用户名: 密码: 验证码:
基于地理信息系统和遥感的草地火状况研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
草地是地球表层最主要的生态系统之一,在工农业生产、环境保护以及生态安全等方面发挥着重要的作用。火是地球上广泛存在的自然现象之一,自从地球上有了草地,火就对其产生影响,并发挥着或正面或负面的作用,成为草地生态系统发展、演替过程中不可或缺的影响因子。
     在我国,草地占国土面积的41.7%,在国民经济和生态环境、生态安全等方面具有不可替代的重要战略地位。我国约有10亿亩草地每年频繁地发生草地火,对人民生命和财产安全造成巨大威胁和损失,同时对草原生态系统产生许多不良影响。因此,加强草地火干扰因子的研究,认识草地火的发生、蔓延机制及其时间-空间格局,为科学地制定草地火管理规划奠定基础。本文通过对草地火可燃物燃烧性、可燃物量、火行为、火气候和草地火发生概率、火险分区等方面的研究,获得如下结果:
     1)草地可燃物的燃烧过程可以分为三个阶段:初期无焰热解阶段、有焰燃烧阶段及炭化燃烧阶段。有焰燃烧阶段是整个燃烧过程中最重要的阶段,可燃物样品的热释放速率、质量损失速率、烟释放速率、二氧化碳生成速率等与此阶段的变化趋势一致,并在燃烧最剧烈时达到峰值。松嫩草原10种主要的草地可燃物的综合性燃烧指数从大到小依次为:虎尾草>碱茅>扁蓄豆>拂子茅>牛鞭草>羊草>芦苇>五脉山黎豆>角碱蓬>兴安胡枝子。
     2)草地可燃物隶属于生物质可燃物,其热解特征受可燃物的主要组成成分半纤维素、纤维素和木质素的影响。草地可燃物的热解过程遵循反应级数为1的动力学反应过程,热解过程主要分为三个阶段:在120℃以前发生的第一阶段主要是可燃物样品的失水过程,水分越大,第一阶段失重率越高;在120℃-360℃之间的第二阶段主要是半纤维素和纤维素的热解阶段,在此阶段析出大量的挥发分,形成主要的失重过程;360℃以后发生的是热解的第三阶段,主要是木质素和残余物质继续发生相对缓慢的热解反应,在此阶段主要生成炭。通过对草地可燃物综合热解燃尽指数的计算得出扁蓄豆的热解燃尽性最好,而羊草的热解速度最慢,热解稳定性最好。
     3)草地火行为主要受地形条件、气象条件、可燃物状况、可燃物床等要素的影响。草地火蔓延速度随着可燃物床体积密度和可燃物量的增加而增加,当可燃物量达到350g/m2左右时,蔓延速度开始下降;可燃物含水率为35%是草地火能否蔓延的阈值;当火场地形为上坡时,坡度增加1o时,火速约增加1.07倍,多,其中风的作用最为显著,成显著正相关,并且风速的增加使草地火蔓延所需可物物量的下限最低能达到60g/m2左右。
     4)通过草地枯落可燃物与土壤的光谱特征在短波红外的差异分析,构建枯草植被指数,改进了现有的枯落可燃物量的研究方法。结合地表温度与枯落可燃物湿度之间的关系,建立应用热红外遥感影像反演地表温度并推算可燃物湿度的方法,具有较强的适用性和时效性。
     5)内蒙古草地火气候指数较高季节发生在4-6月和9-10月份,其它月份火气候指数较低,内蒙古地区草地火可能发生的季节可达7-9月之久;草地火气候指数分布的空间格局是从西向东逐级递减;从1970-2008年,火气候指数空间分布的重心在70-80年代由东北向西南迁移,80年代后一直由西南向东北迁移。
     6)应用地理信息系统的空间叠加分析功能和Logistic回归分析对人为原因引起的草地火发生概率建立精度较高的预测模型。人为原因引起的草地火发生概率与温度成正相关,与降水量、相对湿度、到达乡村道路、铁路、村屯、独立建筑物的距离以及高程等成负相关关系。呼伦贝尔盟人为原因草地火点燃概率的空间分布格局是西南部高于其它区域,其原因主要是在该区域内村屯密度和乡村路的密度较大,相对的人为活动多,可燃物被点燃的可能性也相应地增大。
     7)通过集成可燃物、火气候、可达性和坡度因素,提出了草地火险评估的总体性框架,并在其指导下建立了集成模型与评估方法进行草地火险的评估;通过空间聚类分析,对呼伦贝尔盟草地火险评估结果进行分区并制作草地火险分区图。该区域内整体火险状况较高,极高和高火险区的面积比例达到65%,主要分布在研究区的中部和东部。
Grassland is considered as one of the most important ecosystem in the land surface. Grassland has important function on agricultural productions, environmental protection, and ecological security. As a universal natural phenomenon, fires always have good or bad impact on the grassland since it occurred. Wildfire has become an indispensable disturbance factor about the development and succession of grassland in natural ecosystems.
     In China, the area of grassland account for 41.7% of total land area. Approximately, fire was occurred in 10 million Ha area of grassland annually. These fires caused great economical loss and large harmful effects on grassland ecosystem. Grassland fire manager need to enhance the studies of fire disturbance and to know the rules of fire occurrence and fire spread, to grasp the pattern of spatial and time distribution. In this article, we have some conclusions by studies of fuel combustibility, fuel gross, fire behavior, fire climate, probabilities of fire occurrences and fire risk zones:
     1) The process of grass fuels combustion was divided into three stages: The first stage is no flame pyrolysis;The second stage is combustion with flame and the third stage is carbonizing combustion. The second stage is the most important stage. The peaks of Heat Release Rate, Mass Loss Rate,Smoke Production Rate and the other parameters of grass fuels combustion occurred in this stage. The integrated combustion index of 10 dominant species in song-nen plain was calculated and the relative value is ranked: Chloris virgata Swartz > Puccinellia chinampoensis > Pocockia ruthenica > Calamagrostis epigejos > Hemarthria japonica > Aneurolepidium chinense > Phragmites communis Trirn > Lathyrus quinquenervius > Suaeda corniculata > Lespedeza davurica.
     2) Grass fuel is one of biologic fuels. Pyrolysis characteristic of grass fuel is dominated by the main components, hemicelluloses, cellulose and lignin. The reaction order of process is 1. The process of pyrolysis was divided into three stage: before 120℃, the first stage is dehydration process and the ratio of mass loss is proportional to water content; During 120– 360℃, the second stage is pyrolysis of hemicelluloses and cellulose. In this process, the mass of volatile component yield and the ratio of mass loss are biggest. After 360℃, the third stage is pyrolysis of lignin and other residues. Char is the main production. An integrated burnout index is calculated to express the pyrolysis characteristic. The pyrolysis rate of Aneurolepidium chinense is lowest and the sustainability is best.
     3) The behavior of grassland fire is affected by topography, weather conditions, fuel conditions and the bed of fuels. The rate of grassland fire spread increases with increasing fuel mass and the volume density of fuel bed. When the density of fuel reached 350g/m2, the rate of fire spread begin to decrease. The threshold value of grassland fire spread is 35% of water content of grass fuels. In uphill, when the slope increases 1 degree, the speed of fire spread increases 1.07 times; in downhill, when the slope increases 1 degree, the speed increases 1.005 times. Most factors of weather have influence on grassland fire spread. But the effect of wind is more significant than the other factors. The relationship between wind and fire spread is positive. The lower limit of grass fuel supported fire spread is decreased to 60g/ m2 under the effect of wind.
     4) The difference of spectral features between residue grass and soil in short infrared is significant. An index of residue grass was created and this method would improve the present research situation of residue fuel mass. Integrating land surface temperature and water content of residue grass fuel, a method was created to assess the fuel moisture with reversing land surface temperature with thermal infrared image.
     5) In Inner Mongolia, index of fire climate is higher in April, May, June, September and October. The fire season is no less than 7 months and no more than 9 months. The spatial distribution of index of grassland fire climate is decline from west to east in the study region. During 1970-2008, the center of the spatial distribution changed continually. From 1970s to 1980s, the center moved from northeast to southwest. After 1980s, the center moved from southwest to northeast continuously.
     6) Supported by spatial analyst of GIS and Logistic regression, the predicted model of assessing the probability of human-caused grassland fire occurrence was created. The probabilities have positive correlation with temperature and have negative correlation with precipitation, relative humidity, the distance to dirt roads, paved road railroad, villages, human building and the elevation. In Hulunbeir, the probabilities of human-caused grassland fire occurrence are higher in southwest than in the other areas. The main reasons caused this distribution are higher densities of villages and dirt roads and more human activities in southwest.
     7) Integrating grass fuel, fire climate, accessibilities and slope, a general scheme of assessing grassland fire risk was proposed. With spatial cluster analysis, the grassland fire risk zones were divided and the zone map of Hulunbeir was designed. In this region, the area with higher fire risk was more than 65%, distributed in the middle and east.
引文
[1]周道玮.草地火生态学研究进展[M].长春,吉林科学技术出版社,1995.
    [2]周道玮.植被火生态与植被火管理[M].吉林科学技术出版社,1995.
    [3]李政海,鲍雅静.草原火的热状况及其对植物的生态效应[J].内蒙古大学学报(自然科学版),1995,26(4):490-495.
    [4]裴成芳.草原火对克氏针茅+扁穗冰草—冷蒿型草地植被的影响[J].草业科学. 1997,14(5):1-3.
    [5]阿尔木.锡林郭勒草原火管理现状及思考[J].草业科学,14(6):57-60.
    [6]程渡,崔鲜一,彭玉梅.草地火灾生成原因及火管理系统的研究[J].四川草原, 2002,3:39-42.
    [7]周道玮,李晓波.草地计划火烧理论与技术[J].中国草地,1996,4:69-72.
    [8]杨道贵,马志贵,鄢武先,杨光荣,刘勇[J].计划火烧对林间草地产草
    [9]周道玮.草地火管理.国外畜牧学,1995,4:1-3.
    [10]崔鲜一,彭玉梅,程渡,马恒宇,金娟,胡秋芳.草地火灾生成原因及火管理系统的应用研究[J].内蒙古草业,2001,13(4):15-17.
    [11]周道玮,郭平,岳秀泉,田洪艳.松嫩草原火干扰状况研究[J].草业学报,1998,7(3):8-13.
    [12]周道玮,张智山.草地火燃烧、火行为和火气候[J].中国草地, 1996, 3:74-77.
    [13]傅泽强,杨友孝,戴尔阜.内蒙古干草原火动态及火险气候区划研究[J].中国农业资源与区划,2001,22(6):18-22
    [14]王明玉,李涛,任云卯,舒立福,赵凤君,田晓瑞.森林火行为与特殊火行为研究进展[J].世界林业研究,2009,22(2):45-49.
    [15]张敏,刘东明.长白山林区落叶松林可燃物模型及火行为状况[J].自然灾害学报,2007,16(2):127-132.
    [16]郭平,孙刚,周道玮,李军.草地火行为研究[J].应用生态学报,2001,12(5):746-748.
    [17]高歌,张洪涛,张尚印.内蒙古森林气象火险等级数值模拟个例研究[J].自然灾害学报,2004,13(5): 32-39.
    [18]李社锋.火灾可燃物热解着火特性研究[M].杭州:浙江大学出版社,2006
    [19]Slawomir Borysiak , Dominik Paukszta , Malgorzata Helwig. Flammability of woodepolypropylene composites[J]. Polymer Degradation and Stability,2006,91:3339-3343.
    [20]L.G. Hanu,G.P. Simon,Y.B. Cheng. Thermal stability and flammability of silicone polymer composites[J]. Polymer Degradation and Stability,2006,91:1373-1379.
    [21]Mansouri J, Burford R, Cheng Y-B, Hanu LG. Formation of strong ceramified ash from silicone-based compositions[J]. Journal of Materials Science,2005,40:5741-5749.
    [22]李斌,王建祺.聚合物材料燃烧性和阻燃性的评价——锥形量热仪(CONE)法[J].高分子材料科学与工程, 1998,14(5):15-19.
    [23]Zhang J, Silcock GW H, Shields T J. Study of the combustion and fire retardancy of polyacrylonitrile and its copolymers by using cone calorimetry[J]. Journal of Fire Science,1995,13:141-161.
    [24]M ichael Delichatsios,Bradley Paroz,A tul Bhargava. Flammability properties for charring materials [J]. Fire Safety Journal, 2003,(38):219-228.
    [25]徐晓楠.新一代评估方法—锥形量热仪(CONE)法在材料阻燃研究中的应用[J].中国安全科学学报, 2003, 13(1):19-23.
    [26]单延龙,李华,其其格.黑龙江大兴安岭主要树种燃烧性及理化性质的实验分析[J].火灾科学,2004,12(2):74-78.
    [27]陈存及,何宗明,陈东华等. 37种针阔树种抗火性能及其综合评价的研究[J].林业科学, 1995, 31(2):133-143.
    [28]刘菲,胡海清.森林可燃物理化性质与燃烧性的研究综述[J].森林防火,2005,1:28-30.
    [29]Kanury A M. Thermal decomposition kinetics of wood[J]. Combustion and Flame,1972,18:75-83.
    [30] Wan-cui Xie, Jian Tang, Xiao-hong Gu, Chang-rong Luo, Guang-yu Wang. Thermal decomposition study of menthyl-glycoside by TGA/SDTA, DSC and simultaneous Py-GC–MS analysis[J]. Journal of Analytical and Applied Pyrolysis,2007,78:180–184.
    [31] S. Liodakis, D. Bakirtzis, A. Dimitrakopoulos. Ignition characteristics of forest species in relation to thermal analysis data[J]. Thermochimica Acta,2002,390:83–91.
    [32] Thomas Grotkj?r, Kim Dam-Johansen, Anker D. Jensen, Peter Glarborg. An experimental study of biomass ignition[J]. Fuel,2003,82:825–833.
    [33]Gosz, J.R., Moore, D.I., Shore, G.A., Grover, H.D. Lightning estimates of precipitation location and quantity on the Sevilleta LTER, New Mexico[J]. Ecological Applications, 1995,5:1141–1150.
    [34]Gosz, R.J., Gosz, J.R. Species interactions on the biome transition zone in New Mexico: response of blue grama (Bouteloua gracilis) and black grama (Bouteloua eriopoda) to fire and herbivory[J]. Journal of Arid Environments, 1996,34:101–114.
    [35]Danthu, P., Ndongo, M., Diaou, M., Thiam, O., Sarr, A., Dedhiou, B., Vall, A.O.M. Impact of bush fire on germination of some West African Acacias[J]. Forest Ecology and Management, 2003,173:1–10.
    [36]Sheuyange, Oba, Weladji. Effects of anthropogenic fire history on savanna vegetation in northeastern Namibia[J]. Journal of Environmental Management, 2005,75:189–198.
    [37]Edwards, A., Hauser, P., Anderson, M., McCartney, J., Armstrong, M., Thackway, R., Allan, G., Hempel, C., Russell-Smith, J. A tale of two parks: contemporary fire regimes of Litchfield and Nitmiluk National Parks, monsoonal northern Australia[J]. International Journal of Wildland Fire, 2001,10:79–89.
    [38]Fu, Z., Wang, Y., Wang, C. Research on the spring fire-risk forecasting model in dry grasslands in Inner Mongolia [J]. Quarterly Journal of Applied Meteorology, 2001,12:202-209.
    [39]Bahre, C.J. Wildfire in southeastern Arizona between 1859 and 1890[J]. Desert Plants, 1985, 7:190–194.
    [40]Guevara, J.C., Stasi, C.R., Wuilloud, C.F., Estevez, O.R. Effects of fire on rangeland vegetation in south-western Mendoza plains (Argentina): composition, frequency, biomass, productivity and carrying capacity[J]. Journal of Arid Environments, 1999,41:27–35.
    [41]Chou, Y.H., Minnich, R.A., Chase, R.A. Mapping probability of fire occurrence in SanJacinto Mountains, California, USA[J]. Environment Management, 1993,17:129–140.
    [42] Vega Garcia, C., Woodard, P.M., Titus, S.J., Adamowicz, W.L., Lee, B.S. A logistic model for predicting the daily occurrence of human caused forest fires[J]. International Journal of Wildland Fire, 1995,5:101–111.
    [43]Hernandez-Leal, P.A., Arbelo, M., Gonzalez-Calvo, A. Fire risk assessment using satellite data[J]. Advances in Space Research, 2006,37:741–746.
    [44]Cohen J D, Deeming J E. The National Fire Danger Rating System: basic equations. Berkeley CA: Pacific Southwest Forest and Range Experiment Station. Rep. No. PSW-82. 1982.
    [45]Anderson H E. Aids to determining fuel models for estimating fire behavior. Ogden UT: USDA, Forest Service. Rep. No. GTR INT-122. 1982.
    [46]Andrews P L. BEHAVE: Fire behavior prediction and fuel modeling system-Burn subsystem, Part 1. Ogden UT: USDA, Forest Service, Intermountain Forest and Range Experiment Station. Rep. No. GTR INT-194. 1986.
    [47]Finney M A. FARSITE: fire area simulator–model development and valuation. Ogden UT: USDA, Forest Service. Rep. No. Paper RMRS-RP-4. 1998.
    [48]Van Wagner C E. Development and Structure of the Canadian Forest Fire Behavior Prediction System. Ottawa Ontario: Forestry Canada, Forestry Canada Fire Danger Group. Information Report ST-X-3. 1992.
    [49]郑焕能.森林燃烧网[M].东北林业大学出版社,2003.
    [50]胡海清.林火生态与管理[M].中国林业出版社,2005.
    [51]郭平,康春莉,田卫,李军,周道玮.草地可燃物床特性与草地火行为的关系[J].干旱区研究,2002,19(4):13-16.
    [52]郭平,周道玮,孙刚,田洪艳.羊草可燃物含水率变化规律的研究[J].东北师范大学学报(自然科学版), 1999,4:105-110.
    [53]刘桂香,宋中山,苏和,吴晓天.中国草原火灾监测预警[M].中国农业科学技术出版社,2008.
    [54] Rothermel R C. A mathematical model for predicting fire spread in wildland fuels. Ogden UT: USDA, Forest Service. Rep. No. RP INT-115, 1972.
    [55]Andrews P L. BEHAVE: Fire behavior prediction and fuel modeling system-Burn subsystem, Part 1[R]. Ogden UT: USDA, Forest Service, Intermountain Forest and Range Experiment Station. Rep. No. GTR INT-194, 1986.
    [56]Finney M A. FARSITE: fire area simulator–model development and valuation[R]. Ogden UT: USDA, Forest Service. Rep. No. Paper RMRS-RP-4, 1998.
    [57]Van Wagner C E. The development and structure of the Canadian Forest Fire Weather Index System. Chalk River Ont: Canadian Forest Service, Petawawa National ForestryInstitute. FTR-35, 1987.
    [58]Van Wagner C E. Development and Structure of the Canadian Forest Fire Behavior Prediction System[R]. Ottawa Ontario: Forestry Canada, Forestry Canada Fire Danger Group. Information Report ST-X-3, 1992.
    [59]McArthur, A.G. Weather and grassland fire behaviour.Department of National Development,Forestry and Timber Bureau Leaflet, Canberra,Australia, 1966, No.100.
    [60]McArthur, A.G. Fire behaviour in eucalypt forests.Department of National Development, Forestry and Timber Bureau Leaflet, Canberra,Australia,1967, No.107.
    [61]McArthur,A.G. Grassland Fire Danger Meter,Mk 5.Country Fire Authority of Victoria, Melbourne, 1977.
    [62]王正非.山火初始蔓延速度测算法[J].山地研究,1983,1(2): 42-51.
    [63]王海晖,景文峰,王清安.森林地表火蔓延的计算机模拟[J].中国科学技术大学学报,1994,24(3): 305-310.
    [64]袁宏永,范维澄.由航空影像及DTM测量林火行为的数学模型与方法[J].火灾科学,1995,4(2): 31-51.
    [65]寇文正.林火管理信息系统[M].北京:中国林业出版社,1993.
    [66]Karafyllidis I, Thanailakis A. A model for predicting forest fire spreading using cellular automata[J]. Ecological Modeling, 1997, 99: 87-97.
    [67]Berjak S G, Hearne J W. An improved cellular automaton model for simulating fire in a spatially heterogeneous Savanna system[J]. Ecological Modeling, 2002, 148: 133–151.
    [68]Alexandridis A, Vakalis D, Siettos C I, et al. A cellular automata model for forest fire spread prediction: The case of the wildfire that swept through Spetses Island in 1990[J]. Applied Mathematics and Computation, 2008, 204: 191–201.
    [69]刘月文,杨宏业,王硕,赵淳.一种基于CA的林火蔓延模型的设计与实现—以内蒙古地区为例[J].灾害学,2009,24(3):98-102.
    [70]宋卫国,范维澄.整数型森林火灾模型及其自组织临界性[J].火灾科学,2001,10(1):53-56.
    [71]张显峰,崔伟宏.基于GIS和CA模型的时空建模方法研究[J].中国图象图形学报, 2000, 12: 1012-1018.
    [72]周成虎,孙占立,谢一春.地理元胞自动机研究[M].科学出版社,1999.
    [73]居恩德.林火蔓延[J].森林防火, 1986, 2: 31-33.
    [74]居恩德.林火行为[J].森林防火, 1986, 3: 41-44.
    [75]唐晓燕,孟宪宇,易浩若.林火蔓延模型及蔓延模拟的研究进展[J].北京林业大学学报, 2002, 24(1): 87-91.
    [76]朱启疆,戎太宗,孙睿.林火扩展的分形模拟案例研究[J].中国科学, 2000, 30(增刊): 106-112.Institute. FTR-35, 1987.
    [58]Van Wagner C E. Development and Structure of the Canadian Forest Fire Behavior Prediction System[R]. Ottawa Ontario: Forestry Canada, Forestry Canada Fire Danger Group. Information Report ST-X-3, 1992.
    [59]McArthur, A.G. Weather and grassland fire behaviour.Department of National Development,Forestry and Timber Bureau Leaflet, Canberra,Australia, 1966, No.100.
    [60]McArthur, A.G. Fire behaviour in eucalypt forests.Department of National Development, Forestry and Timber Bureau Leaflet, Canberra,Australia,1967, No.107.
    [61]McArthur,A.G. Grassland Fire Danger Meter,Mk 5.Country Fire Authority of Victoria, Melbourne, 1977.
    [62]王正非.山火初始蔓延速度测算法[J].山地研究,1983,1(2): 42-51.
    [63]王海晖,景文峰,王清安.森林地表火蔓延的计算机模拟[J].中国科学技术大学学报,1994,24(3): 305-310.
    [64]袁宏永,范维澄.由航空影像及DTM测量林火行为的数学模型与方法[J].火灾科学,1995,4(2): 31-51.
    [65]寇文正.林火管理信息系统[M].北京:中国林业出版社,1993.
    [66]Karafyllidis I, Thanailakis A. A model for predicting forest fire spreading using cellular automata[J]. Ecological Modeling, 1997, 99: 87-97.
    [67]Berjak S G, Hearne J W. An improved cellular automaton model for simulating fire in a spatially heterogeneous Savanna system[J]. Ecological Modeling, 2002, 148: 133–151.
    [68]Alexandridis A, Vakalis D, Siettos C I, et al. A cellular automata model for forest fire spread prediction: The case of the wildfire that swept through Spetses Island in 1990[J]. Applied Mathematics and Computation, 2008, 204: 191–201.
    [69]刘月文,杨宏业,王硕,赵淳.一种基于CA的林火蔓延模型的设计与实现—以内蒙古地区为例[J].灾害学,2009,24(3):98-102.
    [70]宋卫国,范维澄.整数型森林火灾模型及其自组织临界性[J].火灾科学,2001,10(1):53-56.
    [71]张显峰,崔伟宏.基于GIS和CA模型的时空建模方法研究[J].中国图象图形学报, 2000, 12: 1012-1018.
    [72]周成虎,孙占立,谢一春.地理元胞自动机研究[M].科学出版社,1999.
    [73]居恩德.林火蔓延[J].森林防火, 1986, 2: 31-33.
    [74]居恩德.林火行为[J].森林防火, 1986, 3: 41-44.
    [75]唐晓燕,孟宪宇,易浩若.林火蔓延模型及蔓延模拟的研究进展[J].北京林业大学学报, 2002, 24(1): 87-91.
    [76]朱启疆,戎太宗,孙睿.林火扩展的分形模拟案例研究[J].中国科学, 2000, 30(增刊): 106-112.
    [94]Chuvieco E.,Riano D.,Aguado I. Estimation of fuel moisture content from multitemporal analysis of Landsat Thematic Mapper reflectance data: Applications in fire danger assessment[J]. International Journal of Remote Sensing,2002,23(11):2145-2162.
    [95]Chuvieeo E.,Aguado I.,Cocero D,Riano D. Design of an empirical index to estimate fuel moisture content from NOAA-AVHRR images in forest fire danger studies[J]. International Journal of Remote Sensing,2003,24(8):162-1637.
    [96]唐季林,张晓丽.应用RS和GIS进行林业局森林火险区划的研究[J].北京林业大学学报,1996, 18(1): 13-20.
    [97]易浩若,纪平,覃先林.全国森林火险预报系统的研究与运行[J].林业科学. 2004,40(3): 203-207.
    [98]Zhou WQ,Zhou Y,Wang SX. Early Warning For Grassland Fire Danger In North China Using Remote Sensing [J]. IEEE Transactions on geoscience and remote sensing, 2003, 3: 2505-2507.
    [99]Wang LT,Zhou Y,Wang SX,Chen SR. Monitoring for Grassland and Forest Fire Danger Using Remote Sensing Data[J]. IEEE Transactions on Geoscience and Remote Sensing,2004,2: 2095-2098.
    [100]覃先林.遥感与地理信息系统技术相结合的林火预警方法的研究[D].中国林业科学研究院博士学位论文,2005.
    [101]郭广猛. MODIS数据处理及其在林火预警中的理论与方法研究[D].中国科学院博士学位论文,2004.
    [102]张贵.广州市林火动态监测研究[D].中南林学院博士论文.
    [1]王庆国,张军,张峰.锥形量热仪的工作原理及应用[J].仪器技术与应用,2003,6:36-39.
    [2]舒中俊,徐晓楠,李响.聚合物材料火灾燃烧性能评价—锥形量热仪试验方法[M].北京:化学工业出版社,2007. P61-63.
    [3]鞠琳,胡海清,孙龙,彭徐剑,王广宇.东北三大硬阔的阻火性能[J].东北林业大学学报,2008,36(1):28-30.
    [4]王勇,陈禹,林贻文.几种木地板火灾危险性的锥形量热仪研究[J].化学世界,11:699-702.
    [5]刘波,余树全,周国模,郑文达,刘雪松,卢凤珠,黄志伟,张子焰.利用锥形量热仪测试木荷燃烧性能的方法探讨[J].浙江林学院学报,2008,25 (1) : 69–71.
    [6]卢国建,刘松林,彭小芹.木材的燃烧性能研究——锥形量热计法[J].火灾科学与技术,2005,24(4):414-418.
    [7]田晓瑞,高承德,舒立福等.木荷林带阻火性研究[J].安全与环境学报,2003,3(6):21-24.
    [8]舒中俊,谌强.竹地板与普通实木地板燃烧性能的锥形量热仪对比实验研究[J].火灾科学,2007,16(3):148-151.
    [9]卢凤珠,徐跃标.不同竹龄毛竹材燃烧性能的研究[J].浙江林学院学报,2005,22(2):198-202.
    [10]吴玉章,原田寿郎.人工林木材燃烧性能的研究[J].林业科学,2004,40(2):131-136.
    [11]田晓瑞,贺庆堂,舒立福.利用锥形量热仪分析树种阻火性能[J].北京林业大学报,2001,23(l):48-51.
    [12]田晓瑞,舒立福.树种枝叶微观结构对树种燃烧性的影响研究[J].林业科学,2003,39(4):84-88.
    [13]李社锋.火灾可燃物热解着火特性研究[M].杭州:浙江大学出版社,2006
    [14]G.T. Linteris, I.P. Rafferty. Flame size, heat release, and smoke points in materials flammability[J]. Fire Safety Journal, 2008, 43: 442-450.
    [15]Slawomir Borysiak,Dominik Paukszta,Malgorzata Helwig. Flammability of woodepolypropylene composites[J]. Polymer Degradation and Stability,2006,91:3339-3343.
    [16]L.G. Hanu,G.P. Simon,Y.B. Cheng. Thermal stability and flammability of silicone polymer composites[J]. Polymer Degradation and Stability,2006,91:1373-1379.
    [17]Henrist C, Rulmont A, Cloots R, Gilbert B, Bernard A, Beyer G. Toward theunderstanding of the thermal degradation of commercially available fire-resistant cable[J]. Materials Letters,2000,46:160-168.
    [18]Mansouri J, Burford R, Cheng Y-B, Hanu LG. Formation of strong ceramified ash from silicone-based compositions[J]. Journal of Materials Science,2005,40:5741-5749.
    [19]李昕,欧育湘.膨胀型双环笼状磷酸酯阻燃乙烯-醋酸乙烯酯共聚物的研究[J].北京理工大学学报, 2002, 22(5):650-654.
    [20]李斌,王建祺.聚合物材料燃烧性和阻燃性的评价——锥形量热仪(CONE)法[J].高分子材料科学与工程, 1998,14(5):15-19.
    [21]Zhang J, Silcock GW H, Shields T J. Study of the combustion and fire retardancy of polyacrylonitrile and its copolymers by using cone calorimetry[J]. Journal of Fire Science,1995,13:141-161.
    [22]M ichael Delichatsios,Bradley Paroz,A tul Bhargava. Flammability properties for charring materials [J]. Fire Safety Journal, 2003,(38):219-228.
    [23]徐晓楠.新一代评估方法——锥形量热仪(CONE)法在材料阻燃研究中的应用[J].中国安全科学学报, 2003, 13(1):19-23.
    [24]王庆国,张军,张峰.锥形量热仪的工作原理及应用[J].现代科学仪器, 2003,6:36-39.
    [25]Hshieh F Y, Beeson H D. Flammability testing of flame-retarded epoxy composites and phenolic composites[J]. Fire and Materials, 1997, 21(1):41-49.
    [26]单延龙,胡海清,舒立福等.树叶抗火性的排序与分类[J].林业科学, 2003, 39(1):105-113.
    [27]单延龙,李华,其其格.黑龙江大兴安岭主要树种燃烧性及理化性质的实验分析[J].火灾科学,2004,12(2):74-78.
    [28]单延龙,刘乃安,杜建华.大兴安岭主要树种抗火性的分析和排序[J].东北林业大学学报, 2005, 33(6):19-22.
    [29]程远平,季经纬,李增华.表面漆对地板材料火灾初期热释放特性影响的研究[J].火灾科学,2000,4:47-51.
    [30]季经纬,杨立中,范维澄.外部热辐射对材料燃烧性能影响的实验研究[J].燃烧科学与技术,2003,4:139-143.
    [31]陈存及,何宗明,陈东华等. 37种针阔树种抗火性能及其综合评价的研究[J].林业科学, 1995, 31(2):133-143.
    [32]孙岩,李秋梅,宁宝杰.大兴安岭林区防火林带耐火树种的选择[J].林业科技, 2001, 26(3):30-34.
    [1]刘乃安.生物质材料热解失重动力学及其分析方法研究[D]:[博士学位论文].合肥:中国科学技术大学火灾科学国家重点实验室, 2000.
    [2]?刘菲,胡海清.?森林可燃物理化性质与燃烧性的研究综述[J].森林防火,2005,1:28-30.
    [3]舒立福,田晓瑞,李红等.我国亚热带若干树种的抗火性研究[J].火灾科学,2000,9(2):1-7.
    [4]刘世荣,蔡体久,柴一新等.落叶松人工林群落能量积累、分配、固定和转化的研究[J].生态学杂志,1990,9(6):7-10.
    [5]黄世能,郑海水,何克军.桉树薪炭林混交试验Ⅱ.林分生物量和能量的分配研究[J].林业科学研究,1991,4(5):545-549.
    [6]林承超.福州鼓山季风常绿阔叶林及其林缘几种植物叶热值和营养成分[J].生态学报,1999,19(6):832-836.
    [7]林鹏,邵成,郑文教.福建和溪亚热带雨林优势植物叶的热值研究[J].植物生态学报,1996,20(4):303-309.
    [8]李意德,吴仲明,曾庆波等.尖峰岭热带同地雨林主要种类能量背景值测定分析[J].植物生态学报,1996,21(1):1-10.
    [9]任海,彭少麟,刘鸿先等.鼎湖山植物群落及其主要植物的热值研究[J].植物生态学报,1999,23(2):148-154.
    [10]郭继勋,王若丹,包国章.东北羊草草原主要植物热值[J].植物生态学报,2001,25(6):746-750.
    [11]王新运.生物质热解动力学研究[D]:[硕士学位论文].安徽理工大学,2006 .
    [12]王树荣,刘倩,骆仲泱,文丽华,岑可法.基于热重红外联用分析的纤维素热裂解机理研究[J].浙江大学学报(工学版),2006,40(7):1154-1158.
    [13]王威岗,韦杰,董长青.木质纤维热解的热重和反应动力学研究[J].可再生能源,2007,25(5):23-26.
    [14]董良杰,李太浩,徐保江等.生物质热裂解机理研究进展[J].吉林农业大学学报,1997,19(增刊):137-140.
    [15]赖艳华,吕明新,马春元等.秸秆类生物质热解特性及其动力学研究[J].太阳能学报,2002,23(2):203-206.
    [16]陈森.生物质热解特性及热解动力学研究[D]:[硕士学位论文].南京理工大学,2005.
    [17]蒋剑春,沈兆邦.生物质热解动力学的研究[J].林产化学与工业,2003,23(4):1-6.
    [18]Kanury A M. Thermal decomposition kinetics of wood[J]. Combustion and Flame,1972,18:75-83.
    [19] S. Liodakis, D. Vorisis, I.P. Agiovlasitis. A method for measuring the relative particle fire hazard properties of forest species[J].Thermochimica Acta,2005,437:150–157.
    [20] H.E. Anderson. Forest fuel ignitability[J]. Fire technology,1970,6:312-319.
    [21] Chen Y, Mori S, Pan WP. Studying the mechanisms of ignition of coal particles by TG-DTA[J]. Thermochim Acta,1996,275:149–158.
    [22] V. Leroy, D. Cancellieri, E. Leoni. Thermal degradation of ligno-cellulosic fuels: DSC and TGA studies[J]. Thermochimica Acta,2006,451:131–138.
    [23] Wan-cui Xie, Jian Tang, Xiao-hong Gu, Chang-rong Luo, Guang-yu Wang. Thermal decomposition study of menthyl-glycoside by TGA/SDTA, DSC and simultaneous Py-GC–MS analysis[J]. Journal of Analytical and Applied Pyrolysis,2007,78:180–184.
    [24] S. Liodakis, D. Bakirtzis, A. Dimitrakopoulos. Ignition characteristics of forest species in relation to thermal analysis data[J]. Thermochimica Acta,2002,390:83–91.
    [25] Thomas Grotkj?r, Kim Dam-Johansen, Anker D. Jensen, Peter Glarborg. An experimental study of biomass ignition[J]. Fuel,2003,82:825–833.
    [26] Katalambula H, Hayashi J, Chiba T, Kitano K, Ikeda K. Dependence on single coal particle ignition mechanism on the surrounding volatile matter cloud[J]. Energy Fuels,1997,11:1033–1039.
    [27] Sun CL, Zhang MY. Ignition of coal particles at high pressure in a thermogravimetric analyzer[J]. Combust Flame,1998,115:267–274.
    [28] Tuyen B, Loof R, Bhattacharya SC. Self-sustained flaming combustion and ignition of single wood pieces in quiescent air[J]. Combustion Science and Technology,1995,111:53–65.
    [29] Sun CL, Kozinski JA. Ignition behaviour of pulp and paper combustible wastes[J]. Fuel,2000,79:1587–1593.
    [30] Saito M, Amagai K, Ogiwara G, Arai M. Combustion characteristics of waste material containing high moisture[J]. Fuel,2001,80:1201–1209.
    [31] F. Shafizadeh. Introduction to pyrolysis of biomass[J]. Journal of Analytical and Applied Pyrolysis,1982,3:283-305.
    [32] Colomba Di Blasi. Modeling and simulation of combustion processes of charring and non-charring solid fuels[J]. Progress in Energy and Combustion Science,1993,19:71-104.
    [33] T. Cordero, J. M. Rodríguez-Maroto, J. Rodríguez-Mirasol, J. J. Rodríguez. On the kinetics of thermal decomposition of wood and woodcomponents[J]. Thermochimica Acta,1990,164:135-144.
    [34] J. J. M. Orf?o, F. J. A. Antunes, J. L. Figueiredo. Pyrolysis kinetics of lignocellulosic materials—three independent reactions model[J]. Fuel,1999,78:349-358.
    [35] Bernhard Peters, Elisabeth Schr?der, Christian Bruch. Measurements and particle resolved modelling of the thermo- and fluid dynamics of a packed bed[J]. Journal of Analytical and Applied Pyrolysis,2003,70:211-231.
    [36] Rafael Bilbao, Angela Millera, Jesus Arauzo. Kinetics of weight loss by thermal decomposition of different lignocellulosic materials. Relation between the results obtained from isothermal and dynamic experiments[J]. Thermochimica Acta,1990,165:103-112.
    [37] Mario Lanzetta, Colomba Di Blasi. Pyrolysis kinetics of wheat and corn straw[J]. Journal of Analytical and Applied Pyrolysis,1998,44:181-192.
    [38] J. A. Caballero, R. Font, A. Marcilla. Comparative study of the pyrolysis of almond shells and their fractions, holocellulose and lignin. Product yields and kinetics[J]. Thermochimica Acta,1996,276:57-77.
    [39]蒲舸,张力,辛明道.王草的热解与燃烧特性实验研究[J].中国电机工程学报,2006,26(11):65-69.
    [40]R.M. Mellon, H.S.S. Sharma. Thermogravimetric analysis of perennial ryegrass: relationship between dry matter digestibility and thermal profiles[J]. Thermochimica Acta,2002,383:161-168.
    [41]李余增.热分析[M].北京:清华大学出版社,1987.
    [42]蔡正千.热分析[M].北京:高等教育出版社,1993.
    [43]刘振海,热分析导论[M].北京:化学工业出版社,1991.
    [44]M.J. Safi, I.M. Mishra, B. Prasad. Global degradation kinetics of pine needles in air[J]. Thermochimica Acta,2004,412:155–162.
    [45] J. Kaloustian, T. F. El-Moselhy, H. Portugal. Chemical and thermal analysis of the biopolymers in thyme (Thymus vulgaris)[J]. Thermochimica Acta,2003,401:77-86.
    [46] Carmen Branca, Colomba Di Blasi. Kinetics of the isothermal degradation of wood in the temperature range 528–708 K[J]. Journal of Analytical and Applied Pyrolysis,2003,67:207-219.
    [47]沈伯雄,刘德昌,陆继东.石油焦着火和燃烧燃烬特性的试验研究[J].石油炼制与化工,2000,31:60-64.
    [48] Eugrdeuler. A comparative study on the thermal decomposition of four cereal straws in an oxidizing atmosphere[J]. Bioresource Technology, 1994,50(3): 201-208.
    [49]Kung H C. a mathematical model of wood pyrolysis[J]. Combustion and Flame, 1872, 18: 185-197.
    [50]R.Bilbao, J.F. Mastral, M.E.Aldea, J.Ceamanos. Kinetic study for the thermal decomposiiton of cellulose and pine sawdust in an air atmosphere. Journal of Analytical and Applied Pyrolysis, 1997, 53-64.
    [51]Shamra A,RaoT R. Kinetics of Pyrolysis of rice husk [J]. Bioresource Teehnolog,1999,67(1): 53-59.
    [52]胡云楚,陈茜文,周培疆,等.木材热分解动力学研究[J].林产化学与工业,1995,15(4):45- 49.
    [53]刘乃安.林木热解动力学模型研究[J].中国科技大学学报,1998,28(1):40- 48.
    [54]江淑琴.生物质燃料的燃烧与热解特性[J].太阳能学报,1995,16(1):23-27.
    [55]赖艳华,吕明新,等.秸秆类生物质热解特性及其动力学研究[J].太阳能学报,2002,23(2):46-50.
    [56]文丽华.木材热解特性和动力学研究[J].消防科学与技术,2004,23()l:2-5.
    [57]N.A.Liu. Kinectic modeling of thermal decomposition of natural cellusic materials in air atmosphere [J]. Journal of Analytical and Applied pyrolysis,2002,63: 303-325.
    [58]J.J.M.Orafo.Pyrolysis kinetics of lingocellulosic materials-three independent reactions model [J]. Fuel,1999,78,349-358.
    [59]文丽华.生物质多组分的热裂解动力学研究[D]:硕士学位论文,浙江大学,2005.
    [60]Coats A W., Redfern J P. Kinetic parameters from thermo gravimetric data. Nature, 1964,201:68-69.
    [61]胡荣祖,史启祯.热分析动力学[M].北京:科学出版社, 2001.
    [62]于伯龄,姜胶东.实用热分析技术[M].北京:纺织工业出版社, 1990.
    [63]闵凡飞,张明旭.生物质燃烧模式及燃烧特性的研究[J].煤炭学报,30(1),104-108
    [64]Flynn J H. The“temperature Integral”- Its use and abuse [J]. Thermochimica Acta, 1997,300: 83-92.
    [65]Kastanaki E, Vamvuka D , Grammelis P, et al. Thermogravimetric studies of the behavior of lignite biomass blends during devolatilization[J].Fuel Processing Technology, 2002, 77: 159-166.
    [66]Ying Gang Pan, Enrique Velo, Luis Puigjaner. Prolysis of blends of biomass with poor coals[J]. Fuel, 1996, 75(4): 412-418.
    [1]周道玮,张智山.草地火燃烧、火行为和火气候[J].中国草地,1996,3:74-77.
    [2]周道玮.草地火生态学研究进展[M].长春,吉林科学技术出版社,1995.
    [3]郭平,孙刚,周道玮,李军.草地火行为研究[J] .应用生态学报, 2001,12(5):746-748.
    [4]Packham, D.R. Heat transfer above a small ground fire[J]. Australian forest research, 1971, 5: 19-24.
    [5]Byram G.M. Flammability of forest fuels. In forest fire control and use[M]. New York,1959.
    [6]Chandler C.C., P. Thomas, L. Traband, D.Willians. Fire in forest.Ⅰ. Forest fire behavior and effects[M]. New York, Wiley and Sons,1983.
    [7]周道玮.植被火生态与植被火管理[M].吉林科学技术出版社,1995.
    [8]Montgomery K.R. and Cheo D.C. Effect of leaf thickness on ignitibility[J]. Forest science, 1971, 17:475-478.
    [9]Countryman C.M. moisture in living fuels affects fire behavior [J]. Fire management. 1974,35(2): 10-14.
    [10]H.E. Anderson, R.C. Rothermel. Influence of moisture and wind upon the characteristics of free-burning fires[J]. Symposium (International) on Combustion, 1965, 10(1): 1009-1019.
    [11]Cheney N.P. Gould J.S. and Catchpole W.R. the influence of fuel, weather and fire shape variables on fire-spread in grasslands [J]. international journal of wildland fire, 1993, 3(1): 31-44.
    [12]McArthur, A.G. Control burning in eucalypt forests[J]. For. Timb. Bur. Aust., leaflet. 1963, 80: 1-31.
    [13]McArthur, A.G. Weather and grassland fire behavior[M]. 1commonw. Aust. Dep. Natl. Develop., For.&Timb. Bureau, Canberra, A.C.T. leaflet, No. 100,1966.
    [14]Byram, G.M.et al. An analysis of the drying process in forest fuel material[M]. International symposium on humidity and moisture, Washington, D.C.,1963.
    [15]Brown J.K. ratios of suface area to volume for common fine fuels[J]. Forest science, 1970,16:101-105.
    [16] Richard L. Snyder, Donatella Spano, Pierpaolo Duce, Dennis Baldocchi, Liukang Xu, Kyaw Tha Paw U. A fuel dryness index for grassland fire-dangerassessment[J]. Agricultural and Forest Meteorology,2006,139:1-11.
    [17] Chuvieco, E., Riano, D., Aguado, I., & Cocero, D. Estimation of fuel moisture content from multitemporal analysis of Landsat Thematic Mapper reflectance data: Applications in fire danger assessment[J]. International Journal of Remote Sensing, 2002, 23(11): 2145-2162.
    [18]Chuvieco, E., Aguado, I., Cocero, D., Riano, D. Design of an empirical index to estimate fuel moisture content from NOAA–AVHRR analysis in forest fire danger studies[J]. International Journal of Remote Sensing, 2003,24(8):1621-1637.
    [19]Riano, D., Chuvieco, E., Salas, J., Palacios-Orueta, A., & Bastarrica, A. Generation of fuel type maps from Landsat TM images and ancillary data in Mediterranean ecosystems[J]. Canadian Journal of Forest Research, 2002, 32(8): 1301-1315.
    [20]P.A. Santoni, A. Simeoni, J.L. Rossi, F. Bosseur, F. Morandini, X. Silvani, J.H. Balbi, D. Cancellieri, L. Rossi. Instrumentation of wildland fire: Characterisation of a fire spreading through a Mediterranean shrub[J]. Fire Safety Journal,2006, 41: 171-184.
    [21]T.L. Clark, M.A. Jenkins, J. Coen, D. Packham. A coupled atmospheric-fire model: convective Froude number and dynamic fingering[J]. International Journal of Wildland Fire, 1996, 6: 177–190.
    [22] R.R. Linn, J. Reisner, J.J. Colman, J. Winterkamp. Studying wildfire behavior using FIRETEC[J]. International Journal of Wildland Fire, 2002,11: 233-246.
    [23]D. Morvan, J.L. Dupuy. Modeling the propagation of a wildfire through a Mediterranean shrub using a multiphase formulation[J]. Combustion and Flame, 2004,138: 199-210.
    [24]H.P. Hanson, M.M. Bradley, J.E. Bossert, R.R. Linn, L.W. Younker. The potential and promise of physics-based wildfire simulation [J]. Environment Science Policy, 2000, 3: 161-172.
    [25]郭平,康春莉,田卫,李军,周道玮.?草地可燃物床特性与草地火行为的关系[J].干旱区研究,2002,19(4):13-16.
    [26]周道玮,郭平,岳秀泉,田洪艳.松嫩草原火干扰状况研究[J].草业学报,1998,9:8-13.
    [27]郭平,周道玮,孙刚,田洪艳.羊草可燃物含水率变化规律的研究[J].东北师范大学学报(自然科学版), 1999,4:105-110.
    [28]郭平,马小凡,康春莉,周道玮,李军,李月芬.羊草可燃物燃烧性的变化规律[J].吉林大学学报(理学版), 2002,40: 426-429.
    [29]袁春明,文定元.林火行为研究概况[J].世界林业研究,2000,13(6):27-31.
    [30]宋丽艳.基于GIS的林火蔓延模型及其模拟研究[D].浙江林学院,2007.
    [31]Bak P., Tang C., Wiesenfeld K. Self-Organized Criticality: An Explanation of 1/f Noise[J]. Physical Review Letters,1987,59: 381-384.
    [32]Drossel B, et al. Self-Organized Critical Forest Fire Model[J]. Physical Review Letters,1992, 69(11):1629-1992.
    [33]Karafyllidis I, Thanailakis A. A model for predicting forest fire spreading using cellular automata[J]. Ecological Modelling, 1997,99(1): 87-97.
    [34]A.L.Sullivan, I.K.Knight.A hybrid cellular automata/semi- physical model of fire growth[J]. The7th Asia-Pcific Conference of Complex Systems, Complex2004, 64-73.
    [35]Anderson H E,Catchpole N J,DeMestre N J,et al. Modeling the spread of grass fires[J]. Journal of Australia Mathematic Society,1982,23: 451-466.
    [36]宋卫国,范维澄,汪秉宏.整数型森林火灾模型及其自组织临界性[J].火灾科学,2001,10(1):53-56.
    [37]黄华国.基于3D元胞自动机模型的林火蔓延模拟研究[D].北京林业大学,2004.
    [38]张永忠.基于GIS和CA方法的野火蔓延时空动态过程模拟[D].兰州大学, 2005.
    [39]周成虎,孙战利,谢一春.地理元胞自动机研究[M].科学出版社,1999.
    [40]李才伟.元胞自动机及复杂系统的时空演化模拟[D].华中理工大学,1997.
    [41]谢惠民.非线性科学丛书:复杂性与动力系统[M].上海科技教育出版社,1994.
    [42]王正非.山火初始蔓延速度测算法[J].山地研究,1983,1(2):42-51.
    [43]朱启疆,戎太宗,孙睿等.林火扩展的分形模拟案例研究[J].中国科学,2000,30(增刊): 106-112.
    [1]色音巴图.草原可燃物动态研究[J].中国草地, 2002, 24(5): 48-52.
    [2]崔庆东,刘桂香,卓义.锡林郭勒草原冷季牧草保存率动态研究[J].中国草地学报, 2009, 31(1): 102-108.
    [3]郭志华,彭少麟,王伯荪.利用GIS和RS估算广东植被利用率[J].生态学报,2000(6).
    [4]Sader S A,Hayes D J,Hepinstall J A et al.Forest change monitoring of a remote biosphere reserve[J]. International Journal of Remote Sensing, 2001(22):1937-1950.
    [5]De Wasseige C,Defourny P. Retrieval of tropical forest structure characteristics from bidirectional reflectance of SPOT images[J]. Remote Sensing of Environment,2002(83):362-375.
    [6]国庆喜,张锋.基于遥感信息估测森林的生物量[J].东北林业大学学报,2003,31(2):13-16.
    [7]J.Dong, et al. Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks [J]. Remote Sensing of Environment, 84(2003): 393-410.
    [8]刘桂香,宋中山,苏和,吴晓天.中国草原火灾监测预警[M].中国农业科学技术出版社,2008.
    [9]周伟奇,王世新,周艺,赵清.草原火险等级预报研究[J].?自然灾害学报,2004,13(2):75-79.
    [10]王文娟,常禹,刘志华,陈宏伟,荆国志,张红新,张长蒙.大兴安岭呼中林区地表死可燃物含水量及其环境梯度分析[J].生态学杂志,2009,28(2):209-215.
    [11]李世友,舒清态,马爱丽,张桥蓉,刘燕,王祥琴.华山松人工林凋落物层细小可燃物含水率预测模型研究[J].林业资源管理,2009,1:84-88.
    [12]刘曦,金森.平衡含水率法预测死可燃物含水率的研究进展[J].林业科学,2007,43(12):126-133.
    [13]高永刚,张广英,顾红,周尔滨.森林可燃物含水率气象预测模型在森林火险预报中的应用[J].中国农学通报,24(9):171-175.
    [14]金森,姜文娟,孙玉英.用时滞和平衡含水率准确预测可燃物含水率的理论算法[J].森林防火,1999,4:12-14.
    [15]郭平,周道玮,孙刚,田洪艳.羊草可燃物含水率变化规律的研究[J].东北师范大学学报(自然科学版), 1999,4:105-110.
    [16]郭平,马小凡,康春莉,周道玮,李军,李月芬.羊草可燃物燃烧性的变化规律[J].吉林大学学报(理学版), 2002,40: 426-429.
    [17]郭继勋,姜世成,任炳忠.松嫩草原优势植物羊草立枯体分解的研究[J].生态学报, 2000, 20(5): 784-787.
    [18] Aase, J. K., Tanaka, D. L. Reflectances from four wheat residue cover densities as influenced by three soil backgrounds[J]. Agronomy Journal, 1991, 83: 753-757.
    [19]汪邦稳,杨洁,汤崇军,郑海金,宋月君.南方红壤区百喜草及其枯落物对降雨径流分配的影响[J].水土保持学报, 2009, 23(2): 7-10.
    [20]施爽,郭继勋.松嫩草原三种主要植物群落枯落物层生态水文功能[J].应用生态学报, 2007, 18(8): 1722-1726.
    [21]刘桂香,苏和,李石磊.内蒙古草原火灾概述[J].中国草地, 1999, 4: 76-78.
    [22]裴浩,李云鹏,范一大.利用气象卫星NOAA/AVHRR资料监测温带草原枯草季节牧草现存量的初步研究[J].中国草地, 1995, 6: 44-47.
    [23]韩广.科尔沁草原沙地草场冷季产草量的研究[J].中国草地, 1996, 1: 1-6.
    [24] P. L. Nagler, C. S. T. Daughtry, S. N. Goward. Plant litter and soil reflectance[J]. Remote Sensing of Environment, 2000, 71: 207-215.
    [25] Goward, S. N., Huemmrich, K. F., Waring, R. H. Visible– near infrared spectral reflectance of landscape components in western Oregon[J]. Remote Sensing of Environment, 1994, 47: 190-203.
    [26]聂志东,韩建国,玉柱,仲勇,刘富渊.近红外反射光谱法测定苜蓿干草主要纤维成分的研究[J].光谱学与光谱分析, 2008, 28(5): 1045-1048.
    [27] Elvidge, C. D. Visible and near infrared reflectance characteristicsof dry plant materials[J]. International Journal of Remote Sensing, 1990, 11(10): 1775-1795.
    [28] P. L. Nagler, Y. Inoue, E.P. Glenn, A.L. Russ, C.S.T. Daughtry. Cellulose absorption index (CAI) to quantify mixed soil–plant litter scenes[J]. Remote Sensing of Environment, 2003, 87: 310-325.
    [29] Ben Dor, E., Banin, A. Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties[J]. Soil Science Society of America Journal, 1995, 59: 364-372.
    [30] Woolley, J. T. Reflectance and transmittance of light by leaves[J]. Plant Physiology, 1971, 47, 656-662.
    [31]郭平,康春莉,李军,周道玮.四种草本植物可燃物含水率在干燥过程中的变化规律.草地学报,2003,11(3):251-255.
    [32]何忠秋,李长胜,张成钢,马丽华,于力,段向阁.森林可燃物含水量模型的研究.森林防火,1995,2:15-16.
    [33]赵凤君,舒立福,田晓瑞,王明玉.气候变暖背景下内蒙古大兴安岭林区森林可燃物干燥状况的变化.生态学报,2009,4:1914-1920.
    [34]Pellizzaro G,Cesaraccio C,Duce P,et al. Influence of seasonal weather variations and vegetative cycle on live moisture content and ignitability in Mediterranean marquis species[J]. Forest Ecology and Management (supplemente 1 ), 2006,234:s111.
    [35]Saglam B,Bilgili E,KuCuk O,et al. Determination of surface fuels moisture contents based on weather conditions,Forest Ecology and Management (supplemente 1 ), 2006,234:s75.
    [36]Toomey MA,Vierling L A. Multispectral remote sensing of landscape level foliar moisture: techniques and applications for forest ecosystem monitoring.?Canadian Journal of Forest Research, 2005. 35(5): 1087-1097.
    [37]Yebra M,Chuvieco E,Riaoo D. Investigation of a method to estimate live fuel moisture content from satellite measurements in fire risk assessment. Forest Ecology and Management(supplemente 1 ), 2006,234:s32.
    [38]赵俊卉,郭广猛,张慧东,刘海龙,周梅,亢新刚.用MODIS数据预估森林可燃物湿度的研究.北京林业大学学报,2006,28(6):148-150.
    [39] Li Z, Becker F. Feasibility of land surface temperature and emissivity determination from AVHRR data[J].Remote Sensing of Environment, 1993, 43: 67-85.
    [40]黄秉维,郑度,赵名茶.现代自然地理[M].北京:科学出版社,1998.
    [41]黄初冬,邵芸,李静.北京城市地表温度的遥感时空分析[J].国土资源遥感,2008,3:64-68.
    [42]张心怡,刘敏,孟飞.基RS和GIS的地面温度和土地利用/覆被关系研究进展[J].遥感信息,2005,3:66-71.
    [43]刘朝顺,高炜,高志强等.基于ETM+遥感影像反演不同土地利用类型地表温度的研究[J].南京气象学院学报,2008, 31(4):503-510.
    [44]覃志豪,Zhang Minghua, Arnon Karnieli等.用陆地卫星TM6数据演算地表温度的单窗算法[J].地理学报,2001,56(4):456-466.
    [45]覃志豪,Zhang Minghua, Arnon Karnieli.用NOAA-AVHRR热通道数据演算地表温度的劈窗算法[J].国土资源遥感,2001,2:34-42.
    [46] Thomas Schmugge, Andrew Frencha, Jerry C. Ritchie. Temperature and emissivity separation from multispectral thermal infrared observations [J].Remote Sensing of Environmet,2002,79:189-198.
    [47] Mao. K, Qin, Z. A practical split-window algorithm, for retrieving Land surface temperature from MODIS data [J]. International Journal of Remote Sensing ,2005, 10(26):3181-3204.
    [48]李红林,李万彪. MODIS近红外资料反演大气水汽总含量[J].北京大学学报(自然科学版),2008,44(1):121-128.
    [49]覃志豪, LI Wenjuan, ZHANG Minghua.单窗算法的大气参数估计方法[J].国土资源遥感,2003,2:37-43.
    [1]周道玮,张智山.草地火燃烧、火行为和火气候[J].中国草地,1996,3:74-77.
    [2]傅泽强,杨友孝,戴尔阜.内蒙古干草原火动态及火险气候区划研究[J].中国农业资源与区划,2001,22(6):18-22.
    [3]周伟奇,王世新,周艺,赵清.草原火险等级预报研究[J].?自然灾害学报,2004,13(2):75-79.
    [4]刘海波,袁靖,杨汝康.黑龙江森林火险气候指标及区划方法探讨.东北农业大学学报,1995,26(2):145-150.
    [5]尹海伟,孔繁花,李秀珍.基于GIS的大兴安岭森林火险区划.应用生态学报,2005,16(5):833-837.
    [6]赵宪文.西南林区火灾预报方法研究.森林火灾遥感监测评价[M].北京:中国林业出版社,1995:76—86.
    [7]Hough,W.A. Fuel and weather influence wildfires in sand pine forests[M]. USDA. For. Ser. Res. Paper. SE-106,1973.
    [8]Westerling A. L.,Hidalgo H. G., Cayan D. R., et al. Warming and earlier spring increase western U. S. forest wildfire activity[J]. Science,2006,313(5789):940-943.
    [9]Pausas J.G. Changes in fire and climate in the eastern iberian peninsula (Mediterranean Basin) [J]. Climatic Change, 2004, 63(3): 337 -350.
    [10]Mollicone D., Eva H. D., Achard F. Ecology:Human role in Russian wild fires [J]. Nature, 2006 (440): 436 -437.
    [11]Deeming, John E.J. W. Lancaster, M. A. Fosberg, R. W. Furman, M. J. Schroeder. The National Fire-Danger Rating System, USDA For. Serv. Res. Pap. RM-184,1972.
    [12]刘峰.基于GIS和RS的森林火险预测模式研究[D].中南林学院,2004.
    [13]唐季林,张晓丽.应用RS和GIS进行林业局森林火险区划的研究[J].北京林业大学学报,1996,18(1):13-21.
    [14]王宪成.地理信息系统(GIS)在林业上的应用及发展趋势[J].吉林林业科技,2000,29(3):1-4.
    [15]Chuvieco E,Congalton R G. Application of remote sensing and geographic information system to forest fire hazard mapping[J]. Remote Sensing of Environment, 1989, 29:147-159.
    [16] Chuvieco E, Sales J. Mapping the spatial distribution of forest fire danger using GIS[J]. International Journal of Geographic Information System, 1996,10:333-345.
    [17]Emilio C, Rusell G C. Application of remote sensing and geographic information system to forest fire hazard mapping[J]. Remote Sensing of Environment, 1989, 2:147-159.
    [18] Rajeev KJ, Saumitra M,et al. Forest fire risk zone mapping from satellite imagery and GIS[J]. International Journal of Applied Earth Observation and Geoinformation, 2002, 4:1-10.
    [19]Amparo A B,Oscar F R. An intelligent system for forest fire risk prediction and fire fighting management in Galicia[J]. Expert Systems with Applications, 2003, 25(6):545-554.
    [20]郑海青,张春桂,陈家金,王加义.利用NOAA卫星遥感监测福建省森林火险[J],福建林学院学报, 2003, 23(2):114-118.
    [21] B. Vanniere, D. Colombaroli, E. Chapron, A. Leroux, W. Tinner, M. Magny. Climate versus human-driven fire regimes in Mediterranean landscapes: the Holocene record of Lago dell’Accesa (Tuscany, Italy)[J]. quaternary science reviews, 2008, 27: 1181-1196.
    [22]Black, M.P., Mooney, S.D. Holocene fire history from the Greater Blue Mountains World Heritage Area, New South Wales, Australia: the climate, humans and fire nexus[J]. Regional Environmental Change, 2006, 6: 41-51.
    [23]Colombaroli, D., Marchetto, A., Tinner, W.. Long-term interactions between Mediterranean climate, vegetation and fire regime at Lago di Massaciuccoli (Tuscany, Italy)[J]. Journal of Ecology, 2007, 95 (4): 755–770.
    [24]Moriondo, M., Good, P., Durao, R., Bindi, M., Giannakopoulos, C., Corte Real, J. Potential impact of climate change on forest fire risk in [25]Mediterranean area[J]. Climate Research, 2006, 31: 85–95. Pausas, J.G.. Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean basin)[J]. Climatic Change,2004, 63 (3): 337–350.
    [26]Pinol, J., Terradas, J., Lloret, F. Climate warming, wildfire hazard, and wildfire occurrence in coastal eastern Spain[J]. Climatic Change, 1998, 38: 345–357.
    [27]常健斌,顾凤歧,温广玉.大兴安岭林火气候的区划[J].东北林业大学学报,1995,23(3):98-102.
    [28]袁靖,涂明,王晓明.森林火险气候区划指标选择方法[J].黑龙江气象,1995,4:36-38.
    [29]Chandler C.C., P. Thomas, L. Traband, D.Willians. Fire in forest.Ⅰ. Forest fire behavior and effects[M]. New York, Wiley and Sons,1983.
    [30]傅泽强.内蒙古草原火险气候区划及火管理对策研究[J].灾害学,2001,16(3):2-5.
    [31]色音巴图.草地火险区划初探[J].内蒙古草业,2002,14(4):32-35.
    [32]张映堂,段旭,李俊峰.滇中地区林火气候区划[J].西南林学院学报,1994,14(3):172-176.
    [33]杜秀贤,郭绍存,邓文郑,潘进军,赵可新,赵勋.呼盟森林及草原火灾发生规律的研究[J].内蒙古气象,1997,3:13-33.
    [34] Richard L. Snyder, Donatella Spano, Pierpaolo Duce, Dennis Baldocchi, Liukang Xu, Kyaw Tha Paw U,A fuel dryness index for grassland fire-danger assessment[J]. Agricultural and Forest Meteorology, 2006, 139:1–11.
    [35] B. Vanniere, D. Colombaroli, E. Chapron, A. Leroux, W. Tinner, M. Magny. Climate versus human-driven fire regimes in Mediterranean landscapes: the Holocene record of Lago dell’Accesa (Tuscany, Italy)[J]. Quaternary Science Reviews, 2008, 27: 1181-1196.
    [36] F. Javier Lozano, Susana Suárez-Seoane, Estanislao de Luis. Assessment of several spectral indices derived from multi-temporal Landsat data for fire occurrence probability modeling[J]. Remote Sensing of Environment, 2007, 107:533–544.
    [37] Chao Li, Hugh Barclay, Jianwei Liu, Doug Campbell. Simulation of historical and current fire regimes in central Saskatchewan[J]. 2005, Forest Ecology and Management, 208:319–329.
    [38] W.W. Hargrove, R.H. Gardner, M.G. Turner, W.H. Romme, D.G. Simulating fire patterns in heterogeneous landscapes[J]. 2000, Ecological Modelling: 135: 243–263.
    [39] Hongyang Zheng, Weiguo Song, Jian Wang. Detrended fluctuation analysis of forest fires and related weather parameters[J]. 2008, Physica A, 387 :2091–2099.
    [1] Loveland, T.R., Reed, B.C., Brown, J.F., Ohlen, D.O., Zhu, Z., Yang, L., Merchant,J.W.. Development of a global land cover characteristics database and IGBP dros. inf. serv. cover from 1 km AVHRR data [J]. International journal of Remote Sensing, 2000,21:1303–1330.
    [2] Gosz, J.R., Moore, D.I., Shore, G.A., Grover, H.D. Lightning estimates of precipitation location and quantity on the Sevilleta LTER, New Mexico[J]. Ecological Applications, 1995,5:1141–1150.
    [3]Gosz, R.J., Gosz, J.R. Species interactions on the biome transition zone in New Mexico: response of blue grama (Bouteloua gracilis) and black grama (Bouteloua eriopoda) to fire and herbivory[J]. Journal of Arid Environments, 1996,34:101–114.
    [4]Bahre, C.J. Wildfire in southeastern Arizona between 1859 and 1890[J]. Desert Plants, 1985, 7:190–194.
    [5]Brockway, Gatewood, Paris. Restoring fire as an ecological process in shortgrass prairie ecosystems: initial effects of prescribed burning during the dormant and growing seasons[J]. Journal of Environmental Management, 2002,65:135–152.
    [6]Guevara, J.C., Stasi, C.R., Wuilloud, C.F., Estevez, O.R. Effects of fire on rangeland vegetation in south-western Mendoza plains (Argentina): composition, frequency, biomass, productivity and carrying capacity[J]. Journal of Arid Environments, 1999,41:27–35.
    [7]Hart, R.H., Hart, J.A. Rangelands of the Great Plains before European Settlement [J]. Rangelands, 1997,19:4–11.
    [8]杜秀贤,郭绍存,邓文政,潘进军,赵可新,赵勋.森林及草原火灾发生规律的研究[J].内蒙古气象,1997,3:13-26.
    [9]Bo′o, R.M., Pela′ez, D.V., Bunting, S.C., Elia, O.R., Mayor, M.D. Effect of fire on grasses in central semi-arid Argentina[J]. Journal of Arid Environments, 1996,32:259–269.
    [10]Bo′o, R.M., Pela′ez, D.V., Bunting, S.C., Mayor, M.D., Elia, O.R. Effect of fire on woody species in central semi-arid Argentina[J]. Journal of Arid Environments, 1997,35:87–94.
    [11]Martinez Carretero, E. Los incendios forestales en la Argentina[J]. Multequina, 1995,4, 105–114.
    [12]Danthu, P., Ndongo, M., Diaou, M., Thiam, O., Sarr, A., Dedhiou, B., Vall, A.O.M. Impact of bush fire on germination of some West African Acacias[J]. Forest Ecology and Management, 2003,173:1–10.
    [13] Laris, P. Burning the seasonal mosaic: preventive burning strategies in the wooded savanna of southern Mali[J]. Human Ecology, 2002,30:155–186.
    [14] Mbow, C., Nielsen, T.T., Rasmussen, K. Savanna fires in east-central Senegal: distribution patterns, resource management perceptions[J]. Human Ecology, 2000,28:561–583.
    [15] Reid, R.S., Kruska, R.L., Muthui, N., Taye, A., Wotton, S., Wilson, C.J., Mulatu, W. Land-use and land-cover dynamics in response to changes in climatic, biological and socio-political forces: the case of southwestern Ethiopia[J]. Landscape Ecology, 2000,15:339–355.
    [16]Sheuyange, Oba, Weladji. Effects of anthropogenic fire history on savanna vegetation in northeastern Namibia[J]. Journal of Environmental Management, 2005,75:189–198.
    [17]Snyman, H.A. Short-term response in productivity following an unplanned fire in a semi-arid rangeland of South Africa[J]. Journal of Arid Environments, 2004,56:465–485.
    [18]Edwards, A., Hauser, P., Anderson, M., McCartney, J., Armstrong, M., Thackway, R., Allan, G., Hempel, C., Russell-Smith, J. A tale of two parks: contemporary fire regimes of Litchfield and Nitmiluk National Parks, monsoonal northern Australia[J]. International Journal of Wildland Fire, 2001,10:79–89.
    [19]Gill, A.M., Moore, P.H.R., Williams, R.J. Fire weather in the wet–dry tropics of the World Heritage Kakadu National Park, Australia[J]. Australian Journal of Ecology, 1996, 21:302–308.
    [20]Gill, A.M., Moore, P.H.R., Williams, R.J. Fire weather in the wet–dry tropics of the World Heritage Kakadu National Park, Australia[J]. Australian Journal of Ecology, 1996,21:302–308.
    [21]Haynes, C.D. The pattern and ecology of munwag: traditional Aboriginal fire regimes in north-central Arnhemland[J]. Proceedings of the Ecological Society of Australia, 1985,13:203–214.
    [22]Lewis, H.T. Ecological and technical knowledge of fire: aborigines versus park rangers in northern Australia[J]. American Anthropologist, 1989,91:940–961.
    [23]Press, A.J. Comparisons of the extent of fire in different land management systems in the top end of the Northern Territory[J]. Proceedings of the Ecological Society of Australia, 1988,15:167–175.
    [24]傅泽强,杨友孝,戴尔阜.内蒙古干草原火动态及火险气候区划研究[J].中国农业资源与区划,2001,22(6): 18 - 22.
    [25]Fu, Z., Wang, Y., Wang, C. Research on the spring fire-risk forecasting model in dry grasslands in Inner Mongolia [J]. Quarterly Journal of Applied Meteorology, 2001,12:202-209.
    [26]刘桂香,苏和,李石磊.内蒙古草原火灾概述[J].中国草地,1999,4: 76 - 78.
    [27]岳秀泉,周道玮,姜世成.呼伦贝尔草原火灾分析[J].东北师大学报自然科学版,1999.,4: 111 - 116.
    [28]周道玮,郭平,岳秀泉,田洪艳.松嫩草原火干扰状况研究[J].草业学报,1998,9:8-13.
    [29]Amatulli, Perez-Cabello, de la Riva. Mapping lightning/human-caused wildfires occurrence under ignition point location uncertainty[J]. Ecological Modelling, 2007,200: 321–333.
    [30]Pewb, K.L., Larsen, C.P.S. GIS analysis of spatial and temporal patterns of?human-caused wildfires in the temperate rain forest of Vancouver Island, Canada[J]. Forest Ecology and Management, 2001,140:1–18.
    [31]Chou, Y.H., Minnich, R.A., Chase, R.A. Mapping probability of fire occurrence in San Jacinto Mountains, California, USA[J]. Environment Management, 1993,17:129–140.
    [32] Vega Garcia, C., Woodard, P.M., Titus, S.J., Adamowicz, W.L., Lee, B.S. A logistic model for predicting the daily occurrence of human caused forest fires[J]. International Journal of Wildland Fire, 1995,5:101–111.
    [33]de la Riva, J., Pe′rez-Cabello, F., Lana Renault, N., Koutsias, N. Mapping wildfire occurrence at a regional scale[J]. Remote Sensing of Environment, 2004,92:288–294.
    [34]Hernandez-Leal, P.A., Arbelo, M., Gonzalez-Calvo, A. Fire risk assessment using satellite data[J]. Advances in Space Research, 2006,37:741–746.
    [35]Yang, L., Dawson, C.W., Brown, M.R., Gell, M. Neural network and GA approaches for dwelling fire occurrence prediction[J]. Knowledge Based Systems, 2006,19:213–219.
    [36]Javier Lozano, F., Sua′rez-Seoane, S., Kelly, M., Luis, E. A multi-scale approach for modeling fire occurrence probability using satellite data and classification trees: a case study in a mountainous Mediterranean region[J]. Remote Sensing of Environment, 2008,112:708–719.
    [37]De'ath, G., Fabricius, K. Classification and regression trees: A powerful yet simple technique for ecological data analysis[J]. Ecology 2000,81:3178?3192.
    [38]Kelly, M., Meentemeyer, R. K. Landscape dynamics of the spread of sudden oak death[J]. Photogrammetric Engineering and Remote Sensing, 2002,68:1001?1009.
    [39]Vayssières, M., Plant, R. E., Allen-Diaz, B. H. Classification trees: An alternativenonparametric approach for predicting species distributions[J]. Journal of Vegetation Science, 2000,11:679?694.
    [40]Martell, D.L., Bevilacqua, E., Stocks, B.J. A logistic model for predicting daily people-caused forest fire occurrence in Ontario, Canadian [J]. Journal of Forest Research, 1987,17:394–401.
    [41]Hamilton, M.P., Salazar, L.A., Palmer, K.E. Geographic information systems: providing information for wildland fire planning[J]. Fire Technology, 1989,25:5–23.
    [42]Haiganoush K. Preisler, David R. Brillinger, Robert E. Burgan, J. W. Benoit. Probability based models for estimation of wildfire risk[J]. International Journal of Wildland Fire, 2004,13:133-142.
    [43]Liedloff, Cook. Modeling the effects of rainfall variability and fire on tree opulations in an Australian tropical savanna with the flames simulation model[J]. Ecological Modelling, 2007,201:269–282.
    [44]Ni, J. Plant functional types and climate along a precipitation gradient in temperate grasslands, north-east China and south-east Mongolia[J]. Journal of Arid Environments, 2003,53:501–516.
    [45]Brooks, M.L., Matchett, J.R. Spatial and temporal patterns of wildfires in the Mojave Desert, 1980–2004. Journal of Arid Environments, 2006, 67: 148–164.
    [46] Engle, D.M., Bidwell, T.G. Viewpoint: the response of central North American prairies to seasonal fire [J]. Journal of Range Management, 2001, 54: 2–10.
    [47] de Groot, Wardati, Wang, Y.H. Calibrating the fine fuel moisture code for grass ignition potential in Sumatra, Indonesia[J]. International Journal of Wildland Fire, 2005, 14: 161–168.
    [48]Evett, Mohrle, Hall, Brown, Stephens. The effect of monsoonal atmospheric moisture on lightning fire ignitions in southwestern North America[J]. Agricultural and Forest Meteorology, 2008, 148: 1478–1487.
    [49]Snyder, Spano, Duce, Baldocchi, Xu, L.K., Kyaw Tha Paw, U. A fuel dryness index for grassland fire-danger assessment[J]. Agricultural and Forest Meteorology, 2006, 139: 1–11.
    [50] Dwyer, E., Pinnock, S., Gregoire, J.M., Pereira, J.M.C. Global spatial and temporal distribution of vegetation fire as determined from satellite observation [J]. International Journal of Remote Sensing, 2000, 21: 1289–1302.
    [51]Fisher, R., Vigilante, T., Yates, C., Russell-Smith, J. Patterns of landscape fire and predicted vegetation response in the North Kimberley region of Western Australia [J]. International Journal of Wildland Fire, 2003, 12: 369–379.
    [52]Franca, H., Swetzer, A.W. AVHRR analysis of a savanna site through a fire season in Brazil [J]. International Journal of Remote Sensing, 2001, 13: 2449–2461.
    [53]Frison, P.L., Mougin, E., Hiernaux, P. Observations and interpretation of seasonal ERS-1 wind scatterometer data of Northern Sahel (Mali)[J]. Remote Sensing of Environment, 1998, 63: 233–242.
    [54]Smith, A.M.S., Wooster, M.J., Powell, A.K., Usher, D. Texture based feature extraction: application to burn scar detection in Earth observation satellite sensor imagery [J]. International Journal of Remote Sensing, 2002, 23: 1733–1739.
    [55]Xu, B., Yang, X.C., Tao, W.G., Qin, Z.H., Liu, H.Q., Miao, J.M. Remote sensing monitoring upon the grass production in China[J]. Acta Ecologica Sinica, 2007, 27: 405–413.
    [1]Loveland TR, Reed BC, Brown JF. Development of a global land cover characteristics database and IGBP Dros. Inf Serv. Cover from 1 km AVHRR data[J]. International Journal of Remote Sensing, 2000,21: 1303-1330.
    [2]Dwyer E, Pinnock S, gregorie J-M. Global spatial and temporal distribution of vegetation fire as determined from satellite observations[J]. International Journal of Remote Sensing, 2000, 21: 1289-1302.
    [3]Pereira JMC. remote sensing of burned areas in tropical savannas[J]. International Journal of Wildland Fire, 2003, 12: 259-270.
    [4]Hao WM, Liu MH. Spatial and temporal distribution of tropical biomass burning[J]. Global Biogeochemical Cycles, 1994, 8: 495-503.
    [5]张继权,张会,佟志军,宋中山,吴晓天.中国北方草原火灾灾情评价及等级划分[J].草业学报,2007,16 (6): 121–128.
    [6]杜秀贤,郭绍存,邓文政,潘进军,赵可新,赵勋.呼盟森林及草原火灾发生规律的研究[J]. 1997,内蒙古气象,3: 13– 26.
    [7]周道玮,郭平,岳秀泉,田洪艳.松嫩草原火干扰状况研究[J].草业学报,1998,7(3): 8-13.
    [8]刘桂香,苏和,李石磊.内蒙古草原火灾概述[J].中国草地,1999,4: 76 - 78.
    [9]岳秀泉,周道玮,姜世成.呼伦贝尔草原火灾分析[J].东北师大学报自然科学版,1999.,4: 111 - 116.
    [10]傅泽强,杨友孝,戴尔阜.内蒙古干草原火动态及火险气候区划研究[J].中国农业资源与区划,2001,22(6): 18 - 22.
    [11]Fu, Z., Wang, Y., Wang, C., 2001b. Research on the spring fire-risk forecasting model in dry grasslands in Inner Mongolia[J]. Quarterly Journal of Applied Meteorology, 12, 202-209.
    [12]Emilio Chuvieco, Inmaculada Aguado, Marta Yebra. Development of a framework for fire risk assessment using remote sensing and geographic information system technologies[J]. Ecological modeling, 2010,221:46-58.
    [13]Martell, D.L., Bevilacqua, E., Stocks, B.J. Modelling seasonal variation in daily people-caused forest fire occurrence[J]. Canadian Journal of Forest Research, 1989, 19: 1555–1563.
    [14]Chou, Y.H., Minnich, R.A., Chase, R.A., 1993. Mapping probability of fire occurrence in San Jacinto Mountains, California, USA[J]. Environmental Management, 1993,17: 129–140.
    [15]Chuvieco, E., Aguado, I., Dimitrakopoulos,A. Conversion of fuel moisture content values to ignition potential for integrated fire danger assessment[J]. Canadian Journal of Forest Research,2004,34 (11): 2284–2293.
    [16]周伟奇,王世新,周艺,赵清.草原火险等级预报研究[J].自然灾害学报, 2004, 13 (2): 75–79.
    [17]Martínez, J., Vega-García, C., Chuvieco, E.. Human-caused wildfire risk rating for prevention planning in Spain[J]. Journal of Environmental Management, 2009, 90: 1241–1252.
    [18]Frison,P.L.,Mougin, E., Hiernaux, P. Observations and interpretation of seasonal ERS-1 wind scatterometer data of Northern Sahel (Mali) [J]. Remote Sensing of Environment, 1998, 63: 233 - 242.
    [19] Franca, H., Swetzer, A.W.. AVHRR analysis of a savanna site through a fire season in Brazil[J]. International Journal of Remote Sensing, 2001, 13: 2449 - 2461.
    [20]Smith, A.M.S., Wooster, M.J., Powell, A.K. Texture based feature extraction: application to burn scar detection in Earth observation satellite sensor imagery[J]. International Journal of Remote Sensing, 2002, 23: 1733 - 1739.
    [21]Fisher, R., Vigilante, T., Yates, C. Patterns of landscape fire and predicted vegetation response in the North Kimberley region of Western Australia[J]. International Journal of Wildland Fire, 2003, 12: 369 - 379.
    [22]Xu, B., Yang, X.C., Tao, W.G. Remote sensing monitoring upon the grass production in China[J]. Acta Ecologica Sinica, 2007, 27: 405 - 413.
    [23]Burgan, R.E., Klaver, R.W., Klaver, J.M. Fuel models and fire potential from satellite and surface observations[J]. International Journal of Wildland Fire, 1998, 8 (3): 159–170.
    [24]Hardy, C.C., Burgan, R.E. Evaluation of NDVI for monitoring live moisture in three vegetation types of western US[J]. Photogrammetric Engineering and Remote Sensing, 1999, 65: 603–610.
    [13]Martell, D.L., Bevilacqua, E., Stocks, B.J. Modelling seasonal variation in daily people-caused forest fire occurrence[J]. Canadian Journal of Forest Research, 1989, 19: 1555–1563.
    [14]Chou, Y.H., Minnich, R.A., Chase, R.A., 1993. Mapping probability of fire occurrence in San Jacinto Mountains, California, USA[J]. Environmental Management, 1993,17: 129–140.
    [15]Chuvieco, E., Aguado, I., Dimitrakopoulos,A. Conversion of fuel moisture content values to ignition potential for integrated fire danger assessment[J]. Canadian Journal of Forest Research,2004,34 (11): 2284–2293.
    [16]周伟奇,王世新,周艺,赵清.草原火险等级预报研究[J].自然灾害学报, 2004, 13 (2): 75–79.
    [17]Martínez, J., Vega-García, C., Chuvieco, E.. Human-caused wildfire risk rating for prevention planning in Spain[J]. Journal of Environmental Management, 2009, 90: 1241–1252.
    [18]Frison,P.L.,Mougin, E., Hiernaux, P. Observations and interpretation of seasonal ERS-1 wind scatterometer data of Northern Sahel (Mali) [J]. Remote Sensing of Environment, 1998, 63: 233 - 242.
    [19] Franca, H., Swetzer, A.W.. AVHRR analysis of a savanna site through a fire season in Brazil[J]. International Journal of Remote Sensing, 2001, 13: 2449 - 2461.
    [20]Smith, A.M.S., Wooster, M.J., Powell, A.K. Texture based feature extraction: application to burn scar detection in Earth observation satellite sensor imagery[J]. International Journal of Remote Sensing, 2002, 23: 1733 - 1739.
    [21]Fisher, R., Vigilante, T., Yates, C. Patterns of landscape fire and predicted vegetation response in the North Kimberley region of Western Australia[J]. International Journal of Wildland Fire, 2003, 12: 369 - 379.
    [22]Xu, B., Yang, X.C., Tao, W.G. Remote sensing monitoring upon the grass production in China[J]. Acta Ecologica Sinica, 2007, 27: 405 - 413.
    [23]Burgan, R.E., Klaver, R.W., Klaver, J.M. Fuel models and fire potential from satellite and surface observations[J]. International Journal of Wildland Fire, 1998, 8 (3): 159–170.
    [24]Hardy, C.C., Burgan, R.E. Evaluation of NDVI for monitoring live moisture in three vegetation types of western US[J]. Photogrammetric Engineering and Remote Sensing, 1999, 65: 603–610.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700