用户名: 密码: 验证码:
摆线齿锥齿轮数控加工装备及其数字化制造关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摆线齿锥齿轮是大型、重型机械设备中传递相交轴运动和动力的关键零件。目前,摆线齿锥齿轮的数控加工装备及其数字化制造技术仍为德国Klingelnberg公司所拥有,而我国在该领域的研究尚处于起步阶段。为了提高我国摆线齿锥齿轮数控加工装备的自主创新能力以及摆线齿锥齿轮的数字化制造水平,本文对摆线齿锥齿轮的数控加工装备及其数字化制造关键技术进行了研究,主要研究成果如下:
     1、基于螺旋锥齿轮传动的啮合理论,对现有摆线齿锥齿轮切齿算法的不足之处进行了改进。通过设定相啮合齿面在参考点处接触椭圆的长轴长度,根据齿面参考点的曲率参数,运用迭代算法确定了外刀盘修正齿长曲率时的偏距EXB。通过控制外刀盘回转中心的偏距EXF保证了轮齿的齿厚,避免了现有算法产生的螺旋角偏差和曲率偏差。基于KN3028、KN3030标准和改进后的切齿算法,开发了计算机辅助设计软件,并通过实例对软件的计算结果进行了验证。
     2、基于齿轮啮合理论,建立了摆线齿锥齿轮的齿面方程以及齿面曲率参数的计算方法。根据大、小轮的齿面方程及齿面的曲率参数,建立了摆线齿锥齿轮齿面接触分析的方法,不仅可以分析齿轮副在理论安装位置时的接触情况,还可以得到齿轮副在齿面大端、中点、小端啮合时的接触区、传动误差曲线以及V、H调整量。通过实际的切齿加工实验,验证了切齿算法和齿面接触分析方法的正确性。
     3、基于摆线齿锥齿轮的齿面方程,给出了齿面各离散点在机床调整位置以及在展成加工位置时的径矢和法矢的计算公式,并提出了一种精确计算展成起始和展成终止摇台角的算法。此外,建立了一种齿形分析的方法,并分析了各种机床调整参数对齿形的影响规律及影响程度。在此基础上,建立了一种修正齿形误差的方法,根据测量数据,可得到修正切齿加工误差或补偿热处理变形的机床调整参数修正量。
     4、基于摆线齿锥齿轮的数控加工原理,提出了一种新的刀具主轴结构,可实现外刀盘轴线偏距的调整以及外刀盘轴线偏置方向角的连续调整。基于数控机床与机械式机床运动变换的原理以及H1600K型数控机床的数控加工坐标系,建立了摆线齿锥齿轮数控加工的数学模型。利用该数学模型以及数控系统的“电子齿轮”功能,可生成数控加工的程序代码,进而实现摆线齿锥齿轮的数控加工。
     5、基于H1600K型数控摆线齿锥齿轮铣齿机,提出了在机测量系统的结构。针对CMM和齿轮测量中心测量小轮时存在的问题,提出了基于展成原理的齿形误差在机测量方法,可利用小直径测球的直测针无干涉地完成齿面的测量。给出了齿形误差和齿轮分度精度的在机测量过程以及测量数据的处理方法。基于AutoCAD的二次开发功能,开发了仿真软件,通过对比仿真测量结果和理论分析结果,验证了在机测量原理的正确性。
Cyclo-Palloid spiral bevel gears are the key components of the large or heavy mechanical equipment for transmitting motion and power between intersecting axes. At present, CNC machining equipment and digital manufacturing technologies of Cyclo-Palloid spiral bevel gears are still owned by Klingelnberg Corporation in Germany. But in the field of CNC machining equipment and manufacturing technologies, the domestic companies are still in the initial stage. In order to improve the independent innovation capacity of CNC machining equipment and enhance the digital manufacturing level of Cyclo-Palloid spiral bevel gears, the CNC machining equipment and key technologies for realizing digital manufacturing has been studied in this paper. The main research results are as follows.
     1. Based on the meshing theory of spiral bevel gears, the shortcomings of the existing machine-settings calculation algorithm of Cyclo-Palloid spiral bevel gears have been improved. By setting the major axis length of the instantaneous contact ellipse and according to the curvature parameters at reference point of engaged tooth surface, the offset value EXB of the axis of outer cutter head for modifying tooth lengthwise curvature is determined using iterative algorithm. By controlling the offset distance EXF of the axis of outer cutter head to ensure the tooth thickness, avoiding the helical angle and curvature deviation generated by the existing algorithms. Based on the KN3028, KN3030 standards and the improved algorithms, computer-aided design software is developed, and the software calculation results are verified through examples.
     2. Based on the gear meshing theory, the tooth surface equation and the calculation method for tooth surface curvature parameters of Cyclo-Palloid spiral bevel gears is established. According to the tooth surface equation and the curvature parameters of the gearset, tooth contact analysis method for Cyclo-Palloid spiral bevel gears is established. It can not only analyze the contacting status of gearset at the theoretical installation location, but also obtain the shape of contact pattern, the curve of transmission error and the adjusting value of V, H while the gearset engaging at heel, midpoint and toe location. The machine-settings calculation algorithm and tooth contact analysis method are verified through the actual processing experiments.
     3. Based on the tooth surface equation, the formulas are given for calculating the position vector and normal vector of the discrete points, while the discrete points are in the machine adjusting location or the generating location. An accurate method for calculating start and end generating cradle angle is proposed. Furthermore, a tooth form analysis method is proposed and the influence rule and its extent of various machine setting parameters on the tooth form is analyzed. On this basis, a method for modifying the tooth form errors is presented. According to the measured data, we can obtain the correction value of machine-setting parameters by which modify the tooth form errors generated by machining errors or compensate the tooth deformation generated by heat treatment.
     4. Based on the CNC machining principle of Cyclo-Palloid spiral bevel gears, a new structure for workpiece spindle is proposed. It can realize the adjustment of offset distance and the continuous changes of direction angle of outer cutter head axis. Based on the motion transforming principle between CNC machine and mechanical machine and the machining coordinate system of H1600K CNC cutting machine, the mathematical model for CNC machining is established. By using this mathematical model and the "electronic gear" function of numerical control system, NC code can be generated, thus achieving CNC machining of Cyclo-Palloid spiral bevel gears.
     5. Based on the model of H1600K CNC Cyclo-Palloid spiral bevel gear cutting machine, the structure of the on-machine measuring system is proposed. Considering the shortcomings of measuring principle of CMM and gear measuring center when inspecting the pinion, an on-machine measuring method of tooth forms errors based on generating principle is proposed. The tooth form errors can be measured without interference by using the probe with smaller diameter. The on-machine measuring procedure and data processing method for indexing precision and tooth form errors are given. Based on the secondary development platform of AutoCAD, simulation software is developed. By comparing the simulated measuring results with theoretical analysis results, the correctness of the on-machine measuring principle is verified.
引文
[1]H J Stadtfeld. Handbook of bevel and hypoid gears, Calculation, Manufacturing and Optimization. New York:Rochester Institute of technology,1993.7-32
    [2]董学朱.摆线齿锥齿轮及准双曲面齿轮设计和制造.北京:机械工业出版社,2003.1-7
    [3]E Wildhaber. Basic Relationship of Bevel Gears-Ⅰ. American Machinist,1945, 89(20):99-102
    [4]E Wildhaber. Basic Relationship of Bevel Gears-Ⅱ. American Machinist,1945, 89(21):118-121
    [5]E Wildhaber. Basic Relationship of Hypoid Gears. American Machinist,1946, 90(4):108-111
    [6]E Wildhaber.锥齿轮和准双曲面齿轮啮合原理(张志僖译).北京:中国工业出版社,1958.1-18
    [7]M L Baxter. Basic Geometry and Tooth Contact of Hypoid Gears. Industrial Mathematics,1961,11 (2):19-42
    [8]天津齿轮机床研究所,西安交通大学编译.格利森锥齿轮技术资料译文集(第一分册).北京:机械工业出版社,1983.1-24
    [9]天津齿轮机床研究所编译.格利森锥齿轮技术资料译文集(第五分册).北京:机械工业出版社,1982.117-134
    [10]M L Baxter. Effect of Misalignment on Tooth Action of Bevel and Hypoid Gear. ASME Paper 61-MD-20,1961.1-4
    [11]M L Baxter. Second Order Surface Generation. Industrial Mathematics,1973,23 (2):85-106
    [12]T J Krenzer. Tooth Contact Analysis of Spiral Bevel and Hypoid Gears Under Load. New York:Gleason Works,1981.1-8
    [13]严志达.论共轭曲面的法曲率关系及应用.机械工程学报,1979,15(1):52-64
    [14]南开大学数学系齿轮啮合研究小组.齿轮啮合理论的数学基础(一),数学的实践与认识,1976,1(1):52-62
    [15]南开大学数学系齿轮啮合研究小组.齿轮啮合理论的数学基础(二),数学的实践与认识,1976,1(2):41-58
    [16]南开大学数学系齿轮啮合研究小组.齿轮啮合理论的数学基础(三),应用数学学报,1976,1(1):84-88
    [17]郑昌启.局部共轭原理及其在弧齿锥齿轮切齿计算中的应用.机械工程学报,1979,15(2):73-106
    [18]郑昌启.弧齿锥齿轮和准双曲面齿轮的齿面接触分析计算原理.机械工程学报,1981,17(2):1-12
    [19]郑昌启.弧齿锥齿轮和准双曲面齿轮.北京:机械工业出版社,1988.40-56
    [20]郑昌启,黄昌华,吕传贵.螺旋锥齿轮加载接触分析计算原理.机械工程学报,’1993,29(4):50-54
    [21]曾韬.格里森磨齿机展成凸轮分析.机床,1978,(5):6-11
    [22]曾韬.美国格里森《SGM》编制原理.机床,1979,(4):17-26
    [23]曾韬.螺旋锥齿轮设计与加工.黑龙江:哈尔滨工业大学出版社,1989.1-46
    [24]吴序堂.准双曲面齿轮啮合原理及其在刀倾半展成加工中的应用.西安交通大学学报,1981,15(1):9-24
    [25]吴序堂.准双曲面齿轮的变性全展成加工法原理(上).齿轮,1984,8(2):1-8
    [26]吴序堂.准双曲面齿轮的变性全展成加工法原理(下).齿轮,1984,8(3):1-8
    [27]吴序堂.格里森制曲线齿锥齿轮变性半展成切齿原理.西安交通大学学报,1984,18(5):1-14
    [28]吴序堂.格里森准双曲面齿轮刀倾全展成切齿法的研究.机械工程学报,1985,21(2):54-69
    [29]董学朱.准双曲面齿轮切齿调整计算法的改进(一).齿轮,1985,9(6):1-4
    [30]董学朱.准双曲面齿轮切齿调整计算法的改进(二).齿轮,1986,10(1):40-43
    [31]董学朱.准双曲面齿轮变性半展成切齿调整计算新方法.齿轮,1987,11(4):1-7
    [32]董学朱.弧齿锥齿轮变性全展成切齿调整计算新方法.齿轮,1987,11(6):7-10
    [33]董学朱.准双曲面齿轮刀倾半展成切齿调整计算新方法.齿轮,1988,12(2):1-6
    [34]董学朱.弧齿锥齿轮半展成切齿调整计算新方法.齿轮,1988,12(4):1-5
    [35]董学朱.准双曲面齿轮刀倾全展成切齿调整计算方法.齿轮,1988:12(5):1-6
    [36]毛世民.格里森制准双曲面齿轮刀倾半展成加工法的研究:[硕士学位论文].西安:西安交通大学,1985
    [37]Gleason Works. Calculating Instructions Generated Spiral Bevel Gears Duplex Helical Method Including Grinding. New York:Gleason Works,1979.1-55
    [38]F L Litvin, Y Gutman. Methods of Synthesis and Analysis of Hypoid Gear Drives of Formate and Helixform. ASME Journal of Mechanical Design,1981,103(1): 83-113
    [39]F L Litvin, Y Gutman. A Method of Local Synthesis of Gears Grounded on the Connections Between the Principal and Geodetic Curvatures of Surfaces. ASME Journal of Mechanical Design,1981,103(1):114-125
    [40]F L Litvin, Y Zhang. Local Synthesis and Tooth Contact Analysis of Face-Milled Spiral Bevel Gears. NASA CR-4342, Chicago:NASA Lewis Research Center, 1991.1-24
    [41]F L Litvin, N Chen, J Chen, et al. Computerized Design and Generation of Low-Noise Gears with Localized Bearing Contact. Virginia:AGMA,1994.1-12
    [42]Y Zhang, F L Litvin, R F Handschuh. Computerized Design of Low-noise Face-milled Spiral Bevel Gears. Mechanism and Machine Theory,1995,30(8): 1171-1178
    [43]F L Litvin, A G Wang, R F Handschuh, et al. Design, Generation, Stress Analysis and Test of Low-Noise, Increased Strength Face-milled Spiral Bevel Gears. Virginia:AGMA,1997.1-17
    [44]F L Litvin, A Fuentes, Q Fan,et al. Computerized Design, Simulation of Meshing, and Contact and Stress Analysis of Face-milled Formate Generated Spiral Bevel Gears. Mechanism and Machine Theory,2002,37(4):441-459
    [45]F L Litvin, A Fuentes, B R Mullins, et al. Computerized Design, Generation, Simulation of Meshing and Contact, and Stress Analysis of Formate Cut Spiral Bevel Gear Drives. NASA/CR-2003-212336,2003.1-62
    [46]F L Litvin. Gear geometry and applied theory. UK:Cambridge University Press, 2004.627-645
    [47]王小椿.点啮合曲面的三阶接触分析.西安交通大学学报,1983,17(3):1-12
    [48]王小椿.线接触曲面的三阶接触分析.西安交通大学学报,1983,17(5):1-13
    [49]王小椿,吴序堂.点接触齿面三阶接触分析的进一步探讨-V/H检验的理论.西安交通大学学报,1987,21(2):1-14
    [50]王小椿,吴序堂.弧齿锥齿轮和双曲线齿轮的三阶接触分析和优化切齿计算.齿轮,1989,13(2):1-10
    [51]吴序堂,王小椿,李峰.曲线齿锥齿轮三阶接触分析法的原理及传动质量评价.机械工程学报,1994,30(3):47-54
    [52]邓效忠,方宗德,魏冰阳等.高重合度弧齿锥齿轮加工参数设计与重合度测定.机械工程学报,2004,40(6):95-99
    [53]邓效忠.高重合度弧齿锥齿轮的设计理论及试验研究:[博士学位论文].西安:西北工业大学,2004.
    [54]邓效忠,杨宏斌,牛啤.高齿弧齿锥齿轮的设计与性能试验.中国机械工程,1999,10(8):864-866
    [55]杨宏斌,范明,周彦伟,等.高齿准双曲面齿轮的研究.中国机械工程,2000,11(8):897-899
    [56]王三民,沈允文.具有最佳加载接触性能的弧齿锥齿轮主动设计研究.机械科学与技术,2001,20(5):663-664
    [57]F L Litvin, J S Chen. Application of Finite Element Analysis for Determination of Load Share, Real Contact Ratio, Precision of Motion, and Stress-Analysis. ASME Journal of Mechanical Design,1996,118(4):561-567
    [58]C Gosselin, C Louis, Q D Nguyen. A General Formulation for the Calculation of the Load Sharing and Transmission Error under Load of Spiral Bevel and Hypoid Gears. Mechanism and Machine Theory.1995,30(3):433-450
    [59]黄昌华,温诗铸,李润方,等.弧齿锥齿轮和准双曲面齿轮润滑加载接触分析.清华大学学报,1996,36(4):48-53
    [60]高建平,方宗德,杨宏斌.螺旋锥齿轮边缘接触分析.航空动力学报,1998,13(3):289-292
    [61]方宗德,田行斌.准双曲面齿轮有摩擦承载接触分析.汽车工程,1999,21(3):184-187
    [62]周彦伟,杨宏斌,邓效忠.高齿准双曲面齿轮的轮齿加载接触分析.中国机械工程,2002,13(14):1181-1183
    [63]王延忠,周云飞,周济,等.考虑轮齿制造误差的螺旋锥齿轮加载接触分析.中国科学与技术,2002,21(2):224-227
    [64]CHEN Liangyu, WANG Yanzhong, ZHENG Xijian, etc. Method for precise calculation of root stress of spiral bevel gears. Chinese Journal of Mechanical Engineering,1994,7(4):316-319
    [65]赫尔曼·J·斯塔德菲尔德.齿侧面改型的加工方法.中国专利,CN1158580,1997-09-03
    [66]H J Stadtfeld. Flank Modifications in Bevel Gears Using a Universal Motion Concept. Virginia:AGMA,1995.1-10
    [67]H J Stadtfeld. Gleason Bevel Gear Technology, manufacturing, Inspection and Optimization. New York:Gleason Works,1995.111-131
    [68]H·J·斯帕达费尔德.齿轮精加工方法和齿轮.中国专利,CN1326391A,2001-12-12
    [69]H J Stadtfeld, U Gaiser. The Ultimate Motion Graph for "Noiseless" Gears. Virginia:AGMA,2001.1-16
    [70]吴训成,毛世民,吴序堂.点啮合齿面主动设计研究.机械工程学报,2000,36(4):70-73
    [71]吴训成,毛世民,吴序堂.点啮合齿面主动设计理论和方法.机械科学与技术,2000,19(3):347-349
    [72]吴训成,陈志恒,胡宁.曲线齿锥齿轮点啮合齿面主动控制加工技术.机械工程学报,2005,41(10):97-101
    [73]吴训成.基于功能需求的弧齿锥齿轮齿面主动设计与先进制造技术研究:[博士学位论文].西安:西安交通大学,2000
    [74]方宗德,刘涛,邓效忠.基于传动误差设计的弧齿锥齿轮啮合分析.航空学报,2002,23(3):227-230
    [75]L M Sung, Y C Tsai. A study on the mathematical models and contact ratios of extend cycloid and cycloid bevel gears. Mechanism and Machine Theory,1997, 32(1):39-50
    [76]H J Stadtfeld. Introduction of a jobbing system for bevel and hypoid gears. Virginia:AGMA,1997.1-15
    [77]董学朱.摆线齿锥齿轮连续分齿法铣齿原理的研究.机械传动,1999,23(2):29-30
    [78]董学朱.延伸外摆线齿准双曲面齿轮几何设计和切齿调整计算新方法.机械传动,1999,23(4):16-20
    [79]董学朱.延伸外摆线锥齿轮切齿调整计算法的改进.机械传动,1997,21(4):41-47
    [80]刘志锋.摆线齿锥齿轮传动原理及啮合性能模糊优化的研究:[博士学位论文].沈阳:东北大学,2001
    [81]刘志锋,杨文通,王蕾,等.基于误差的摆线锥齿轮动态加载接触分析方法(上).机械传动,2005,22(2):71-72,91
    [82]刘志锋,杨文通,王蕾,等.基于误差的摆线锥齿轮动态加载接触分析方法(下).机械传动,2005,22(3):14-16,39
    [83]张文祥,敖蔚.克林贝格螺旋锥齿轮的根切.淮南矿业学院学报,1994,14(2):66-74
    [84]张文祥,敖蔚.克林贝格螺旋锥齿轮副的油膜特性研究.煤炭学报,1996,21(4):425-429
    [85]冯忆艰.克林贝格螺旋锥齿轮的诱导法曲率.淮南矿业学院学报,1996,16(2):57-62
    [86]冯忆艰.失配理论在克林贝格螺旋锥齿轮副中的应用.西安科技学院学报,2000,20(2):148-150
    [87]孟凡净.克林根贝格螺旋锥齿轮接触区域分析:[硕士学位论文].淮南:安徽理工大学,2007
    [88]邹旻.面向制造的摆线齿锥齿轮啮合理论研究:[博士学位论文].南京:南京理工大学,2007
    [89]李巍.克林贝格摆线齿锥齿轮的齿形仿真和接触分析:[硕士学位论文].北京:北京工业大学,2006
    [90]曹毅.克林贝格螺旋锥齿轮的CAD及局部计算机仿真:[硕士学位论文].淮南:安徽理工大学,2002
    [91]R N Goldrich. Theory of Six Axes CNC Generation of Spiral Bevel and Hypoid Gears. Virginia:AGMA,1989.1-4
    [92]H J Stadtfeld.锥齿轮齿形加工的第二次革命.WMEM,2004, (5):70-75
    [93]遇立基.CIMT'99展出的数控齿轮加工机床.制造技术与机床,1999,(12):6-7
    [94]王延忠,周云飞,李左章,等.基于通用五坐标数控机床螺旋锥齿轮NC加工研究.中国机械工程,2001,12(8):903-906
    [95]王延忠,周云飞,李左章.螺旋锥齿轮空间曲面NC加工插补误差分析.华中理工大学学报,2002,30(2):9-12
    [96]S H Suh. W S Jih. H D Hong, et al. Sculptured surface machining of spiral bevel gears with CNC milling. International Journal of Machine Tools& Manufacture, 2001,41(5):833-850
    [97]S H Suh, D H Jung, E S Lee, et al. Modelling, Implementation, and Manufacturing of Spiral Bevel Gears with Crown. International Journal of Advanced Manufacturing Technology.2003,21(3):775-786
    [98]张兆龙,谢华锟,徐露.锥齿轮测量技术的发展及锥齿轮的局部互换性.工具技术,2000,34(2):40-43
    [99]谢华锟,王志,石照耀,等.锥齿轮测量技术的最新进展.工具技术,2003,27(10):48-51
    [100]石照耀,费业泰,谢华锟.齿轮测量技术100年—回顾与展望.中国工程科学,2003,5(9):13-17
    [101]G. Mikoleizig. Cylindrical and Bevel Gear Inspection-A Simple Task Using Dedicated CNC Controlled Gear Inspection Machines. Virginia:AGMA,2000. 1-27
    [102]Krenzer T J, Knebel R. Computer Aided Inspection of Bevel and Hypoid Gears. SAE Technical Paper,1983.1-5
    [103]S H Suh, E S Lee, H C Kim, et al. Geometric Error Measurement of Spiral Bevel Gears Using a Virtual Gear Model for Step-NC. International Journal of Machine Tools& Manufacture,2002,42(2):335-342
    [104]王军,王小椿,姜虹,等.螺旋锥齿轮齿面的三坐标测量.机械工程学报,2003,39(6):151-154
    [105]李天兴,邓效忠,魏冰阳.基于一维侧头准双曲面齿轮齿面偏差的测量.中国机械工程,2007,18(8):958-962
    [106]Y Satio, H Kagimoto, N Aoyama, et al. Checker of 3D Form Accuracy of Hypoid& Bevel Gear Teeth for the New Generation of Quality Control. Virginia:AGMA,1998.1-13
    [107]WANG Zhonghou, ZHOU Xiaoling, TETSUTRAU O, et al. Surface Error Measurement of Spiral Bevel Gears Using Scanning Measurement. Chinese Journal of Scientific Instrument,2007,28(2):229-235
    [108]贾振元.大型齿轮就地测量技术的研究:[博士学位论文].大连:大连理工大学,1990
    [109]廖念钊,秦岚,王雪梅.大齿轮齿向误差的在位测量新方法研究.仪器仪表学报,1994,15(2):194-197
    [110]王代华.大齿轮齿形误差在位测量系统的研究.重庆大学学报,1999,22(2):6-11
    [111]李文龙.大型齿轮在机测量原理及技术的研究:[博士学位论文].大连:大连理工大学,2000
    [112]李文龙,金嘉琦,赵文珍.大齿轮齿向误差在机测量技术.组合机床与自动化加工技术,2000,(1):37-38
    [113]Renishaw Plc. MP250 Machine Probe System. UK:Renishaw Plc,2007.1-10
    [114]D J Burt. Gleason G-AGE Automated Gear Evaluation Software. New York: Gleason Works,1994.1-7
    [115]樊奇,让·德福.格里森专家制造系统开创弧齿锥齿轮及准双曲面齿轮数字化制造新纪元.WMEM,2005,(4):87-93
    [116]T J Krenzer. Computer Aided Corrective Machine Settings for Manufacturing Bevel and Hypoid Gears. Virginia:AGMA,1984.1-6
    [117]F L Litvin, Y Zhang. Identification and Minimization of Deviations of Real GearTooth Surface. ASME Journal Mechanical Design,1991,113(1):55-62
    [118]F L Litvin, C Kuan, J C Wang, et al. Minimization of deviation of gear real tooth surface determined by coordinate measurements. ASME Journal of Mechanical Design,1993,115(4):995-1001
    [119]C. Gosselin, Yoshio Shiono, Tetsuya Nonaka, et al. A Computer Based Approach Aimed at Reproducing Master Spiral Bevel and Hypoid Pinions and Gears. Virginia:AGMA,1996.1-10
    [120]C Gosselin, T Nonaka, Y Shiono. Identification of the Machine Settings of Real Hypoid Gear Tooth Surface. ASME Journal Mechanical Design,1998,120(3): 429-440
    [121]C. Gosselin, J Masseth, S Noga. Stock Distribution Optimization in Fixed Setting Hypoid Pinions. Virginia:AGMA,2000.1-8
    [122]Lin C Y, Tsay C B, Fong Z H. Computer-aided manufacturing of spiral bevel and hypoid gears with minimum surface deviation. Mechanism and Machine Theory,1998,33(6):785-803
    [123]王小椿,王军,姜虹,等.螺旋锥齿轮的齿面测量及机床加工参数修正.机械工程学报,2003,39(8):125-128
    [124]王军.基于三坐标测量的弧齿锥齿轮及准双曲面齿轮齿面加工精度控制方法研究:[博士学位论文].西安:西安交通大学,2003
    [125]Lin C Y, Tsay C B, Fong Z H. Computer-aided manufacturing of spiral bevel and hypoid gears by applying optimization techniques. Journal of Materials Processing Technology,2001,114(1):22-35
    [126]Gabiccini M, Artoni A, Puccio F D, et al. A regularization method for hypoid gear synthesis using the invariant approach. In:Jean-Pierre Merlet, Marc Dahan, eds. Proceedings of Twelfth World Congress in Mechanism and Machine Science. France:IFToMM,2007.1-8
    [127]李敬财,王太勇,范胜波,等.基于数字化制造的螺旋锥齿轮齿面误差修正.农业机械学报,2008,39(5):174-177,185
    [128]Klingelnberg GmbH. Klingelnberg-Oerlikon Spiral Bevel Gear. Huckeswagen: Klingelnberg GmbH,2005.1-128
    [129]董学朱.齿轮啮合理论基础.北京:机械工业出版社,2003.1-23
    [130]Klingelnberg GmbH. Klingelnberg Standards KN3028-Design of a bevel gear drive without offset according to the Klingeberg Cyclo-Palloid System (Issue No. C2). Huckeswagen:Klingelnberg GmbH,1984.1-46
    [131]Klingelnberg GmbH. Klingelnberg Standards KN3029-Design of hypoid gears according to the Klingeberg Cyclo-Palloid System (Issue No.108). Huckeswagen:Klingelnberg GmbH,1979.1-25
    [132]Klingelnberg GmbH. Klingelnberg Workstandards KN3030-Rating of spiral bevel gears according to Klingelnberg Cyclo-Palloid System (Edition No.1.1). Huckeswagen:Klingelnberg GmbH,1990.2-33
    [133]Klingelnberg GmbH. Calculation of machine setting data-bevel gear generating machine AMK852 for bevel and hypoid gears according to the Cyclo-Palloid System. Huckeswagen:Klingelnberg GmbH,1979.1-20
    [134]吴序堂.齿轮啮合原理.北京:机械工业出版社,1982.55-72
    [135]Klingelnberg GmbH. Checking the torsional flank play. Huckeswagen: Klingelnberg GmbH,1979.1-2
    [136]吴大任.微分几何讲义(第三版).北京:人民教育出版社,1979.
    [137]AGMA. ANSI/AGMA 2009-B01. Bevel gear classification, tolerances, and measuring methods. Virginia:AGMA,2001-11-20
    [138]Klingelnberg GmbH. Operating instruction of Oerlikon C100U. Huckeswagen: Klingelnberg GmbH,2006.1-45
    [139]Siemens AG. SINUMERIK 840D/840Di/810D Programing manuals. Berlin: Siemens AG,2004.530-537
    [140]中华人民共和国机械电子工业部.GB 11365-89.锥齿轮和准双曲面齿轮精度.北京:中国标准出版社,1989-05-06
    [141]AGMA. ANSI/AGMA 2005-D03. Design manual for bevel gears. Virginia: AGMA,2003-07-10
    [142]R LeMaster, B. Boggs, J. Bunn, etc. Grinding induced changes in residual stress of carburized gears. Gear Technology,2009,26(2):42-49
    [143]余俊,廖道训.最优化方法及其应用.武汉:华中工学院出版社,1984.51-59
    [144]H J Stadtfeld. Face Hobbing-Lapping or Face Milling-Grinding, A Question of Application and Environment. New York:Gleason Works,2004.1-23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700