用户名: 密码: 验证码:
基于X-ray CT和有限元方法的沥青混合料三维重构与数值试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沥青混合料是由集料、沥青砂胶和空隙三部分组成,这三部分的体积组成及沥青砂胶的粘弹特性,使得沥青混合料的力学性能十分复杂,在实际工程当中加载频率、加载幅度以及环境的变化更加剧了这种复杂性。利用X-ray CT(X-ray Computerized Tomography),结合数字图像和数值模拟技术针对传统沥青混合料研究方法的局限性,从微细观尺度研究混合料结构对其性能的影响,进行沥青混合料内部结构分析和沥青混合料力学性能虚拟试验即数值试验是近年来国内外研究热点。
     但是纵观国内外对沥青混合料的微细观研究,绝大部分的研究工作主要集中在以下两个方面:(1)沥青混合料内部结构的定量或定性分析;(2)基于试样的一个或几个二维截面,结合数字图像处理技术建立二维数值模型进行力学模拟。研究明显具有局限性,而基于实际试样真实三维微细观分布模型的力学数值试验的研究更是屈指可数,主要是因为在模型三维重构和力学数值模拟时遇到重重困难,而这两点又正好是实现沥青混合料虚拟试验模拟计算成功的关键之所在。
     本文尝试不仅定性地,而且定量地解决上述难题。根据沥青混合料三维重构原理,把握从三维可视化模型向三维数值模型转化的本质特点,深入分析问题的难点所在:三维数值试样重构,提出了基于CT技术对沥青混合料进行三维数值重构算法,自行开发程序建立三维数值试样。
     三维模型重构后,最重要的一步是选择能恰当反映沥青砂胶粘弹特性的本构模型。本论文在系统阐述沥青混合料的粘弹性本构关系理论的基础上,讨论了沥青混合料粘弹本构关系的有限元实现。采用动态剪切流变仪对沥青砂胶进行蠕变试验,通过不同应力水平下的蠕变试验,建立了模型参数与加载应力函数关系,得到Burgers模型蠕变方程一般表达式,分析模型参数对蠕变过程的影响。
     目前对单轴蠕变的数值模拟时建立的模型为连续均质体,很难真实地模拟实际情况。本论文基于试件的真实微细观分布建立三维数值模型,对FAC-13混合料的粗型、中等粗型和细型三种不同级配的数值试件进行单轴静载蠕变数值模拟。模拟在相同温度和荷载条件下,三种不同级配的变形响应,模拟结果真实反映了不同试样的变形响应,与实际试验结果一致。
     为了更进一步验证上述方法和程序的可行性,结合室内间接拉伸试验,采用X-ray CT对FAC-13试件进行扫描,进行间接拉伸数值试验。模拟在低温快速加载条件下试件的受力分布状态,定性评价应力分布的不均匀性;对试件进行间接拉伸动态模量数值试验,研究3个不同温度、6个不同荷载频率下试件动态模量的变化,并与实际试验结果相比较进行验证,验证了整个方法和程序切实可行。
Asphalt mixture is composed of aggregates, sand matrix and air voids. volume compositions of three parts and viscoelastic properties of sand matrix make the mechanical properties of asphalt mixture complex. In practical engineering field, loading frequency, loading magnitude, and environment change exacerbate complexity. Because of the limitation of traditional methods, combining with digital image processing and numerical simulation technology, X-ray CT(X-ray Computerized Tomography) was used to study the microstructure of asphalt mixture for analyzing internal structure of asphalt mixture. Virtual mechanics test namely digital test was performed as hot research focus at home and abroad in recent years.
     However, the most research about microstructure of asphalt mixture focused on following two aspects: (1) quantitatively or qualitatively analyzing the internal structure of asphalt mixture; (2) Based on one or several two-dimensional cross-sections of specimen, combining with digital image processing technology , two-dimensional numerical model was established for mechanics simulation. It is obvious that the research is limited. Oppositely, The research about digital test based on the model for real three-dimensional micro-samples is few, mainly because it is difficult for reconstructing three-dimensional model and mechanical numerical simulation, these two points are the key to achieve a virtual test.
     This paper attempts to challenge the research limits, not only qualitatively but also trying to solve the problem quantitatively. According to principles of three-dimensional reconstruction of asphalt mixture, grasping the essential characteristics from three-dimensional visualization model transformation to three-dimensional numerical model, analyzing difficult problems in-depth: three-dimensional reconstruction of digital specimen. Based on CT technology, numerical reconstruction algorithm was proposed and program was developed for reconstructing digital specimen.
     After three dimensional model reconstruction, the most important step is choosing appropriate constitutive model that reflecting viscoelastic properties of asphalt sand matrix. On this basis the viscoelastic constitutive relationship of asphalt mixture was systematically expounded and FEM realization of viscoelastic constitutive of asphalt mixture was discussed. Using Dynamic Shear rheometer (DSR), creep test of sand matrix was conducted. Through different stress level creep test, the relationship between model parameters and loading stress function was established. Creep equation general expression of Burgers model was obtained and impact for the model parameters on creep process was analyzed.
     Currently, most reconstruction model for uniaxial creep of numerical simulation is continuous homogeneous, which is difficult to simulate actual situation. After model reconstruction based on real microcosmic distribution of specimen, uniaxial static load creep numerical simulation of digital specimen was conducted for three different gradations of FAC-13: fine, middle course and coarse gradation. The purpose of simulation is to reflect different deformation response of three different gradations. The simulation results truly reflected actual experimental results.
     To further verify the feasibility of the methods and program, combining with indoor indirect tensile test, X-ray CT was used to scan the FAC-13 specimen. Under low-temperature and rapid loading conditions, digital test of indirect tensile test was conducted for evaluating inhomogeneity of stress distribution qualitatively;Under three different temperatures and six different frequencies conditions, digital test of dynamic modulus was conducted. The simulation results were compared with actual experimental results. It was found that the whole methods and procedures were validated practical.
引文
[1] U S Department of Transportation. Simulation,imaging and mechanics of asphalt pavement[R].Virginia:Turner-Fairbanks Highway Research Center,1998
    [2]汪海年,郝培文.沥青混合料微细观结构的研究进展[J].长安大学学报(自然科学版), 2008,28(3):11-14
    [3]张蕾,王哲人.应用数字图像处理技术研究沥青混合料微细观结构方法综述[J].中外公路, 2008,28(3):168-171
    [4]郝培文,张登良.考虑路用性能的沥青混合料配合比设计[J].西安公路交通大学学报. 1997(1):1-4
    [5] N.W.里斯特, J.波特.沥青道路设计方法[J].黑龙江交通科技. 1996(1):51-54
    [6] JON A. EPPS, PETER E. SEBAALY, etc. Compatibility of a Test for Moisture-Induced Damage with Superpave Volumetric Mix Design, NCHRP REPORT 444
    [7]张肖宁.设计沥青混合料[J].哈尔滨建筑大学学报. 2002, 1:108-112
    [8]张肖宁,王绍怀,吴旷怀等.沥青混合料组成设计的CAVF法[J].公路,2001, 12:17-21
    [9]张肖宁,郭组辛,王绍怀.按体积法设计沥青混合料[J].哈尔滨建筑大学学报. 1995,4(2):28-26
    [10]谭忆秋,张肖宁,郭组辛.用体积法设计SMA混合料的配合比[J].哈尔滨建筑大学学报. 1999,6(3):105-110
    [11] Zaitsev YB, Wittmann FH. Simulation of crack propagation andfailure of concrete. Materials and Construction 1981;14:357–65
    [12] CT赫尔曼,严洪范.由投影重建图像-CT的理论基础[M].北京:科学出版社, 1985
    [13]陈金银. CT技术与无损检测[J].无损检测, 1991,13(4):3-9
    [14]丁厚本.工业CT在无损检测中的应用[J].无损检测, 1991, 13(7):52-57
    [15]屠耀元.层析摄影与CT技术[J].无损检测, 1992,14(10):37-42
    [16]张婧娜.基于数字图像处理技术的沥青混合料微细观结构分析方法研究[D],同济大学博士学位论文, 2000.1
    [17]李智.基于数字图像处理技术的沥青混合料体积组成特性分析[D].哈尔滨工业大学博士学位论文. 2002.7
    [18]黃隆昇.沥青混凝土巨观车辙及微细观轨迹之行为机制分析[D].国立成功大学博士学位论文, 2003
    [19]王端宜.设计沥青路面及其方法研究[D].华南理工大学博士学位论文, 2003
    [20]杨宇亮.沥青混合料细观结构的分析方法[D].同济大学博士学位论文, 2003.7
    [21]毕婧,宋凯.边缘跟踪算法在沥青改性过程中的应用[J].电脑应用与开发,2004,17(2)
    [22]肖云. SBS改性沥青微细观分散性分析[D].华南理工大学硕士学位论文, 2004.6
    [23]姚秋玲.基于数字图像处理技术的沥青混合料组成特性研究[D].长安大学硕士学位论文. 2004.6
    [24]杨新华,王习武.用图像处理技术实现沥青混合料有限元建模[J].中南公路工程, 2005,30(3):5-7
    [25]彭勇,孙立军,史玉金.沥青混合料离析评价方法的研究[J].武汉理工大学学报(交通科学与工程版), 2005, 29(4): 484-486
    [26]彭勇,孙立军,杨宇亮,等.一种基于数字图像处理技术的沥青混合料均匀性研究新方法[J].公路交通科技, 2004,21(11):10-12
    [27]彭勇,孙立军.沥青混合料均匀性影响因素的研究[J].同济大学学报(自然科学版), 2006,34(1):59-63
    [28]徐科,张肖宁,李智,等.沥青混合料级配离析定量评价与相关性研究(英文)[J].深圳大学学报(理工版), 2006, 23(04): 296-302
    [29]汪海年,郝培文,庞立果,等.基于数字图像处理技术的粗集料级配特征[J].华南理工大学学报(自然科学版). 2007, 35(11): 54-58
    [30]陈佩林,虞将苗,李晓军,等.基于数字图像处理技术的沥青混合料微细观结构有限元分析(英文) [J].安徽工业大学学报, 2006, 23(3): 327-330
    [31]虞将苗,李晓军,王端宜,等.基于计算机层析识别的沥青混合料有限元模型[J].长安大学学报(自然科学版), 2006, 26(1): 16-19
    [32]吴文亮.沥青混合料的数字图像处理技术与概率统计方法研究[D].华南理工大学博士学位论文, 2009
    [33]徐科.用于沥青混合料的数字图像处理技术及应用研究[D].华南理工大学博士学位论文, 2006
    [34]谢涛.基于CT实时观测的沥青混合料裂纹扩展行为研究[D].西南交通大学博士学位论文, 2002
    [35]乔英娟,王哲人,陈静云等.沥青结构层芯样分层变形的数字图像测量方法[J].公路交通科技, 2007, 24(10): 11-15
    [36]李晓军.沥青混合料破损识别与仿真[R].华南理工大学博士后研究报告, 2004
    [37]李晓军,张肖宁. CT技术在沥青胶结颗粒材料内部结构分析中的应用[J].公路交通科技, 2005,22(2):14-16
    [38]李晓军,张肖宁,武建民.沥青混合料单轴重复加卸载破损CT识别[J].哈尔滨工业大学学报. 2005, 37(9): 1228-1230
    [39] Z.Q. Yue, S. Chen, L.G. Tham ,Finite element modeling of geomaterials using digital image processing, Computers and Geotechnics 30 (2003) 375–397
    [40] U.S Department of Transportation, etc. Simulation, Imaging and Mechanics of Asphalt Pavement[R]. McLean, Virginia.Turner-Fairbank Highway Research Center. 1998
    [41] SIMAP Team. Simulation Imaging and Mechanics of Asphalt Pavements. U.S.FHWA. 1998,6:1-3
    [42] SHRP Team. Strategic Highway Research Program. Technical Brief of C-SHRP. U.S.FHWA. 1995,2:20-25
    [43] SIMAP Team. Progress to date. U.S.FHWA.2001,1:1-3
    [44] Masad E,Muhunthan B,Shashidhar N,et a1.Quantifying laboratory compaction effects on the internal structure of asphalt concrete[C] TRB.Transportation Research Record 1681.Washington D C:TRB,1999:179-185
    [45] Masad, Eyad; Button, Joe W. Unified imaging approach for measuring aggregate angularity and texture[J]. Computer-Aided Civil and Infrastructure Engineering 15 4 2000 Blackwell Publ Inc p 273-280
    [46] Masad, Eyad; Somadevan, Niranjanan . Microstructural finite-element analysis of influence of localized strain distribution on asphalt mix properties. Journal of Engineering Mechanics.v 128 n 10 October 2002 2002 American Society of Civil Engineers p 1106-1115
    [47] E. Masad,1 B. Muhunthan,2 N. Shashidhar,3 and T. Harman ,Internal structure characterization of asphalt concrete using image analysis, Journal of Computing in Civil Engineering, Vol. 13, No. 2, April, 1999.P88-95
    [48] Masad E., Tashman L., Somedavan N., et al. Micromechanics-based analysis of stiffness anisotropy in asphalt mixtures[J]. Journal of Materials in Civil Engineering, 2002, 14(5):374-383
    [49] Wang L.B., Frost J. D., Shashidhar N. Microstructure Study of WestTrack Mixes from X-ray Tomography Images[C]. TRB Washington D.C. 2001
    [50] Wang L.B., Frost J. D., Mohammad L., et al. Three-Dimensional Aggregate Evaluation Using X-ray Tomography Imaging[C]. TRB 2002
    [51] Wang, L., Wang, Y., Mohammad, L., and Harman, T. 2002. Voids distribution and performance of asphalt concrete. International Journal of Pavements, 1(3): 22–33
    [52] Shashidhar, N. 1999. X-ray tomography of asphalt concrete. In Hot-mix asphalt mixtures. Transportation Research Record 1681, Transportation Research Board, National Academy Press, Washington, D.C. pp. 186–192
    [53] Sadi Kose, Murat Guler, and Hussain U. Bahia. Distribution of Strains within Asphalt Binders in HMA Using Imaging and Finite Element Techniques, TRB 79th Annual Meeting. 2000(1391) Washington DC
    [54] Richard A. Ketcham, Naga Shashidhar, Quantitative Analysis of 3-D Images of Asphalt Concrete. TRB 80th Annual Meeting. 2001(0321) Washington DC
    [55] Tashman, L., Masad, E., D’Angelo, J., Bukowski, J., and Harman,T. 2002. X-ray tomography to characterize air void distribution in superpave gyratory compacted specimens. International Journal of Pavement Engineering, 3(1): 19–28
    [56] Birgisson B., Soranakom C., Napier J., et al. Microstructure and fracture in asphalt mixtures using a boundary element approach[J]. Journal of Materials in Civil Engineering, 2004, 16(2): 116-121
    [57] Prediction of Creep Stiffness of Asphalt Mixture with Micromechanical Finite-Element and Discrete-Element Models
    [58] Braz, D., Da Motta, L. M. G., and Lopes, R. T. Computed Tomography in the Fatigue Test Analysis of an Asphaltic Mixture. Appl.Radiat. Isot,1999, 50(4), 661–671
    [59] Garboczi, E. J. Garboczi.Three-dimensional Mathematical Analysis of Particle Shape Using X-ray Tomography and Spherical Harmonics: Application to Aggregates Used in Concrete, Cement Concrete Res,2002, 32 (10) 1621-1638
    [60]唐鸳华. X-CT技术进展[J].中国医疗器械杂志, 1995,19(5),284-285
    [61]秦绪佳.医学图象三维重建及可视化技术研究[D] .大连理工大学博士学位论文,2001
    [62]张勇.医学图像可视化技术及其在虚拟骨折手术中的应用[D].大连理工大学博士学位论文,2002
    [63]吴良武.体素建模、绘制及其在医学图象中的应用[D].大连理工大学博士学位论文,2002
    [64] Baumgart B.Q,Geometric Modeling for Computer Vision. Stanford University. STAN-CS-74-463.1974
    [65] Mantyla M., Introduction to solid modeling,Maryland: Computer Science Press,1988
    [66]李明.逆向工程的应用及其集成[J].机械制造, 1996, 11: 4-6
    [67]孙家广,陈玉健,辜凯宁.计算机辅助几何造型技术[M].北京,清华大学出版社, 1990
    [68] Linbing Wang, Harold Skip Paul, Thomas Harman,John D’Angelo,Characterization of Aggregates and Asphalt Concrete using X-ray Computerized Tomography and Computational Techniques, AAPT, March 2004, Baton Rouge, Louisiana
    [69] Linbing Wang, Harold Skip Paul, Thomas Harman,John D’Angelo,Characterization of Aggregates and Asphalt Concrete using X-ray Computerized Tomography and Computational Techniques, AAPT, March 2004, Baton Rouge, Louisiana
    [70] LEVOY M.Display of surfaces from volume data[J].IEEE Computer Graphics and Applications,May 1988,8(5):29-37.
    [71] Linbing Wang, Harold Skip Paul, Thomas Harman,John D’Angelo,Characterization of Aggregates and Asphalt Concrete using X-ray Computerized Tomography and Computational Techniques, AAPT, March 2004, Baton Rouge, Louisiana
    [72] Collop, A. C., A. T. Scarpas, C. Kasbergen and A. d. Bondt (2003). "Development and finite element implementation of a stress dependent elasto-visco-plastic constitutive model with Damage for Asphalt." TRB 2003 Annual Meeting CD-ROM
    [73] F.L. Robert, L.N. Mohammad and L.B. Wang (2002). History of Hot Mix Asphalt Mixture Design in the United States. ASCE 150th Anniversary Civil Engineers Paper, Journal of Materials in Civil Engineering, Vol.14, No.4, pp. 279-293
    [74]王旭,赵歆波,桂业英等.医学图像序列的直接体绘制算法研究[J].生物医学工程学杂志, 1999,16(3):324-328
    [75] Kranz R L. Crack2crack and crack2po re interact ions in st resses granite [J ]. Int. J. Rock M ech. M in. Sci. &Geomech. A bst r, 1979, 16 (11) : 37-47
    [76] Wu F J, Thomsen L. Microfracturing and deformation of westerly granite under creep condition [J ]. Int. J.Rock mech. Min. Sci. , 1975, 12 (3) : 167-173
    [77]王甲勇.基于车辙试验的有限元车辙预估及影响因素分析.长安大学硕士学位论文,2009
    [78]张肖宁.沥青与沥青混合料的粘弹力学原理及应用[M].北京:人民交通出版社, 2006
    [79]黄晓明,吴少鹏,赵永利.沥青与沥青混合料[M].北京:人民交通出版社, 2002
    [80]沈金安.沥青与沥青混合料路用性能[M].北京:人民交通出版社,2001
    [81]杨挺青,罗文波,徐平等.粘弹性理论与应用[M].北京:科学出版社, 2004
    [82]张久鹏.基于粘弹性损伤理论的沥青路面车辙研究[D].东南大学博士学位论文,2008
    [83]叶永,杨新华,陈传尧.沥青砂粘弹性模型参数的试验研究[J].中外公路, 2009,29(4):192-194
    [84]张丽娟.基于蠕变试验的沥青混合料本构关系及车辙预估方法研究[D].华南理工大学博士学位论文. 2009
    [85]黄仰贤.路面分析与设计[M].北京:人民交通出版社. 1998
    [86] ABAQUS,Inc, Theory Reference. 2.5.12.1 , Implicit Creep Equations ABAQUS, Inc ,2006
    [87] Roberto Firmeza Soares. Finite element analysis of the mechanics of viscoelastic asphaltic pavement subjected to varying configurations[J].ASCE.2005
    [88] MSC. MARC, Inc, Theory Reference. 2.5.12.1. Implicit Creep Equations MSC.MARC, Inc ,2006
    [89] Kamil Elias Kaloush. Simple Performance Test for Permanent Deformation of Asphalt Mixtures[D].Arizona State University .May 2001
    [90]陈静云,周长红,王哲人.沥青混合料蠕变试验数据处理与粘弹性计算[J].东南大学学报,2007,37(6):1091-1095
    [91]廖公云,黄晓明. ABAQUS有限元软件在道路工程中的应用[M].南京:东南大学出版社,2008
    [92]刘立新.沥青混合料粘弹力学及材料学原理[M].北京:人民交通出版社,2006
    [93] Roberto Firmeza Soares.Finite element analysis of the mechanics of viscoelastic asphaltic pavement subjected to varvin confiurationsf[J].ASCE.2005
    [94]贾娟.改性沥青高温性能评价及其应用的研究[D].华南理工大学博士学位论文, 2005
    [95] Airey, G. D., Hunter, A. E., and Rahimzadeh, B. ~2002c.‘‘The influence of geometryand sample preparation on dynamic shear rheometer testing.’’Proc., 4th European Symposium on the Performance of Bituminous and Hydraulic Materials in Pavements,A.A. Balkema, Rotterdam, The Netherlands, 3~12
    [96]李晓民.于流变特性的沥青胶浆评价方法及性能的研究[D].哈尔滨工业大学博士论文. 2006: 92~108
    [97]郑健龙. Burgers粘弹性模型在沥青混合料疲劳特性分析中的应用[J].长沙交通学院学报, 1995,11 (3) :32-42
    [98]田莉,胡霞光,刘玉,沙爱民.沥青玛蹄脂粘弹性模型参数分段线性拟合法[J].交通运输工程学报, 2007,7(3): 66-69
    [99] Zaitsev YB, Wittmann FH. Simulation of crack propagation andfailure of concrete. Materials and Construction 1981, 14:357-65
    [100]邱延峻,闫常赫,艾长发.非均质沥青混合料劈裂试验全过程数值模拟[J].交通运输工程学报, 2009,9(2):12-16
    [101]沈金安.沥青及沥青混合料路用性能[M] .北京:人民交通出版社,2001
    [102]牟瀚林,王顺洪,朱敏.沥青混合料蠕变试验的数值模拟研究[J].公路交通技术,2008(5):17-20
    [103]葛折圣,张肖宁,高俊合.富沥青混合料设计方法的改进[J]. 2007, 24(11)
    [104]邹桂莲,张肖宁,王绍怀等.富沥青混合料的CAVF法设计[J] .公路, 2002 (3) : 76-79
    [105]美国沥青协会.贾渝,曹荣吉,李本京(译).高性能沥青路面(Superpave)基础参考手册.人民交通出版社. 2005
    [106]廖公云,黄晓明. ABAQUS有限元软件在道路工程中的应用[M].南京:东南大学出版社,2008
    [107] You Z. P. Development of a micromechanical modeling approach to predict asphalt mixture stiffness usingthe discrete element method[D]. Urbana-Champaign: University of Illinois, 2003
    [108]延西利,扈惠敏,张登良.沥青混合料线性流变模型的数值模拟[J].西安公路交通大学学报, 1999 , 19 (1) : 7 -12
    [109]皮育晖,张久鹏,黄晓明等.沥青混合料劈裂试验数值模拟[J]. 2007, 24(8)
    [110] JTJ052O2000 ,公路工程沥青及沥青混合料试验规程[ S].北京:人民交通出版社,2002
    [111]王勖成.有限单元法[M].北京:清华大学出版社, 2003
    [112] HIBBITTE , KARLSSON , SORENSON1ABAQUS Theory Manual [M] HKS , INC ,20041
    [113]马林.间接拉伸模式下沥青混合料动态模量研究[D].华南理工大学博士学位论文,2009
    [114] Hondros, G.,“Evaluation of Poisson’s Ratio and the Modulus of Materials of a Low Tensile Resistance by the Brazilian (Indirect Tensile) Test with Particular Reference to Concrete.”Austr. J. Appl. Sci., Vol. 10, No. 3, pp. 243-268, 1959
    [115] Roque, R. and Buttlar, W.G. Development of a Measurement and Analysis Method to Accurately Determine Asphalt Concrete Properties Using the Indirect Tensile Mode. Proceedings of the Association of Asphalt Paving Technologists, Vol. 61, 1992:pp.304-332
    [116] W.G. Buttlar and R. Roque. Development and evaluation of the strategic highway research program measurement and analysis system for indirect tensile testing at low temperature. TRR. 1994
    [117] Samer, W. Katicha. Development of laboratory to field shift factors for hot-mix asphalt resilient modulus. Virginia Polytechnic Institute and State University. 2003
    [118] Barksdale. Prediction of anisotropic resilient responses for unbound granular layer considering aggregate physical properties and moving wheel load[J]. Journal of Materials in Civil Engineering, 1998
    [119] Brown, S. F. and Cooper, K. E. The Mechanical Properties of Bituminous Materials for Road Bases and Base Courses [J]. Journal of the Association of Asphalt Paving Technologists, Volume 53, Paul, Minnesota, 1984
    [120] S. W. Park, Y. R. Kim. Fitting prony-series viscoelastic models with power-law presmoothing[J]. Journal of Materials in Civil Engineering, January/February, 2001,Vol.13, No. 1: 26-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700