用户名: 密码: 验证码:
交换偏置磁锻炼和恢复效应研究及GMR自旋阀的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2007年的诺贝尔物理学奖授予了法国科学家Albert Fert和德国科学家Peter Grunberg,因为他们在磁性多层膜中发现了巨磁电阻效应,而且这一发现使得“自旋电子学”迅速从金属磁性多层膜中的自旋相关输运的基础研究转化为实际应用,促进了信息产业的迅速发展。在过去20多年里,人们在自旋电子学这个激动人心和充满挑战的领域开展了大量实验和理论的研究。本论文主要围绕自旋电子学的关键组成部分—交换偏置效应和巨磁阻自旋阀多层膜的制备展开研究和讨论。主要内容归纳如下:
     在论文第一部分,我们主要研究交换偏置中的磁锻炼效应。在NiFe/FeMn双层膜体系中,我们首次观察到并且准确测量了磁锻炼效应中体系钉扎方向的转动效应。在连续磁滞回线测量中,钉扎方向的转动和铁磁层的磁化翻转的不对称性紧密关联,是磁锻炼效应的物理根源。另外,在FeCr/IrMn双层膜体系中,我们用调节FeCr层成分的方法成功调制了体系的磁化翻转方式,研究磁锻炼效应和磁化翻转机理的关系。我们观察到了普通的和反常的磁锻炼效应。
     在论文第二部分,我们研究了交换偏置角度测量中的磁滞现象和交换偏置的恢复效应。在这些效应中,我们同时也观测到了钉扎方向的转动。在交换偏置角度测量中的磁滞现象中,不仅仅是矫顽力和偏置场发生改变,体系的钉扎方向也在交换偏置角度测量中发生了转动。钉扎方向的转动成功的解释了交换偏置角度测量中的磁滞现象。在交换偏置的恢复效应中,只有在特定角度施加恢复磁场才能使交换偏置发生恢复。钉扎方向的转动可以很好的解释这一不对称恢复效应。同时,我们还研究了恢复效应和施加恢复磁场大小和时间的关系。
     在论文第三部分,我们介绍了线性巨磁阻自旋阀Si/Ru/IrMn/Co/Ru/Co/Cu/Co/NiFe/Ta的制备。不同于一般的制备线性自旋阀的方法,我们通过在生长中施加不同诱导磁场的方法来引入自由层和钉扎层的相互垂直的各向异性,成功制备了线性巨磁阻自旋阀。
The 2007 Nobel Prize in Physics was awarded to Albert Fert and Peter Griinberg for the discovery of Giant Magnetoresistance (GMR). It highlighted the remarkably rapid crossover of "spintronics" from fundamental studies of spin-dependent transport in metallic ferromagnetic multilayers to a device technology critical to the magnetic storage industry. During the past two decades, extensive experimental and theoretical investigations have been performed on this most exciting and challenging area. This dissertation focuses on the exchange bias which is the fundermental part of spintronic devices and fabrication of GMR spin valve multilayers. The main contents are summarized as follows:
     In the first part, we mainly investigate the training effect of exchange bias. In NiFe/FeMn bilayers, we have for the first time oberseved and quantified the rotation of pinning direction in its training effect. During consecutive hysteresis loops, the rotation of the pinning direction strongly depends on magnetization reversal mechanism of ferromagnet layer. The rotation of the pinning direction is the physical origin of training effect. In FeCr/IrMn bilayers, we have demonstrated the correlation between training effect and magnetization reversal mechanism by adjusting the composition of FeCr layer as well as its magnetization reversal mechanism. Both the conventional and anomalous training effect have been observed.
     In the second part, we investigate the hysteretic behavior of angular dependence of exchange bias and the recovery effect of exchange bias together with the rotated pinning direction. In the hysteresis behavior of angular dependence of exchange bias, not only the HC and HE, the pinning direction has also changed during angular measurements of exchange bias. The rotation of pinning direction explains the hysteresis behavior of angular dependence of exchange bias. In the recovery effect of exchange bias, application of a recovery magnetic field at specific direction can recover the exchange bias. The rotated pinning direction can be used to explain this asymmetric effect. Furthermore, the dependence of the recovery effect on the magnitude and application time of recovery magnetic field has also been investigated.
     In the third part, we introduce the fabrication of the linear GMR spin valve Si/Ru/IrMn/Co/Ru/Co/Cu/Co/NiFe/Ta. Different from the conventional methods to achive the linearlity of spin valve, we use two different external magnetic field during fabrication to induce orthogonal anisotropies in the free and pinned layers, and successfully fabricate the linear GMR spin valve.
引文
[1]S. Wolf, D. Awscholom, R. Buhrman, J. Daughton, S. Molnar, M. Roukers, A. Chtchlkanovam, and D. Treger. Spintronics:A Spin-Based Electronics Vision for the Future [J]. Science,2001,294 (1): 1488-1495.
    [2]Igor Zutic, Jaroslav Fabian, and S. Das Sarma. Spintronics: Fundamentals and applications [J]. Rev. Mod. Phys.,2004,76(2): 323-410.
    [3]A. Fert. Nobel Lecture:Origin, development, and future of spintronics [J]. Rev. Mod. Phys.,2008,80(4):1517-1530.
    [4]M. Johnson, and R. Silsbee. Interfacial Charge-Spin Coupling: Injection and Detection of Spin Magnetization in Metals [J]. Phys. Rev. Lett.,1985,55(17):1790-1793.
    [5]M. Baibich, J. Broto, A. Fert, F. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas. Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices [J]. Phys. Rev. Lett., 1988,61(21):2472-2475.
    [6]G. Binasch, P. Grunberg, F. Saurenbach, and W. Zinn. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interplay exchange [J]. Phys. Rev. B,1989,39(7): 4828-4830.
    [7]P. M. Tedrow and R. Meservey. Spin-Dependent Tunneling into Ferromagnetic Nickel [J]. Phys. Rev. Lett.,1971,26(4):192-195.
    [8]M. Julliere. Tunneling between ferromagnetic films [J]. Phys. Lett. A,1975,54(3):225-226
    [9]查超麟.L10 FePt基磁记录介质材料的研究[D].上海:复旦大学,2006
    [10]徐振.垂直磁记录介质的制备和超快自旋动力学研究[D].上海:复旦大学,2009
    [11]D. Suess, J. Lee, J. Fidler, and T. Schrefl. Exchange-coupled perpendicular media [J]. J. Magn. Magn. Mater,2008,321(6): 545-554.
    [12]S. Piramanayagam, and K. Srinivasan. Recording media research for future hard disk drives [J]. J. Magn. Magn. Mater,2008,321(6): 485-494.
    [13]B. Terris. Fabrication challenges for patterned recording media [J]. J. Magn. Magn. Mater,2008,321(6):512-517.
    [14]S. Greaves. Read-write issues in ultra-high density perpendicular recording [J]. J. Magn. Magn. Mater,2008,321(6):477-484.
    [15]K. Gao,O. Heinonen, Y. Chen. Read and write processes, and head technology for perpendicular recording [J]. J. Magn. Magn. Mater, 2008,321(6):495-507.
    [16]K. Nagasaka. CPP-GMR technology for magnetic read heads of future high-density recording systems [J]. J. Magn. Magn. Mater,2008, 321(6):508-511.
    [17]C. Charprert, A. Fert, and F. Van Dau. The emergence of spin electronics in data storage [J]. Nature Materials,2007,6(1): 813-823.
    [18]B. Dieny, V. S. Speriosu, S. S. P. Parkin, B. A. Gurney, D. R. Wilhoit, and D. Mauri. Giant magnetoresistive in soft ferromagnetic multilayers [J]. Phys. Rev. B,1990,43(1):1297-1300.
    [19]D. Z. Yang, L. Wang, X. J. Yang, S. M. Zhou, X. S. Wu, J. Du, A. Hu, X. X. Zhang. Enhancement of spin-dependent scattering and improvement of microstructure in spin valves by delayed deposition [J]. Appl. Phys. Lett.,2005,86(25):2503-2505.
    [20]L. Wang, W. J. McMahon, B. Liu, Y. H. Wu and C. T. Chong. Interface or bulk scattering in the semiclassical theory for spin valves [J]. Phys. Rev. B,2004,69(21):214403-214413
    [21]S. Sant, M. Mao, J. Kools, K. Koi, H. Iwasaki, and M. Sahashi. Giant magnetoresistance in ion beam deposited spin-valve films with specular enhancement [J]. J. Appl. Phys,2001,89(11):6931-6933
    [22]S. Parkin. Origin of Enhanced Magnetoresistance of Magnetic Multilayers:Spin-Dependent Scattering from Magnetic Interface States [J]. Phys. Rev. B,1993,71(10):1641-1644
    [23]S. Parkin, N. More, and K. Roche. Oscillations in Exchange Coupling and Magnetoresistance in Metallic Supcrlattice Structures Co/Ru, Co/Cr and Fe/Cr [J]. Phys. Rev, Lett,1990,64(19):2304-2307
    [24]D. V. Dimitrov, J. van Ek, Y. F. Li, and J. Q. Xiao. Enhanced magnetic stability in spin valves with synthetic antiferromagnet [J]. J. Appl. Phys,2001,87(9):6427-6429
    [25]W. F. Egelhoff, T. Ha, R. D. K. Misra, Y. Kadmon, J. Nir, C. J. Powell, M. D. Stiles, R. D. McMichael, C. Lin, J. M. Sivertsen, J. H. Judy, K. Takano, A. E. Berkowitz, T. C. Anthony, and J. A. Brug. Magnetoresistance values exceeding 21% in symmetric spin valves [J]. J. Appl. Phys,2001,78(1):273-277
    [26]M. Julliere. Tunneling between ferromagnetic films [J]. Phys. Lett. A,1975,54(3):225-226
    [27]T. Miyazaki and N. Tezuka. Giant magnetic tunneling effect in Fe/Al2O3/Fe junction [J]. J. Magn. Magn. Mater,1995,139(1): L231-L234
    [28]J. S. Moodera, Lisa R. Kinder, Terrilyn M. Wong, and R. Meservey. Large Magnetoresistance at Room Temperature in Ferromagnetic Thin Film Tunnel Junctions [J]. Phys. Rev. Lett,1995,74(16):3273-3276
    [29]W. H. Butler, X. Zhang, T. C. Schulthess, and J. M. MacLaren. Spin-dependent tunneling conductance of Fe/MgO/Fe sandwiches [J]. Phys. Rev. B,2001,63(5):054416-054427
    [30]J. Mathon and A. Umerski. Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction [J]. Phys. Rev. B,2001,63(22): 220403-220406
    [31]M. Bowen, V. Cros, F. Petroff, A. Fert, C. Martinez Boubeta, J. L. Costa-Kramer, J. V. Anguita, A. Cebollada, F. Briones, J. M. de Teresa, L. Morellon, M. R. Ibarra, F. Guell, F. Peiro, and A. Cornet. Large magnetoresistance in Fe/MgO/FeCo(001) epitaxial tunnel junctions on GaAs(001) [J]. Appl. Phys. Lett,2001,79(11): 1655-1657
    [32]Stuart S. P. Parkin, Christian Kaiser, Alex Panchula, Philip M. Rice, Brian Hughes, Mahesh Samant and See-Hun Yang. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers [J]. Nature Materials,2004,3(1):862-867
    [33]S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki and K. Ando. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions [J]. Nature Materials,2004,3(1):868-871
    [34]S. Ikeda, J. Hayakawa, Y. Ashizawa, Y. M. Lee, K. Miura, H. Hasegawa, M. Tsunoda, F. Matsukura and H. Ohno. Tunnel magnetoresistance of 604% at 300K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature [J]. Appl. Phys. Lett.,2008,93(8):082508-082510
    [35]J. A. Katine, Eric E. Fullerton. Device implications of spin-transfer torques [J]. J. Magn. Magn. Mater,2008,320(7):1217-1226
    [36]J. Slonczewski. Current-driven excitation of magnetic multilayers [J]. J. Magn. Magn. Mater,1996,159(1-2):L1-L7
    [37]L. Berger. Emission of spin waves by a magnetic multilayer traversed by a current [J]. Phys. Rev. B,1996,54(13):9353-9358
    [38]M. Tsoi, A. G. M. Jansen, J. Bass, W. C. Chiang, M. Seck, V. Tsoi, and P. Wyder. Excitation of a Magnetic Multilayer by an Electric Current [J]. Phys. Rev. Lett,1998,80(19):4281-4284
    [39]E. Myers. Manipulating Nanomagnets with Spin-Polarized Currents [D]. USA:Cornell University,2002
    [40]P. M. Braganca, I. N. Krivorotov,O. Ozatay, A. G. F. Garcia, N. C. Emley, J. C. Sankey, D. C. Ralph, and R. A. Buhrman. Reducing the critical current for short-pulse spin-transfer switching of nanomagnets [J]. Appl. Phys. Lett.,2005,87(11):112507-112509
    [41]D.C. Ralph, M. D. Stiles. Spin transfer torques [J]. J. Magn. Magn. Mater,2008,320(7):1190-1216
    [42]M. Covington. A Ringing Confirmation of Spintronics Theory [J]. Science,2005,307(1):215-216
    [43]E. B. Myers, D. C. Ralph, J. A. Katine, R. N. Louie, and R. A. Buhrman. Current-Induced Switching of Domains in Magnetic Multilayer Devices [J]. Science,1999,285(1):867-870
    [44]W. H. Rippard, M. R. Pufall, and T. J. Silva. Quantitative studies of spin-momentum-transfer-induced excitations in Co/Cu multilayer films using point-contact spectroscopy [J]. Appl. Phys. Lett.,2003, 82(8):1260-1262
    [45]J. A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers and D. C. Ralph. Current-Driven Magnetization Reversal and Spin-Wave Excitations in Co/Cu/Co Pillars [J]. Phys. Rev. Lett.,2000,84(14):3149-3152
    [46]J. Z. Sun, D. J. Monsma, D. W. Abraham, M. J. Rooks, and R. H. Koch. Batch-fabricated spin-injection magnetic switches [J]. Appl. Phys. Lett.,2002,81(12):2202-12204
    [47]J. Wegrowe, A. Fabian, Ph. Guittienne, X. Hoffer, D. Kelly, J. Ansermet, and E. Olive. Exchange torque and spin transfer between spin polarized current and ferromagnetic layers [J]. Appl. Phys. Lett.,2002,80(20):3775-3777
    [48]L. Savtchenko et al. Method of Writing to Scalable Magnetoresistance Random Access Memory Elements [P]. U. S. Patent:6545906B1,2003-4-8
    [49]J. Z. Sun. Spin-current interaction with a monodomain magnetic body: A model study [J]. Phys. Rev. B,2000,62(1):570-578
    [50]Z. Diao, D. Apalkov, M. Pakala, Y. Ding, A. Panchula, and Y. Huai. Spin transfer switching and spin polarization in magnetic tunnel junctions with MgO and AlOx barriers [J]. Appl. Phys. Lett.,2005, 87(23):232502-232504
    [51]Z. Diao, M. Pakala, A. Panchula, Y. Ding, D. Apalkov, L. Wang, E. Chen, and Y. Huai. Spin-transfer switching in MgO-based magnetic tunnel junctions [J]. J. Appl. Phys.,2006,99(8):08G510-08G514
    [52]Y. Huai, M. Pakala, Z. Diao, D. Apalkov, Y. Ding, A. Panchula. Spin-transfer switching in MgO magnetic tunnel junction nanostructures [J]. J. Magn. Magn. Mater,2006,304(1):88-92
    [53]Z. Diao, A. Panchula, Y. Ding, M. Pakala, S. Wang, Z. Li, D. Apalkov, H. Nagai, A. D Smith, L. Wang, E. Chen, and Y. Huai. Spin transfer switching in dual MgO magnetic tunnel junctions [J]. Appl. Phys. Lett.,2007,90(13):132508-132510
    [54]Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer. Dynamic stiffness of spin valves [J]. Phys. Rev. B,2003,67(14):140404-140407
    [55]K. Eid, R. Fonck, M. AlHaj Darwish, W. P. Pratt, and J. Bass. Current-perpendicular-to-plane-magnetoresistance properties of Ru and Co/Ru interfaces [J]. J. Appl. Phys.,2002,91(10):8102-8104
    [56]J. Hayakawa, S. Ikeda, Y. Lee, R. Sasaki, T. Meguro, F. Matsukura, H. Takahashi and H. Ohno. Current-Induced Magnetization Switching in MgO Barrier Based Magnetic Tunnel Junctions with CoFeB/Ru/CoFeB Synthetic Ferrimagnetic Free Layer [J]. Jpn. J. Appl. Phys.,2006, 45(1):L1057-L1060
    [57]S. Mangin, D. Ravelosona, J. A. Katine, M. J. Carey, B. D. Terris and Eric E. Fullerton. Current-induced magnetization reversal in nanopillars with perpendicular anisotropy [J]. Nature Materials, 2006,5(1):210-215
    [58]M. Nakayama, T. Kai, N. Shimomura, M. Amano, E. Kitagawa, T. Nagase, M. Yoshikawa, T. Kishi, S. Ikegawa, and H. Yoda. Spin transfer switching in TbCoFe/CoFeB/MgO/CoFeB/TbCoFe magnetic tunnel junctions with perpendicular magnetic anisotropy [J]. J. Appl. Phys., 2008,103 (7):07A710-07A712
    [59]J. Hayakawa, S. Ikeda, Y. M Lee, R. Sasaki, T. Meguro, F. Matsukura, H. Takahashi and H. Ohno. Current-Driven Magnetization Switching in CoFeB/MgO/CoFeB Magnetic Tunnel Junctions [J]. Jpn. J. Appl. Phys. 2005,44 (1):L1267-L1270
    [60]Y. Huai, M. Pakala, Z. Diao, and Y. Ding. Spin transfer switching current reduction in magnetic tunnel junction based dual spin filter structures [J]. Appl. Phys. Lett.,2005,87(22):222510-222512
    [61]B. Dieny,O. Redon. Thermally-assisted magnetic random access memory (MRAM) [P]. U. S. Patent:6385082,2002-5-7
    [62]S. S. P. Parkin, M. Hayashi, L. Thomas. Magnetic Domain-Wall Racetrack Memory [J]. Science,2008,320(1):190-194
    [63]V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord& Josep Nogues. Beating the superparamagnetic limit with exchange bias [J]. Nature,2003,423(1):850-853
    [1]彭勇,硕士毕业论文[D].兰州: 兰州大学,2001
    [2]赵宝升,真空技术[M].北京:科学出版社,1998.
    [3]郑伟涛, 薄膜材料与薄膜技术[M].北京:化学工业出版社,2004
    [4]Jr. C. A.Foss, G. L.Hornyak, J. A.Stockert, et al. [J]. J. Phys. Chem., 1994,98:2963.
    [5]Jr. C. A.Foss, G. L.Hornyak, J. A.Stockert, et al. [J]. J. Phys. Chem., 1992,96:749.
    [6]D. A. Mawiawi, N.Coombs [J]. J. App. Phys.,1991,70:4421.
    [7]杨邦朝,王文生.薄膜物理与技术[M].北京:电子科技大学出版社,1994:
    [8]吴自勤,王兵.薄膜生长[M].北京:科学出版社,2001:
    [9]唐伟忠,薄腊材料制备原理、技术及应用(第2版)[M].北京:冶金工业出版社,2003
    [10]田民波,刘德令.薄膜科学与技术手册[M].北京:机械工业出版社,1991:
    [11]王力衡,黄运添,郑海涛.薄膜技术[M].北京:清华大学出版社,1991:
    [12]X. M. Ding, X. Yang, and W. Xun. Surface physics and surface analysis [M]. ShangHai:Fudan University,2007:279
    [13]周上祺, X射线衍射分析-原理-方法-应用[M].北京:工业技术图书馆,1991:276.
    [14]丛秋滋,多晶二维x射线衍射[M].北京:科学出版社,1997:367.
    [15]徐振。 高磁场振动样品磁强计的自动化改造和物质基本磁性的测量[D].南京:东南大学,2004.
    [16]刘新福,四探针技术测量薄层电阻的原理及应用[J].半导体技术,2004,29(7):48-52.
    [17]白惠珍.金属薄板电导率的四探针测量法[J].河北大学学报,2000,29(4):76-78.
    [1]J. Nogues, and I. K. Schuller. Exchange bias [J]. J. Magn. Magn. Mater, 1999,192(2):203-232.
    [2]A. E. Berkowitz, and K. Takano. Exchange anisotropy-a review [J]. J. Magn. Magn. Mater,1999,200(1):552-570.
    [3]周仕明,李合印,袁淑娟.铁磁/反铁磁双层膜中交换偏置[J].物理学进展,2003,23(1): 62-81.
    [4]W. H. Meiklejohn, and C. P. Bean. New magnetic anisotropy [J]. Phys. Rev,1956,102(1):1413-1414.
    [5]I. K. Schuller and G. Guntherodt. Exchange Bias Manifesto [EB/OL]. http://ischuller.ucsd.edu/exchange manifesto. php,2002-9-25.
    [6]S. M. Zhou, and C. L. Chien. Dependence of exchange coupling on magnetization in Co-Ni-FeMn bilayers [J], Phys. Rev. B,2001,63(10): 4406-4409.
    [7]A. Malozemff. Random-field model of exchange anisotropy at rough ferromagnetic-antiferromagnetic interfaces [J], Phys. Rev. B,1987, 35(7):3679-3682.
    [8]S.Parkin and V. Speriosu. Magnetic Properties of Low Dimensional Systems Ⅱ [M], German:Springer:Berlin,1990:110.
    [9]R. Jungblut, R. Coehoorn, M. T. Johnson, J. aan de Stegge, and A. Reinders. Orientational dependence of the exchange biasing in molecular-beam-epitaxy-grown Ni80Fe20/Fe50Mn50 bilayers [J]. J. Appl. Phys,1994,75(10):6659-6664.
    [10]C. Leighton, J. Nogues, B. J. Jonsson-Akerman, and Ivan K. Schuller. Coercivity Enhancement in Exchange Biased Systems Driven by Interfacial Magnetic Frustration [J]. Phys. Rev. Lett,2000,84(15); 153466-153469.
    [11]L. Wang, B. You, S. J. Yuan, J. Du, W. Q. Zou, A. Hu, and S. M. Zhou. Coercivity enhancement in exchange-biased ferromagnet/FeMn bilayers [J]. Phys. Rev. B,2003,66(18):184411-184413.
    [12]M. R. Fitzsimmons and P. Yashar, C. Leighton and Ivan K. Schuller, J. Nogues, C. F. Majkrzak and J. A. Dura. Asymmetric Magnetization Reversal in Exchange-Biased Hysteresis Loops [J]. Phys. Rev. Lett, 2000,84(17):173986-173989.
    [13]J. Camarero, J. Sort, A. Hoffmann, J. Gacia-Martin, B. Dieny, R. Miranda, and J. Nogues. Origin of the Asymmetric Magnetization Reversal Behavior in Exchange-Biased Systems:Competing Anisotropies [J]. Phys. Rev. Lett,2005,95(5):057204-057207.
    [14]A. Hoffmann. Symmetry Driven Irreversibilities at Ferromagnetic-Antiferromagnetic Interfaces [J]. Phys. Rev. Lett., 2004,93(09):097203-097206.
    [15]S. Brems, D. Buntinx, K. Temst, C. V. Haesendonck, F. Radu, and H. Zabel. Reversing the Training Effect in Exchange Biased CoO/Co Bilayers [J]. Phys. Rev. Lett.,2005,95(15):157202-157205.
    [16]S. Brems, K. Temst, and C. V. Haesendonck. Origin of the Training Effect and Asymmetry of the Magnetization in Polycrystalline Exchange Bias Systems [J]. Phys. Rev. Lett.,2007,99(06): 067201-067204.
    [17]X. P. Qiu, D. Z. Yang, S. M. Zhou, R. Chantrell, K.O'Grady, U. Nowak, J. Du, X. J. Bai, and L. Sun. Rotation of the pinning direction in the exchange bias training effect in polycrystalline NiFe/FeMn bilayers [J]. Phys. Rev. Lett,2008,101(14):147207-147210.
    [18]A. Hochstrat, C. Binek, and W. Kleemann. Training of the exchange-bias effect in NiO-Fe heterostructures [J]. Phys. Rev. B, 2002,66(9):092409-092412.
    [19]W. H. Meiklejohn, and C. P. Bean. New magnetic anisotropy [J]. Phys. Rev,1957,105(1):904-913.
    [20]W. H. Meiklejohn. Exchange Anisotropy-A Review [J]. J. Appl. Phys., 1962,33(3):1328-1335.
    [21]D. Mauri, H. C. Siegmann, P. S. Bagus, and E. Kay. Simple model for thin ferromagnetic films exchange coupled to an antiferromagnetic substrate [J]. J. Appl. Phys.,1987,62(7):3047-3049.
    [22]E. Fulcomer and S. H. Charap. Thermal fluctuation aftereffect model for some systems with ferromagnetic-antiferromagnetic coupling [J]. J. Appl. Phys.,1972,43(10):4190-4199.
    [23]W. F. Brown. Thermal Fluctuations of a Single-Domain Particle [J]. Phys. Rev.,1963,130(5):1677-1686.
    [1]W. H. Meiklejohn, and C. P. Bean. New magnetic anisotropy [J]. Phys. Rev.,1956,102(1):1413-1414.
    [2]D. Paccard, C. Schlenker,O. Mssenet, R. Montmory, and A. Yelon. A new property of ferromagnetic-antiferromagnetic coupling [J]. Phys. Status Solidi,1966,16(1):301-311.
    [3]A. Hoffmann. Symmetry Driven Irreversibilities at Ferromagnetic-Antiferromagnetic Interfaces [J]. Phys. Rev. Lett., 2004,93(09):7203-7206.
    [4]T. Hauet, J. A. Borchers, Ph. Mangin, Y. Henry, and S. Mangin. Training Effect in an Exchange Bias System:The Role of Interfacial Domain Walls [J]. Phys. Rev. Lett.,2006,96(06):067207-067210.
    [5]S. Brems, D. Buntinx, K. Temst, C. V. Haesendonck, F. Radu, and H. Zabel. Reversing the Training Effect in Exchange Biased CoO/Co Bilayers [J]. Phys. Rev. Lett.,2005,95(15):157202-157205.
    [6]S. Brems, K. Temst, and C. V. Haesendonck. Origin of the Training Effect and Asymmetry of the Magnetization in Polycrystalline Exchange Bias Systems [J]. Phys. Rev. Lett.,2007,99(06):7201-7204.
    [7]C. Binek, S. Pollisetty, and A. Berger. Exchange Bias Training Effect in Coupled All Ferromagnetic Bilayer Structures [J]. Phys. Rev. Lett., 2006,96(06):067201-067204.
    [8]M. F. Toney, C. Tsang, and J. K. Horward. Thermal annealing of exchange biased NiFe-FeMn films [J]. J. Appl. Phys.,1991,70(10): 6227-6229.
    [9]G. W. Anderson, Y. Huai, and M. Pakala. Spin-valve thermal stability: The effect of different antiferromagnets [J]. J. Appl. Phys.,2000, 87(9):5726-5728.
    [10]D. Choo, R. Chantrell, R. Lamberton, A. Johnston, and K.O'Grady. A model of the magnetic properties of coupled ferromagnetic/antiferromagnetic bilayers [J]. J. Appl. Phys.,2007, 101(09):E521-E523.
    [11]R. Nakatani, K. Hoshino, S. Noguchi, and Y. Sugita. Magnetoresistance and Preferred Orientation in Fe-Mn/Ni-Fe/Cu/Ni-Fe Sandwiches with Various Buffer Layer Materials [J]. Jpn. J. Appl. Phys.,1994, 33(1):133-137.
    [12]S. M. Zhou, Kai Liu, and C. L. Chien. Exchange coupling and macroscopic domain structure in a wedged permalloy/FeMn bilayer [J]. Phys. Rev. B,1998,58(22):14717-14720.
    [13]H. Sang, Y. W. Du, and C. L. Chien. Exchange coupling in FeMn/NiFe bilayer:Dependence on antiferromagnetic layer thickness [J]. J. Appl. Phys,1999,85(8):4931-4933.
    [14]J. Camarero, J. Sort, A. Hoffmann, J. Gacia-Martin, B. Dieny, R. Miranda, and J. Nogues. Origin of the Asymmetric Magnetization Reversal Behavior in Exchange-Biased Systems:Competing Anisotropies [J]. Phys. Rev. Lett,2005,95(5):057204-057207.
    [15]X. P. Qiu, D. Z. Yang, S. M. Zhou, R. Chantrell, K.O'Grady, U. Nowak, J. Du, X. J. Bai, and L. Sun. Rotation of the pinning direction in the exchange bias training effect in polycrystalline NiFe/FeMn bilayers [J]. Phys. Rev. Lett,2008,101(14):147207-147210.
    [16]A. Hochstrat, C. Binek, and W. Kleemann. Training of the exchange-bias effect in NiO-Fe heterostructures [J]. Phys. Rev. B, 2002,66(9):092409-092412.
    [17]Z. Shi, X. P. Qiu, S. M. Zhou, X. J. Bai and J. Du. Anomalous training effect of perpendicular exchange bias in Pt/Co/Pt/IrMn multilayers [J]. Appl. Phys. Lett,2008,93(22):222504-222506.
    [18]T. R. Gaq, S. P. Hao, S. M. Zhou, and L. Sun. Evolution of magnetization reversal mechanism in Fe-Cr alloy films [J]. J. Appl. Phys.,2006,100(7):073909-073915.
    [19]D. V. Ratnam, and W. R. Buessem. Angular Variation of Coercive Force in Barium Ferrite [J]. J. Appl. Phys.,1972,43(3):1291-1293.
    [20]Y. Z. Zhou, J. S. Chen, G. M. Chow, and J. P. Wang. Structure and magnetic properties of in-plane oriented FePt-Ag nanocomposites [J]. J. Appl. Phys.,2003,93(10):7577-7579.
    [1]S. Brems, D. Buntinx, K. Temst, C. V. Haesendonck, F. Radu, and H. Zabel. Reversing the Training Effect in Exchange Biased CoO/Co Bilayers [J]. Phys. Rev. Lett.,2005,95(15):157202-157205.
    [2]T. R. Gao, D. Z. Yang, and S. M. Zhou, R. Chantrell, P. Asselin, J. Du, X. S. Wu. Hysteretic Behavior of Angular Dependence of Exchange Bias in FeNi/FeMn Bilayers [J]. Phys. Rev. Lett.,2007,99(5): 057201-057204.
    [3]Z. Shi, T. R. Gao, S. M. Zhou, R. Chantrell, P. Asselin, X. J. Bai, J. Du, and X. S. Wu. Hysteretic behavior of angular dependence of exchange bias in FeNi/FeMn bilayers:A new signature [J]. J. Appl. Phys.,2008,103(7):E926-928.
    [1]S. S. P. Parkin. Measurements Techniques and Novel Magnetic Properties in Ultrathin Magnetic Structures Ⅱ [M]. Berlin: Springer-Verlag,1994:148-185.
    [2]B. Dieny. Giant magnetoresistance in spin-valve multilayers [J]. J. Magn. Magn. Mater,1994,136(3):335-339.
    [3]H. Kano, K. Kagawa, and A. Suzuki et al. Substrate-temperature effect on giant magnetoresistance of sputtered co/cu multilayers [J]. Appl. Phys. Lett,1993,63(20):2839-2841.
    [4]J. M. Daughton. GMR Applications [J]. J. Magn. Magn. Mater,1999, 192(1):334-342.
    [5]F. Stobiecki, B. Szymanski, T. Lucinski, J. Dubowik, M. Urbaniak, M. Schmidt, K. Roll. GMR sensors with linear and unhysteretic R(H) dependences [J]. J. Magn. Magn. Mater,2004,272 (1):E1751-1753.
    [6]D. E. Heim, R. Fontana, C. Tsang, S. Speriosu, B. Gurney, and M. Williams. Design and operation of spin valve sensors [J]. IEEE Trans. Mag,1994,30(2):316-321.
    [7]Z. Qian, J. M. Daughton, D. Wang, and M. Tondra. Magnetic Design and Fabrication of Linear Spin-Valve Sensors [J]. IEEE Trans. Mag,2003, 39(5):3322-3324.
    [8]Th. Rijks, W. Jonge, W. Folkers, J. Kools, and R. Coehoorn. Magnetoresistance in NiFe/Cu/NiFe/FeMn spin valves with low coercivity and ultrahigh sensitivity [J]. Appl. Phys. Lett,1994, 65(7):916-918.
    [9]Z. Qian, D. Wang, J. M. Daughton, M. Tondra, C. Nordman, and A. Popple. Linear Spin-Valve Bridge Sensing Devices [J]. IEEE Trans. Mag,2004, 40(4):2643-2645.
    [10]D. Z. Yang, L. Wang, X. J. Yang, S. M. Zhou, X. S. Wu, J. Du, A. Hu, X. X. Zhang. Enhancement of spin-dependent scattering and improvement of microstructure in spin valves by delayed deposition [J]. Appl. Phys. Lett.,2005,86(25):252503-252505.
    [11]S. Parkin, N. More, and K. Roche. Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures:Co/Ru, Co/Cr, and Fe/Cr [J]. Phys. Rev. Lett.,1990,64(19):2304-2307.
    [12]S. Mao, A. Mack, E. Singleton, J. Chen, S. S. Xue, H. Wang, Z. Gao, Jin Li, and E. Murdock. Thermally stable spin valve films with synthetic antiferromagnet pinned by NiMn for recording heads beyond 20 Gbit/in2 [J]. J. Appl. Phys.,2000,87(9):5720-5722.
    [13]A. Veloso and P. P. Freitas. Spin valve sensors with synthetic free and pinned layers [J]. J. Appl. Phys.,2000,87(9):5744-5746.
    [14]S. Parkin. Origin of enhanced magnetoresistance of magnetic multilayers:Spin-dependent scattering from magnetic interface states [J]. Phys. Rev. Lett.,1993,71 (10):1641-1644

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700