用户名: 密码: 验证码:
高填方涵洞EPS板减荷技术应用及数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在山区修建高速公路,常用高填路堤代替桥梁穿越沟谷,达到降低工程造价的目的,从而形成了较多的高填方涵洞。由于高填方涵洞承受的土压力大,因而涵洞多为结构尺寸较大、施工困难但承载力较高的拱涵。如果采用在涵顶铺设柔性材料EPS板的减荷技术,促使土中形成拱效应,降低作用在涵洞上的土压力,就可使用材料用量小、施工简便的盖板涵代替拱涵,满足高填方涵洞承载力要求。
     为了开展高填方涵洞EPS板减荷技术应用研究,本文结合四川省广元-巴中高速公路“高填方涵洞设计新理念的工程应用”课题,对一公路高填方涵洞进行了EPS板减荷技术的工程应用及减荷效果测试,通过室内试验研究了EPS板的压缩变形性能,并结合数值分析对EPS板减荷技术进行了系统的研究,取得了以下成果:
     1.通过三轴与单轴压缩试验,研究了不同加载速率及围压条件下EPS板的压缩变形性能及蠕变、松弛特性。试验结果表明,逐级加载的单轴压缩试验结果适用于EPS板在高填方涵洞减荷时的受力及变形情况,根据单轴压缩试验结果得到了工程设计中所需EPS板的压缩强度与密度、压缩模量与密度的计算公式。
     2.将EPS板减荷技术在一公路高填方涵洞上进行了应用,成功以盖板涵代替拱涵,节省了约一半的涵洞造价并加快了施工进度。在填土过程中和填土完成后,对涵洞土压力及EPS板压缩变形进行了700多天的观测,得到了涵洞土压力分布及EPS板的变形规律。观测结果表明,采取减荷措施后的涵洞土压力明显减小,该盖板涵竣工近两年来使用状况良好。
     3.利用数值分析的方法,对采用Drucker-Prager Cap双屈服面模型的土体与采用Crushable Foam模型的EPS板进行了土工试验的有限元数值模拟。根据有限元计算结果与室内试验结果的比较,验证了所选模型的有效性;并且对材料模型参数进行了修正,提高了涵洞有限元模型计算结果的可靠性。
     4.针对常规填土涵洞,采用模拟路堤分层填筑的二维有限元模型,对涵-土相互作用机理及涵洞所受土压力进行了研究,分析了涵洞土压力的变化规律及其主要影响因素。通过涵洞三维有限元计算,得到了公路高填方涵洞在梯形路堤断面下的涵顶土压力分布情况,弥补了以往只在二维方向进行涵洞土压力分析的不足,提出了新的涵洞垂直土压力系数建议值。
     5.通过对EPS板减荷技术的二维有限元分析,得到了高填方涵洞的减荷机理及影响减荷效果的主要因素;通过涵顶净跨内铺设EPS板与涵顶满铺EPS板两种减荷方式的对比分析,结果表明盖板涵结构净跨内铺设EPS板是较为合理的减荷方式。根据三维有限元计算分析的结果,得到了涵顶所铺设EPS板的三维压缩变形随填土高度的变化规律,可作为沿涵洞长度方向铺设EPS板厚度的依据。
     6.在以往EPS板减荷技术试验结果及本次减荷技术工程应用观测结果的基础上,并结合二维与三维有限元计算分析,建立了涵洞EPS板减荷设计的经验系数方法,简化了减荷后复杂的土压力计算及涵洞结构设计过程。为了防止施工机械对EPS板造成破坏,研究了施工荷载对EPS板的受力及压缩变形的影响,提出了一套简便可行的施工技术。
The high embankments are often utilized for highway construction in large topographic mountain areas to cut down the project budget, so lots of high fill culverts are constructed. Since the high fill culvert should burden large earth pressure, the arch culvert has some drawbacks such as large structural sizes, hard to construct and it is more expansive. Using the load reduction technology by placing the EPS (Expanded Polystyrene) slab on top of culvert can produce soil arching effects and reduce vertical earth pressure. The slab culvert can be used instead of the arch culvert which has a lot of advantages such as less material dosage, easy construction, short construction period, and so on.
     This paper is based on the project of'Application of new concept design method in high fill culvert'. The purpose of this project is to prompt the application of the EPS slab load reduction technology. A high fill highway culvert is designed and constructed by using the EPS slab load reduction technology. Compressive behavior of EPS is researched and diagnosed by soil test in laboratory, EPS load reduction technology is studied with numerical analysis method, and the conclusions are listed as follows:
     1. Based on the triaxial and uniaxial compressive test, compressive deformation, creep and stress relaxation behavior of EPS were studied under different load velocity and confine pressures conditions. The results indicate that stepped uniaxial test is applicable to simulate the stress and strain behavior of EPS for load reduction technology under high embankment. Furthermore, the formulas between compressive strength with densities and compressive modulus with densities are concluded according to the series stepped uniaxial test that can be used in load reduction designing.
     2. EPS load reduction technology was used for a culvert in china. The slab culvert was used to replace arch culvert successfully which decresing about half project cost and speeding construction progress. Earth pressure acted on the culvert and EPS compressive deformation were tested at the period of construction, and over 700 days observation have been performed after construction. The distribution of earth pressure and EPS deformation properties are conducted. The observation results show that the slab culvert is in good condition for about two years.
     3. Soil tests of Drucker-Prager Cap model for soil and Crushable Foam model for EPS were simulated by finite element method (FEM). The selected model is confirmed to be effective according to the comparation of FEM calculation results and laboratory test results. Parameters of material models are modified to increase the accuracy of results obtained form FEM.
     4.2D FEM model were established to analyze the interaction mechanism between soil and culvert for the unload reduction culvert. The change theory of earth pressure and the main impact factors were obtained. The three dimension stress distribution properties were analyzed for high embankment culvert, which make up the weak point for 2D FEM. A new earth pressure property is proposed with the results of 3D FEM.
     5. The load reduction mechanics and the main impact factors are concluded from 2D FEM analysis of EPS slab load reduction technology for high fill culvert. The comparative analysis results by placing EPS slab on net span and full placing on culvert indicate that net span placing type is an appropriate method for load reduction. Three dimension compressive deformations with the soil height is obtained by 3D FEM, which can be used to design the depth of EPS along longitudinal direction of the culvert.
     6. EPS load reduction design coefficient method is established on the basses of field tests results, the EPS load reduction technology application in this paper and the FEM calculation results. The earth pressure and culvert design progress is simplified. To avoid damaging the EPS slab by machine during construction, the pressure and compressive deformation induced by construction load were studied. As a result, simply construction technology is proposed for fill soil on EPS slab.
引文
[1]JTG-2004,公路路基设计规范[S].北京:人民交通出版社,2004.
    [2]车宏亚.涵洞和水管结构设计[M].北京:水利电力出版社,1958.
    [3]顾克明,苏清洪,赵嘉行.公路桥涵设计手册-涵洞[M].北京:人民交通出版社,1997.
    [4]顾安全.上埋式管道及洞室垂直土压力的研究[J].岩土工程学报,1981,3(1):3-15.
    [5]Elmer L. Matyas. Prediction of vertical earth loads on rigid pipes[J]. Journal of geotechnical Engineering,1983,109(2):190-201.
    [6]Elmer L. Matyas. Prediction of vertical earth loads on rigid pipes[J]. Journal of geotechnical Engineering,1983,109(2):190-201.
    [7]Marston, A., and Anderson, A. O. The theory of loads on pipes in ditches and tests of cement and clay drain tile and sewer pipes. [J]. Bulletin 31, Iowa Engineering Experiment Station, Ames, Iowa,1913.
    [8]Spangler, M. G. A theory on loads on negative projecting conduits[J]. Highway Research Board,1950,30:153-161.
    [9]Spangler, M.G., Handy, R.L. Soil Engineering (fourth edition). NewYork:Harper&Row Publishers,1982.
    [10]Kyungsik Kim, Chai H. Yoo. Design loading on deeply buried box culverts [J]. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(1):20-27.
    [11]Hoeg, K. Stresses against underground structural cylinders [J]. J. Soil Mech. Found., 1968,94(4):833-858.
    [12]Dasgupta, A., and Sengupta, B. Large-scale model test on squarebox culvert backfilled with sand [J]. J. Geotech. Eng. Div., Am. Soc. Civ.,1991,117(1):156-161.
    [13]Bennett, Richard, Wood, Scott M., Drumm, Eric C., Rainwater, N. Vertical loads on concrete box culverts under high embankments [J]. Journal of Bridge Engineering, 2005,10(6):643-649.
    [14]Mendoza, Manuel J., Romo, Miguel P., Magana, Roberto. Vertical loads on concrete box culverts under high embankments [C]//Canadian Geotechnical Soc/Proceedings of the Seventh Panamerican Conference on Soil Mechanics and Foundation Engineering, PAN AM'83, Canadian Geotechnical Soc, Montreal, Que, Can,1983:389-399.
    [15]曾国熙.土坝下涵管竖向土压力的计算[J].浙江大学学报,1960,(1):34-51.
    [16]顾安全.上埋式管道垂直土压力的研究[D].西安:陕西工业大学,1963.
    [17]折学森.填埋式管道垂直土压力的计算[D].西安:西安公路学院,1986.
    [18]折学森.路基涵洞的土压力计算[J].中国公路学报,1992,5(3):72-79.
    [19]折学森.填埋式管道垂直土压力的计算[J].西北建筑工程学院学报,1993,(1):28-34.
    [20]邓国华,邵生俊.填埋式涵洞上覆土压力的有限元分析[J].岩石力学与工程学报,2004,23(增1):4356-4360.
    [21]郝宪武,白青侠.填埋式管道土压力的弹粘塑性有限元分析[J].西北建筑工程学院学报,1994,(3):6-11.
    [22]李永刚,李珠,张善元.矩形沟埋涵洞顶部垂直土压力[J].工程力学,2008,25(1):155-160.
    [23]李永刚,张善元.矩形沟埋涵洞顶部垂直土压力试验和理论研究[J].岩土力学,2008,29(4):1081-1086.
    [24]李永刚,孙建生.土坝下软基涵洞施工力学分析[J].岩土力学,2001,22(4):436-439.
    [25]杨锡武,张永兴.公路高填方涵洞土压力变化规律及计算方法研究[J].土木工程学报,2005,38(9):119-124.
    [26]杨锡武,张永兴.山区公路高填方涵洞的成拱效应及土压力计算理论研究[J].岩石力学与工程学报,2005,24(21):3887-3893.
    [27]程海涛,柳学花.涵-土性状离心模型试验研究[J].路基工程,2008,(2):42-44.
    [28]翁效林,谢永利.高填方碎散体填土成拱效应离心模型[J].长安大学学报(自然科学版),2008,28(2):31-35.
    [29]Marston, A. The theory of external loads on closed conduits in the light of the latest experiments[R]. Highway Research Board Proceedings No.204301, Highway Research Board, Washington, D.C.,1930,138-170.
    [30]Spangler, M.G. A theory on loads on negative projecting conduits[R]. Highway Research Board Proceedings No.00204134, Highway Research Board, Washington, D.C.,1950, 153-161.
    [31]Larsen, N.G; Hendrickson, J.G. A practical method for construction rigid conduits under high fills[R]. Highway Research Board Proceedings No.00215419, Highway Research Board, Washington, D.C.,1962,273-280.
    [32]Taylor, R.K. Induced Trench Method of Culvert Installation [R]. Highway Research Board Proceedings No.510, Highway Research Board, Washington, D.C.,1973,41-55.
    [33]Spangler, M.J., Handy, R.L. Soil engineering (4th edition)[M]. New York:Harper&Row Publishers,1982.
    [34]Sladen, J.A., Oswell, J.M. The induced trench method-a critical review and case history[J]. Canada Geotechnical Journal,25:541-549.
    [35]Vaslestad, Jan. Load reduction on buried rigid pipes. Proceedings of the International Conference on Soil Mechanics and Foundation Engineering,v2,Deformation of Soil and Displacements of Structures X ECSMFE.1991:771-774
    [36]Vaslestad, Jan., Johansen, Tor Helge.Load reduction on rigid culverts beneath high fills:long-term behavior.Transportation Research Record,No.1415,1993:58-68
    [37]Dancygier, A.N., Yankelevsky, D.Z. A soft layer to control soil arching above a buried structure[J]. Engineering structures,1996,18(5):378-386.
    [38]Okabayashi, K., Ohtani, W., Akiyama, K.1, Kawamura, M. Centrifugal model test for reducing the earth pressure on the culvert by using the flexible material [C]//Proceedings of the 4th International Offshore and Polar Engineering Conference. Osaka, Jpn:Int Soc of Offshore and Polar Engineerns (ISOPE), Golden, CO,1994:620-624.
    [39]Hansen, P., Miller, L.L., Valsangkar, A.J., et al. Performance of induced trench culverts[C]//in New Brunswick. Proceedings TAC 2007. Saskatchewan, Saskatoon.
    [40]Sun L.C., Hopkins T.C., Beckham T.L. Reduction of stresses on buried rigid highway structures using the imperfect ditch method and expanded polystyrene(geofoam)[R]. Lexington:Kentucky Transportation Center,2005.
    [41]McAffee, Rodney P., Valsangkar, Arun J. Field performance, centrifuge testing and numerical modelling of an induced trench installation. Canadian Geotechnical Journal, 2008,45(1):85-101.
    [42]顾安全.上埋式管道垂直土压力的研究[D].西安:陕西工业大学,1963.
    [43]王晓谋.关于上埋式管道垂直土压力的减荷措施研究[D].西安:西安公路学院,1986.
    [44]王晓谋,顾安全.上埋式管道垂直土压力的减荷措施[J].岩土工程学报,1990,12(3):83-89.
    [45]白冰.聚苯乙烯泡沫塑料的测试及其在土工中的应用[J].岩土工程学报,1993,15(2): 104-108.
    [46]白冰.高填土下刚性结构物竖向土压力减荷方法[J].岩土力学,1997,18(1):35-39.
    [47]顾安全,金滨等.减荷措施在高填土涵洞中的应用研究[R].西安:长安大学,2001.
    [48]金滨.涵洞铺设柔性填料层的减荷效果试验研究[D].西安:长安大学,2002.
    [49]刘静.高填路堤涵洞土压力理论及减荷技术研究[D].西安:长安大学,2004.
    [50]张卫兵.高填方涵洞EPS减荷特性试验研究[D].西安:长安大学,2004.
    [51]张卫兵,刘保健,谢永利.上埋式刚性结构物土压力调整方法[J].岩石力学与工程学报,2005,24(增2):5756-5761.
    [52]王俊奇.聚苯乙烯塑料泡沫减小埋涵土压力的研究[D].武汉:武汉大学,2003.
    [53]顾安全,杨福林.高填土涵洞土压力与变形及其减荷措施的试验研究[R].西安:长安大学,2003.
    [54]顾安全.郭婷婷,王兴平.高填土涵洞(管)采用EPS板减荷的试验研究[J].岩土工程学报,2005,27(5):500-504.
    [55]杨锡武.山区公路高填方涵洞土压力理论及加筋减载研究[D].重庆:重庆大学,2004.
    [56]杨锡武,张永兴.山区公路高填方涵洞加筋桥减载方法及其设计理论研究[J].岩石力学与工程学报,2005,24(9):1561-1571.
    [57]杨锡武,张永兴.山区公路高填方涵洞减载方法及试验研究[J].土木工程学报,2005,37(7):116-121.
    [58]罗继前,陈忠平,杨航宇.高填土路堤下的箱涵设计施工新技术[J].中南公路工程,2004,29(3):101-104.
    [59]刘晓曦.特长涵洞受力及变形特性分析[D].西安:空军工程大学,2006
    [60]康佐,谢永利,冯忠居等.应用离心模型试验分析涵洞病害机理[J].岩土工程学报,2006,28(6):784-788.
    [61]康佐,谢永利,杨晓华等.减荷拱涵周围土体位移变化的离心模型试验[J].岩土工程学报,2006,19(6):13-18.
    [62]康佐.涵洞类地埋结构物作用性状与减荷优化设计研究[D].西安:长安大学,2007.
    [63]顾安全,吕镇锋等.高填土涵洞设计理论与方法研究[R].西安:长安大学,2007
    [64]顾安全,赵金明等.高填土拱涵采用聚苯乙烯泡沫板减荷的试验研究[R].西安:长安大学,2007
    [65]Horvath, J.S., The compressible inclusion function of EPS geofoam [J]. Geotextiles and Geomembranes,1997,15:77-120.
    [66]Elragi, Ahmed Fouad. Selected engineering properties and applications of EPS geofoam[D]. New York:State University of New York College of Environmental Science and Forestry,2000.
    [67]Sheeley, Michael, Negussey, Dawit. An investigation of geofoam interface strength behavior[C]//United Engineering Foundation/ASCE Geo-Institute Soft Ground Technology Conference-Soft Ground Technology. Noordwijkerhout, Netherlands: American Society of Civil Engineers,2000:292-303.
    [68]Nigel J. Polymer Foams Handbook [M]. OXFORD:Butterworth-Heinemann publisher, 2007.
    [69]刘倩,黄高山,汪蓉蓉等.聚苯乙烯泡沫塑料的再生与利用[J].广东化工,2007,34(6): 75-78.
    [70]Gnip, I.Y., Kersulis, V., Vejelis, S., Vaitkus, S. Source. Water absorption of expanded polystyrene boards[J]. Polymer Testing,2006,25(5):635-641.
    [71]Sigitas Vejelis, Saulius Vaitkus. Vaitkus. Investigation of water absorption by expanded polystyrene slabs [J]. Material Science,2006,12(2):134-137.
    [72]Duskov, M. Materials research on EPS20 and EPS 15 under representative conditions in pavement structures [J]. Geotextiles and Geomembrances,1997,15:147-18.
    [73]I.Y. Gnip, S. Vejelis, V. Kersulis, S. Vaitkus. Deformability and tensile strength of expanded polystyrene [J]. Plymer Testing,2007, (26):886-895.
    [74]Saulius Vaitkus, Antanas Laukaitis, Ivanas Gnipas,, Experimental analysis of structure and deformation mechanisms of Expanded Polystyrene (EPS) slabs [J]. Materials Science,2006,12(4):1392-1320.
    [75]KANG Ying-an, LI Xian-fang, TAN Jia-cai. Uniaxial tension and tensile creep behaviors of EPS[J]. J. Cent. South Univ. Technol.,2008,15(Sl):202-205.
    [76]Y. G. Hsuanl, S.-S. Yeo, R.M. Koerner. Compression creep behavior of Geofoam Using the Stepped Isothermal Method [J]. Geosynthetics Research and Development in Progress,2005.
    [77]刘必荣.聚苯乙烯泡沫在软土地区高路堤填筑中的应用[J].城市道桥与防洪,2004,5:39-42.
    [78]雷正辉,张荣辉,王艳.公路路基使用EPS材料的试验研究[J].路基工程,2008,(3): 126-127.
    [79]Timothy, D.S., Dabid, A., John S.H. Guideline and recommended standard for geofoam applications in highway embankments [R]. National Cooperative Highway Research Program No.529, Highway Research Board, Washington, D.C.,2004.
    [80]李永鸿,吴堂高,冯永.EPS技术及其在道路路基和桥台填筑中的应用研究[J].岩土工程技术,2005,19(6):311-314.
    [81]高燕希,张军,张起森.软弱地基桥台台背填筑EPS的结构分析[J].中国公路学报,2003,16(3):127-301.
    [82]胡庆国,阳军生,黄生文.采用泡沫聚苯乙烯修筑的轻型桥台路堤特性分析[J].中南大学学报(自然科学版),2006,37(2):408-413.
    [83]Armin W. Stuedlein, Dawit Negussey, Michael Mathioudakis. A case history of the use of geofaoam for bridge approach fills [C]//in New York. Fifth international conference on case histories in Geotechnical Engineering.NY, Aprial 13-17,2004.
    [84]盛煜,张鲁新,杨成松.保温处理措施在多年冻土区道路工程中的应用[J].冰川冻土,2002,24(5):618-622.
    [85]温智,盛煜,马巍,吴吉春.EPS保温板在青藏铁路中应用的适用性评价数值模拟[J].铁道学报,2005,27(3):91-95.
    [86]吴志坚,马巍,盛煜等.通风管、抛碎石和保温材料保护冻土路堤的工程效果分析[J].岩土力学,2005,26(8):1288-1293.
    [87]盛煜,温智,马巍.青藏铁路北麓河试验段路基保温材料处理措施初步分析[J].岩石力学与工程学报,2003,22(增2):2659-2663.
    [88]Wen Zhi, Sheng Yu, Ma Wei, Qi Jilin. Vaitkus. Evaluation of EPS application to embankment of Qinghai-Tibetan railway [J]. Cold Regions Science and Technology, 2005, (41):235-247.
    [89]Richard J. B., Saman Z., Andrew G. Shaking table testing of geofoam seismic buffers [J]. Soil Dynamics and Earthquake Engineering,2007,27:324-332.
    [90]Zhi-Liang Wanga, Yong-Chi Li, J.G. Wang. Numerical analysis of attenuation effect of EPS geofoam on stress-waves in civil defense engineering [J]. Geotextiles and Geomembranes,2006,24:265-273.
    [91]张忠坤,殷宗泽,曹正等.EPS的力学特性及其块体载荷试验有限元分析[J].岩石力学与工程学报,1998,20(3):106-108.
    [92]王庶懋,高玉峰.EPS块体动变形特性的室内试验研究[J].岩土力学,2006,27(10): 1754-1758.
    [93]梁燕,谢永利,刘保健.聚苯乙烯泡沫(EPS)变形特性的试验研究[J].中南公路工程,2007,32(3):76-81.
    [94]Chin Jian Leoa, M Kumruzzamanb, Henry Wongc, Jin H Yinb. Behavior of EPS geofoam in true triaxial compression tests [J]. Geotextiles and Geomembranes,2008, 26:175-180.
    [95]J.G. Wang, W. Sun, S. Anan. A microstructural analysis for crushable deformation of foam materials [J]. Computational Materials Science,2008,44:195-200.
    [96]杜骋,杨军.聚苯乙烯泡沫(EPS)的特性及应用分析[J].东南大学学报(自然科学扳),2001,31(3):138-142.
    [97]颜志平.泡沫聚苯乙烯(EPS)力学性能的室内试验研究[J].中南公路工程,2005,30(4):42-45.
    [98]毛快,张俊彦.聚苯乙烯泡沫(EPS)压缩蠕变试验研究[J].材料导报,2007,21:468-470.
    [99]D. Negussey X. Huang. Modulus of subgrade reaction for EPS geofoam [J]. Pavement Mechanics and Performance,2006,44:165-172.
    [100]GB/T 8813-2008,硬质泡沫塑料-压缩性能的测定[S].北京:中国标准出版社,2008.
    [101]D1621-04a, Standard test method for compressive properties of rigid cellular plastics[S]. West Conshohocken, USA:ASTM International,2004.
    [102]Elragi, A., Negussey, D., Kyanka, G. Sample size effects on the behavior of EPS geofoam. In:Proceedings of the Soft Ground Technology Conference, ASCE Geotechnical Special Publications, The Netherlands:2000,280-291.
    [103]GB/T 20672-2006,硬质泡沫塑料-在规定负荷和温度条件下压缩蠕变的测定[S].北京:中国标准出版社,2006.
    [104]王金昌,陈页开.ABAQUS在土木工程中的应用[M].浙江:浙江大学出版社,2006.
    [105]曹金凤,石亦平.ABAQUS有限元分析常见问题解答[M].北京:机械工业出版社,2009.
    [106]廖公云,黄晓明.ABAQUS有限元软件在道路工程中的应用[M].南京:东南大学出版社,2008.
    [107]卢廷浩.岩土数值分析[M].北京:中国水利水电出版社,2008.
    [108]李俊伟,李永刚,黄宏伟.涵洞施工全过程弹塑性有限元模拟分析[J].岩石力学与工程学报,2005,24(增2):34-56.
    [109]Abaqus theory manual (version 6.8)-models for crushable foams
    [110]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,1996.
    [111]Sam, Helwany. Applied soil mechanics with ABAQUS applications[M]. John Wiley & Sons, Inc,2007.
    [112]Sandler, I.S.,2002. Review of the development of cap models for geomaterials. In:15th ASCE Engineering Mechanics Conference, Columbia University, New York.
    [113]Deshpande V.S., Fleck N.A., Isotropic constitutive models for metallic foams[J]. Journal of the Mechanics and Physics of Solids,2000,48:1253-1283.
    [114]Masso Moreu, Y.,Mills, N.J. Rapid hydrostatic compression of low-density polymeric foams [J]. Polymer Testing,2004,23(3):313-322.
    [115]陈立宏,陈祖煜.扩展剑桥模型参数的优化选择及其应用[J].岩土力学,2003,24(2):229-232.
    [116]L.H. Han, J.A. Elliott, A.C. Bentham,et al. A modified Drucker-Prager Cap model for die compaction simulation of pharmaceutical powders [J]. International Journal of Solids and Structures,2008,45:3088-3106.
    [117]GB50010-2002,混凝土结构设计规范[S].北京:中国建筑工业出版社,2002.
    [118]陈仲颐,周景星,王洪瑾.土力学[M].北京:清华大学出版社,1992.
    [119]孙训方,方孝淑,官来泰.材料力学[M].北京:高等教育出版社,1979.
    [120]JTG D60-2004,公路桥涵设计通用规范[S].北京:人民交通出版社,2004.
    [121]JTG D62-2004,公路钢筋混凝土及预应力混凝土桥涵设计规范[S].北京:人民交通出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700