (19)Qin N, Olcese R, Bransby M, Lin T, Birnbaumer L. Ca2+-induced inhibition of the cardiac Ca2+ channel depends on calmodulin. Proc Natl Acad Sci USA 1999 March 2;96(5):2435-8.
    (20)Tang W, Halling DB, Black DJ et al. Apocalmodulin and Ca2+ calmodulin-binding sites on the CaV1.2 channel. Biophys J 2003 September;85(3):1538-47.
    (21)Lee A, Zhou H, Scheuer T, Catterall WA. Molecular determinants of Ca(2+)/calmodulin-dependent regulation of Ca(v)2.1 channels. Proc Natl Acad Sci U S A 2003 December 23;100(26):16059-64.
    (22)Lee A, Wong ST, Gallagher D et al. Ca2+/calmodulin binds to and modulates P/Q-type calcium channels. Nature 1999 May 13;399(6732):155-9.
    (23)Halling DB, racena-Parks P, Hamilton SL. Regulation of voltage-gated Ca2+ channels by calmodulin. Sci STKE 2006 January 17;2006(318):erl.
    (24)Xu JJ, Hao LY, Kameyama A, Kameyama M. Calmodulin reverses rundown of L-type Ca(2+) channels in guinea pig ventricular myocytes. Am JPhysiol Cell Physiol 2004 December;287(6):C 1717-C1724.
    (25)Mori M, Konno T, Ozawa T, Murata M, Imoto K, Nagayama K. Novel interaction of the voltage-dependent sodium channel (VDSC) with calmodulin:does VDSC acquire calmodulin-mediated Ca2+-sensitivity? Biochemistry 2000 February 15;39(6):1316-23.
    (26)Tan HL, Kupershmidt S, Zhang R et al. A calcium sensor in the sodium channel modulates cardiac excitability. Nature 2002 January 24;415(6870):442-7.
    (27)Deschenes I, Neyroud N, DiSilvestre D, Marban E, Yue DT, Tomaselli GF. Isoform-specific modulation of voltage-gated Na(+) channels by calmodulin. Circ Res 2002 March 8;90(4):E49-E57.
    (28)Kim J, Ghosh S, Liu H, Tateyama M, Kass RS, Pitt GS. Calmodulin mediates Ca2+ sensitivity of sodium channels. JBiol Chem 2004 October 22;279(43):45004-12.
    (29)Herzog RI, Liu C, Waxman SG, Cummins TR. Calmodulin binds to the C terminus of sodium channels Navl.4 and Navl.6 and differentially modulates their functional properties. JNeurosci 2003 September 10;23(23):8261-70.
    (30)Lee-Kwon W, Goo JH, Zhang Z, Silldorff EP, Pallone TL. Vasa recta voltage-gated Na+ channel Navl.3 is regulated by calmodulin. Am J Physiol Renal Physiol 2007 January;292(1):F404-F414.
    (31)Yus-Najera E, Santana-Castro I, Villarroel A. The identification and characterization of a noncontinuous calmodulin-binding site in noninactivating voltage-dependent KCNQ potassium channels. JBiol Chem 2002 August 9;277(32):28545-53.
    (32)Splawski I, Shen J, Timothy KW et al. Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation 2000 September 5;102(10):1178-85.
    (33)Ghosh S, Nunziato DA, Pitt GS. KCNQ1 assembly and function is blocked by long-QT syndrome mutations that disrupt interaction with calmodulin. Circ Res 2006 April 28;98(8):1048-54.
    (34)Ghosh S, Nunziato DA, Pitt GS. KCNQ1 assembly and function is blocked by long-QT syndrome mutations that disrupt interaction with calmodulin. Circ Res 2006 April 28;98(8):1048-54.
    (35)Tohse N. Calcium-sensitive delayed rectifier potassium current in guinea pig ventricular cells. Am J Physiol 1990 April;258(4 Pt 2):H1200-H1207.
    (36)Bai CX, Namekata I, Kurokawa J, Tanaka H, Shigenobu K, Furukawa T. Role of nitric oxide in Ca2+ sensitivity of the slowly activating delayed rectifier K+ current in cardiac myocytes. Circ Res 2005 January 7;96(1):64-72.
    (37)Shamgar L, Ma L, Schmitt N et al. Calmodulin is essential for cardiac IKS channel gating and assembly:impaired function in long-QT mutations. Circ Res 2006 April 28;98(8):1055-63.
    (38)Xia XM, Fakler B, Rivard A et al. Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 1998 October 1;395(6701):503-7.
    (39)Keen JE, Khawaled R, Farrens DL et al. Domains responsible for constitutive and Ca(2+)-dependent interactions between calmodulin and small conductance Ca(2+)-activated potassium channels. J Neurosci 1999 October 15;19(20):8830-8.
    (40)Schumacher MA, Rivard AF, Bachinger HP, Adelman JP. Structure of the gating domain of a Ca2+-activated K+ channel complexed with Ca2+/calmodulin. Nature 2001 April 26;410(6832):1120-4.
    (41)Li W, Halling DB, Hall AW, Aldrich RW. EF hands at the N-lobe of calmodulin are required for both SK channel gating and stable SK-calmodulin interaction. J Gen Physiol 2009 October;134(4):281-93.
    (42)Fanger CM, Ghanshani S, Logsdon NJ et al. Calmodulin mediates calcium-dependent activation of the intermediate conductance KCa channel, IKCal. JBiol Chem 1999 February 26;274(9):5746-54.
    (43)Stansfeld CE, Roper J, Ludwig J et al. Elevation of intracellular calcium by muscarinic receptor activation induces a block of voltage-activated rat ether-a-go-go channels in a stably transfected cell line. Proc Natl Acad Sci USA 1996 September 3;93(18):9910-4.
    (44)Schonherr R, Lober K, Heinemann SH. Inhibition of human ether a go-go potassium channels by Ca(2+)/calmodulin. EMBO J 2000 July 3;19(13):3263-71.
    (45)Ziechner U, Schonherr R, Born AK et al. Inhibition of human ether a go-go potassium channels by Ca2+/calmodulin binding to the cytosolic N-and C-termini. FEBS J 2006 March;273(5):1074-86.
    (46)Niemeyer BA, Bergs C, Wissenbach U, Flockerzi V, Trost C. Competitive regulation of CaT-like-mediated Ca2+ entry by protein kinase C and calmodulin. Proc Natl Acad Sci USA 2001 March 13;98(6):3600-5.
    (47)Boulay G. Ca(2+)-calmodulin regulates receptor-operated Ca(2+) entry activity of TRPC6 in HEK-293 cells. Cell Calcium 2002 October;32(4):201-7.
    (48)Singh BB, Liu X, Tang J, Zhu MX, Ambudkar IS. Calmodulin regulates Ca(2+)-dependent feedback inhibition of store-operated Ca(2+) influx by interaction with a site in the C terminus of TrpCl. Mol Cell 2002 April;9(4):739-50.
    (49)Zitt C, Obukhov AG, Strubing C et al. Expression of TRPC3 in Chinese hamster ovary cells results in calcium-activated cation currents not related to store depletion. J Cell Biol 1997 September 22;138(6):1333-41.
    (50)Niemeyer BA, Bergs C, Wissenbach U, Flockerzi V, Trost C. Competitive regulation of CaT-like-mediated Ca2+ entry by protein kinase C and calmodulin. Proc Natl Acad Sci USA 2001 March 13;98(6):3600-5.
    (51)Lambers TT, Weidema AF, Nilius B, Hoenderop JG, Bindels RJ. Regulation of the mouse epithelial Ca2(+) channel TRPV6 by the Ca(2+)-sensor calmodulin. J Biol Chem 2004 July 9;279(28):28855-61.
    (52)Niemeyer BA, Bergs C, Wissenbach U, Flockerzi V, Trost C. Competitive regulation of CaT-like-mediated Ca2+ entry by protein kinase C and calmodulin. Proc Natl Acad Sci U S A 2001 March 13;98(6):3600-5.
    (53)Rhoads AR, Friedberg F. Sequence motifs for calmodulin recognition. FASEB J 1997 April;11(5):331-40.
    (54)Balshaw DM, Xu L, Yamaguchi N, Pasek DA, Meissner G. Calmodulin binding and inhibition of cardiac muscle calcium release channel (ryanodine receptor). J Biol Chem 2001 June 8;276(23):20144-53.
    (55)Tripathy A, Xu L, Mann G, Meissner G. Calmodulin activation and inhibition of skeletal muscle Ca2+ release channel (ryanodine receptor). Biophys J 1995 July;69(1):106-19.
    (56)Zhang S, Ehlers MD, Bernhardt JP, Su CT, Huganir RL. Calmodulin mediates calcium-dependent inactivation of N-methyl-D-aspartate receptors. Neuron 1998 August;21(2):443-53.
    (57)Krupp JJ, Vissel B, Thomas CG, Heinemann SF, Westbrook GL. Interactions of calmodulin and alpha-actinin with the NR1 subunit modulate Ca2+-dependent inactivation of NMDA receptors. J Neurosci 1999 February 15;19(4):1165-78.
    (58)Ehlers MD, Zhang S, Bernhadt JP, Huganir RL. Inactivation of NMDA receptors by direct interaction of calmodulin with the NR1 subunit. Cell 1996 March 8;84(5):745-55.
    (59)Tripathy A, Xu L, Mann G, Meissner G. Calmodulin activation and inhibition of skeletal muscle Ca2+ release channel (ryanodine receptor). Biophys J 1995 July;69(1):106-19.
    (60)Meissner G, Henderson JS. Rapid calcium release from cardiac sarcoplasmic reticulum vesicles is dependent on Ca2+ and is modulated by Mg2+, adenine nucleotide, and calmodulin. JBiol Chem 1987 March 5;262(7):3065-73.
    (61)Porter MC, Zhang JZ, Hamilton SL. A role for cysteine 3635 of RYR1 in redox modulation and calmodulin binding. JBiol Chem 1999 December 24;274(52):36831-4.
    (62)Hudmon A, Schulman H, Kim J, Maltez JM, Tsien RW, Pitt GS. CaMKII tethers to L-type Ca2+ channels, establishing a local and dedicated integrator of Ca2+ signals for facilitation. J Cell Biol 2005 November 7;171(3):537-47.
    (63)Wagner S, Dybkova N, Rasenack EC et al. Ca2+/calmodulin-dependent protein kinase II regulates cardiac Na+ channels. J Clin Invest 2006 December;116(12):3127-38.
    (64)Varga AW, Yuan LL, Anderson AE et al. Calcium-calmodulin-dependent kinase II modulates Kv4.2 channel expression and upregulates neuronal A-type potassium currents. J Neurosci 2004 April 7;24(14):3643-54.
    (65)Colinas O, Gallego M, Setien R, Lopez-Lopez JR, Perez-Garcia MT, Casis O. Differential modulation of Kv4.2 and Kv4.3 channels by calmodulin-dependent protein kinase Ⅱ in rat cardiac myocytes. Am JPhysiol Heart Circ Physiol 2006 October;291 (4):H1978-H1987.
    (66)Zhang T, Maier LS, Dalton ND et al. The deltaC isoform of CaMKII is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure. Circ Res 2003 May 2;92(8):912-9.
    (67)Wehrens XH, Lehnart SE, Reiken SR, Marks AR. Ca2+/calmodulin-dependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor. Circ Res 2004 April 2;94(6):e61-e70.
    (68)Tran QK, Watanabe H, Zhang XX, Takahashi R, Ohno R. Involvement of myosin light-chain kinase in chloride-sensitive Ca2+ influx in porcine aortic endothelial cells. Cardiovasc Res 1999 December;44(3):623-31.
    (69)Aromolaran AS, Albert AP, Large WA. Evidence for myosin light chain kinase mediating noradrenaline-evoked cation current in rabbit portal vein myocytes. JPhysiol 2000 May 1;524 Pt 3:853-63.:853-63.
    (70)Kim YC, Kim SJ, Kang TM, Suh SH, So I, Kim KW. Effects of myosin light chain kinase inhibitors on carbachol-activated nonselective cationic current in guinea-pig gastric myocytes. Pflugers Arch 1997 August;434(4):346-53.
    (71)Shimizu S, Yoshida T, Wakamori M et al. Ca2+-calmodulin-dependent myosin light chain kinase is essential for activation of TRPC5 channels expressed in HEK293 cells. JPhysiol 2006 January 15;570(Pt 2):219-35.
    (72)Kim BJ, Jeon JH, Kim SJ, So I. Role of calmodulin and myosin light chain kinase in the activation of carbachol-activated cationic current in murine ileal myocytes. Can JPhysiol Pharmacol 2007 December;85(12):1254-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700