用户名: 密码: 验证码:
桥梁结构抗震性能概率性分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,基于性能的抗震设计已逐步成为工程抗震领域的主要研究课题,无论在建筑工程还是桥梁工程界均受到广泛关注。考虑到地面运动的巨大不确定性和桥梁结构组成几何、材料的随机性,其地震响应和抗震能力均具有随机性的特点,因而桥梁结构基于性能的抗震设计应建立于概率方法之上。本文综合分析、评价了当前工程结构抗震和基于性能抗震设计方法的发展现状及未来发展趋势,考虑地面运动的随机性和结构特性的随机性,对桥梁结构抗震性能的概率性分析方法进行了较为系统的研究。主要对桥梁基于性能的抗震设防标准、钢筋混凝土延性构件抗震性能指标的概率特性、地震危险性曲线的建立、结构随机非弹性响应谱、静力弹塑性分析方法的改进、桥梁结构抗震性能可靠度的分析方法等方面进行了研究,所获得的主要研究成果如下:
     1)对建立桥梁结构基于性能的抗震设防标准中需要考虑的几个问题进行了探讨,结合国内外各种抗震设计规范中关于抗震设防标准的规定,考虑我国的实际情况,对我国基于性能的抗震设防标准提出了建议,提出了桥梁结构设防地震水准、抗震性能水准、抗震重要性的划分标准及不同桥梁的抗震性能目标。
     2)对钢筋混凝土延性构件提出了五种损伤状态、四种极限状态的性能水准定义,并从微观上给出各个极限状态的应变控制指标;然后以钢筋和混凝土的力学特性及其统计特性为基础,针对圆截面钢筋混凝土延性构件各个性能等级下的强度及界限变形特征进行概率分析,得到各个性能等级下构件界限性能指标的概率分布特征,提出了便于进行概率性抗震性能分析的构件各级性能指标的回归公式和概率分布模型。
     3)以地震安全性评价的概率法为基础,利用现行《中国地震动参数区划图》的编图成果,根据地震烈度和地震加速度的统计概率分布公式,建立了一定年限内不同超越概率水平的地震烈度和地震动加速度与基本烈度和基本加速度之间的换算关系,从而获得以规范为基础的地震危险性曲线;同时,推导了以不同年限表达的地震危险性曲线之间的关系。
     4)对人工合成地震波的方法进行了改进。首先采用精细积分法计算地震波的反应谱,提高了地震波在高频区段的拟合精度,然后采用高次多项式进行地震波的基线校正,使所合成的地震波有效消除了位移和速度的漂移现象。
     5)以随机地震动模型为基础,确定了与现行《中国地震动参数区划图(GB18306-2001)》的基本加速度分档和场地类别及特征周期分组相容的随机地震动模型参数。进而基于随机振动理论得到与设计规范相容的基于随机地震动模型的随机弹性反应谱。
     6)利用历次破坏性地震中所获得的1064条强震记录,根据我国的场地类别和设计特征周期分组进行分类,对单自由度弹塑性系统的非线性地震响应进行计算;基于Nassar&Krawinkler所提出的强度折减系数模型,对计算结果进行统计回归分析,获得了与我国设计规范相容的强度折减系数模型。根据所获得的强度折减系数模型对随机弹性反应谱进行折减,从而获得了各种随机非弹性反应谱。
     7)以Chopra提出的模态Pushover方法为基础,基于地震荷载的Chopra分解和结构能量平衡方程,推得某阶模态荷载作用下结构系统所输入能量全部转化为该阶模态所吸收能量的结论,并推导了增量模态荷载作用下结构能量增量与谱位移增量和谱加速度增量之间的关系,在此基础上提出了基于能量的Pushover方法。采用所提出的方法对一座连续刚构桥进行了抗震性能分析,结果表明所提出的方法适应性较好,可以适用于较复杂结构的非线性抗震性能分析。
     8)综合运用关于抗震性能划分标准、抗震性能变形控制指标的概率特性、地震危险性分析成果、随机非弹性地震响应的简化计算方法等的研究成果,建立了桥梁结构抗震性能的概率性分析方法。
     9)以一座实际桥梁为工程背景,对该桥的抗震性能进行了概率性分析,分别计算了确定强度地震作用下和50年基准期内地震作用下各种极限状态的抗震可靠度。结果表明,所提出的方法计算简便,适应性强,避免了传统结构抗震可靠性分析中因需要进行大规模Monte Carlo模拟、计算量过大而导致分析难以进行的困难。所提出的方法可以用于基于变形破坏准则的大震下结构抗震性能的概率性分析。
Performance-based seismic design (PBSD) has become the main research subject in aseismic engineering and attracted a lot of research attention both in building engineering and bridge engineering. The seismic response and capacity of bridge are random because of the uncertainty of the ground motion and the geometry and material of the structure. Hence PBSD should be built on probability theory. In this paper, the probabilistic method for seismic performance analysis of bridge structures was studied systematically, including the criterion for PBSD of bridge, probability characteristics of the ductility-based seismic performance indices for reinforced concrete components, seismic hazard curve, stochastic inelastic seismic response spectra, improvement of modal pushover analysis method, and nonlinear seismic reliability analysis method for bridge under large earthquakes. The following major achievements were gained:
     1) Some problems concerning the seismic fortification criterion of PBSD in bridge engineering were discussed. Based on the studying of guidelines concerning seismic fortification criterion in the seismic design codes of several countries, and considering the reality of China, some proposals were put forward for the seismic fortification criterion in PBSD of bridge engineering in China, including the fortification ground motion levels, seismic performance levels, seismic importance classification of bridge structures, as well as seismic fortification objectives for bridges of variant importance.
     2) Five damage states with four limit states were defined for the seismic performance level of ductile reinforced concrete components, along with the strain limit definition for each limit state. Then, based on the mechanical characteristics and statistical characteristics of reinforcement and concrete, the strength and deformation characteristics of circular reinforced concrete ductile component were analyzed probabilistically for each performance level. Hereby the probabilistic distribution characteristics of the performance indices for each performance level were obtained for reinforced concrete ductile members, and the regression formula as well as probability distribution model for the performance index of each performance level were proposed, in convenient for the probabilistic analysis of seismic performance of bridge structures.
     3) Based on the probabilistic method for seismic hazard evaluation, according to the achievements of Seismic ground motion parameter zonation map of China and the statistical probability distribution of seismic intensity and peak ground acceleration (PGA), the conversion relationship from the basic seismic intensity and basic PGA, i.e., those presented in the Seismic ground motion parameter zonation map of China, to the seismic intensity and PGA with variant probability of exceedance in certain considering years, was deduced. Hence the seismic hazard curve that is based on the currently in effect seismic specification was obtained. In addition, the conversion relationship between seismic hazard curves of different considering years was also presented.
     4) The artificial seismic ground motion simulation method was improved in two aspects. Firstly, the precise integration method was adopted for the calculation of seismic response spectra of the seismic wave, which improves the calculation accuracy for high frequency domain. Then, a high order polynomial was adopted for the baseline correction of the simulated wave, which can effectively clear up the baseline-shift of the artificially simulated seismic ground motion.
     5) Based on a proper stochastic earthquake ground motion model, the parameters of the model that are compatible with the PGA, site classification and characteristic period grouping specified in the currently in effect zonation map in China were determined. Further more, the stochastic elastic response spectra that are based on the stochastic earthquake ground motion model and compatible with the currently in effect seismic design code were obtained.
     6) By utilizing the 1064 strong ground motion records obtained from the destructive events in the history, which are classified according to the site classification and characteristic period grouping specified in the design code of China, the inelastic response of SDOF systems with variant periods and ductility factors were analyzed. Then, based on the strength reduction factor model proposed by Nassar & Krawinkler, the calculation results were analyzed with statistical regression method. Thereby the strength reduction factor model that is compatible with the seismic design code of China was obtained. By the reduction of the stochastic elastic response spectra with the obtained strength reduction factor, the stochastic inelastic response spectra were obtained.
     7) Based on the Modal Pushover Analysis (MPA) method proposed by Chopra and the decomposition of the seismic action, as well as the energy balance equation, it was deduced and concluded that the inputted energy by the modal load was completely converted to the absorbed energy by the corresponding mode. Then the relationship between the spectral displacement increment and the energy increment in the structure under the action of modal load was deduced, which brings on the proposal of an improved Modal Pushover Analysis method-Energy Based Modal Pushover Analysis method (EMPA). As an example, a continuous rigid frame bridge was analyzed with the proposed method to illustrate its adaptability for the nonlinear seismic analysis of complex bridge structures.
     8) By making use of the achievements on the seismic performance level classification, probabilistic characteristics of the deformation-based performance indices for each performance level, seismic hazard curve, and simplified computation method for the stochastic inelastic seismic demand, the probabilistic method for seismic performance analysis of bridge structures was proposed.
     9) The probabilistic seismic performance of a realistic bridge was analyzed, by computing its determined-intensity-based aseismic reliability and 50-year-based aseismic reliability. This example illustrated the simplicity and adaptability of the proposed method for aseismic reliability analysis in the PBSD of bridge structures based on deformation-based failure criterion under large earthquake. Thus the difficulty of the conventional method for aseismic reliability analysis was avoided, which is generally performed by the huge computation of a lot of nonlinear time-history analysis by Monte Carlo simulation.
引文
[1]法扎德.奈姆主编,王亚勇等译.抗震设计手册[M].北京:中国建筑工业出版社,2008年6月
    [2]李卫平,赵荣国.1990-1995年全球地震灾害统计特征[J].华南地震,1998,18(2):27-36.
    [3]李卫平.1996-2003年全世界地震灾害统计分析[J].华北地震,2005,23(2):54-64.
    [4]李卫平,赵荣国.2004年全球灾害地震的灾情综述[J].中国地震,2005,2l(1):123-129.
    [5]赵荣国,李卫平.2005年地震灾害综述[J].国际地震动态,2006,325(1):20-23.
    [6]李卫平,赵荣国.2006年国外灾害地震综述[J].国际地震动态,2007,338(2):11-14.
    [7]李卫平,赵荣国.2007年世界地震灾害综述[J].国际地震动态,2008,350(2):36-40.
    [8]傅征祥,刘桂萍,等.中国大陆百年(1901-2001年)浅源强震活动及生命损失回顾与分析[J].地震学报,2005,27(4):367-376.
    [9]G. G. Fung, R. J. Lebeau, E. D. Klein, et al. Field Investigation of Bridge Damage in the San Fernando Earthquake[R]. Bridge Department, Division of Highways, California Darpartment of Transportation, Sacramento, California,1971:209.
    [10]李杰,李国强.地震工程学导论[M].北京:地震出版社,1992.
    [11]EERI. Loma Prieta Earthquake Reconnaissance Report[J]. Earthquake Spectra,1990, Special Suppl. to vol.6:1-280.
    [12]EERI. Northridge Earthquake Reconnaissance Report [J]. Earthquake Spectra [J]. 1995, Special Suppl. to vol.11:1-372.
    [13]Nznsee Reconnaissance Team Report. The Hyogo-Ken Nanbu Earthquake (the great hanshin earthquake) of 17 January 1995[J]. Bull Nat Soc New Zealand Earthquake Engineering,1995,28(1):1-98
    [14]赵成刚,冯启明.生命线地震工程[M].北京:地震出版社,1994
    [15]中华人民共和国国家标准.建筑抗震设计规范(GB50011-2001)[S].北京:中国建筑工业出版社,2001
    [16]中华人民共和国国家标准.铁路工程抗震设计规范(GB50111-2006)[S].北京:中国计划出版社,2006
    [17]中华人民共和国交通部标准.公路桥梁抗震设计细则(JTG/T B02-01—2008) [S].
    北京:人民交通出版社,2008
    [18]王克海.桥梁抗震研究[M].北京:中国铁道出版社,2007
    [19]Harris K.A., Quake Resistance in Ancient Rome[J]. ACI Concrete International,1997, January.
    [20]Anderson A.W., Lateral Forces of Earthquake and Wind[C]. Proceedings:Saparate 66, ASCE,1951.
    [21]R.W.克拉夫,J.彭津.结构动力学,王光远等译[M].北京:科学出版社,1981.
    [22]范立础.桥梁抗震[M].上海:同济大学出版社,1997
    [23]Vanmarcke E.H., Properties of Spectral Moments with Applications to Random Vibration[J]. J. Eng. Mech. Div. Proc., ASCE,1972,98(EM2)
    [24]Kiureghian A.D. Structural Response to Stationary Random Excitation[J]. J. Eng. Mech. Div. Proc., ASCE,1980,106(6)
    [25]林家浩.随机地震响应的确定性算法[J].地震工程与工程振动,1985,5(1):89-93
    [26]林家浩.随机地震响应功率谱快速算法[J].地震工程与工程振动,1990,10(4):38-46
    [27]林家浩.多相位输入结构随机响应[J].振动工程学报,1992,5(1):73-77
    [28]林家浩,钟万勰.关于虚拟激励法与结构随机响应的注记[J].计算力学学报,1998,15(2):217-223
    [29]Park R., Paulay T. Reinforced Concrete Structures[M]. New York:John Wiley & Sons, 1975
    [30]Park R., Leslie P.D. Curvature ductility of circular reinforced concrete collums confined by the ACI spirals[C].6th Austrailia Conference on the Mechanics of Structures and Materials, Christchurch, New Zealand,1977(1)
    [31]Park R., Priestley M.J.N. and Gill W.D. Ductility of square confined concrete collums[J]. ASCE Proceedings,1982,108(4):929-950
    [32]Pauley T. Seismic Design of Ductile Moment Resisting Reinforced Concrete Frames, Collums:Evaluation of Actions[J]. Bulletin of the New Zealand National Society for Earthquake Engineering,1977,10(2):85-94
    [33]Pauley T. Development in the Design of Ductile Reinforced Concrete Frames[J]. Bulletin of the New Zealand National Society for Earthquake Engineering,1979, 12(1):35-43
    [34]Zahn F.A., Park R., and Priestley M.J.N, etc., Development of Design for the Flexural Strength and Ductility of Reinforced Concrete Bridge Collums[J]. Bulletin of the New Zealand National Society for Earthquake Engineering,1986,19(3)
    [35]Park R. Ductile Design Approach for Reinfroced Concrete Frames[J]. EERI Earthquake Spectra,1986,2(3):565-619
    [36]Priestley M.J.N., Park R. Strength and Ductility of Concrete Collums under Seismic Loading[J]. ACI Structural Journal,1987, January:61-76
    [37]Cornell C.A. Engineering seismic risk analysis[J]. Bull. Seismol. Soc. Am.,1968, 58(5):1583-1606
    [38]Kiureghian A der, Ang A. H. A fault rupture model for seismic risk analysis[J]. Bull. Seismol. Soc. Am.,1977,67(4):1173-1195
    [39]Savy J B. Nonstation risk model with geophysical input[J]. J. Stuct. ASCE,1980, 106(1):145-163
    [40]Patwardhan A. S. A semi-Markov model for characterizing recurrence of great earthquakes[J]. Bull. Seismol. Soc. Am.,1980,70(2):323-347
    [41]章在墉,陈达生.二滩水电站坝区场地地震危险性分析[J].地震工程与工程振动,1982,2(3):1-15
    [42]王阜.地震发生的更新过程模型及其在地震危险性分析中的应用[J].地震工程与工程振动,1986,6(2):17-26
    [43]National Academy Press, Probabilistic Seismic Hazard Analysis[M]. National Academy of Sciences, Washington D.C.,1988
    [44]沈建文,华宜平,邱瑛等.关于地震危险性分析的经验点椭圆模型[J].地震学报,1989,11(3):259-267
    [45]Reiter L., Earthquake Hazard Analysis, Issues and Insights[M]. New York:Columbia University Press,1990
    [46]胡聿贤.地震工程学[M].北京:地震出版社,1986.
    [47]ATC, National Bureau of Standards, and National Science Foundation. ATC3-06. Tentative Provisions for the Development of Seismic Regulations for Buildings[S]. NBS Publication 510, NSF Publication 78-8,1978
    [48]NEHRP Recommended Provisions for the development of Seisimic Regulations for the New Bulidings[S]. Edition 1985-1994, Building Seismic Safty Council, Washington D.C.,1985-1994
    [49]鲍霭斌,李中锡,高小旺,周锡元[J].我国部分地区地震基本烈度的概率标定[J].地震学报,1985,7(1):22-28
    [50]胡聿贤主编,地震危险性分析中的综合概率法[M].北京:地震出版社,1990
    [51]国家地震局震害防御司编,中国地震区划文集[M].北京:地震出版社,1993
    [52]中华人民共和国国家标准.建筑抗震设计规范(GBJ11-89)[S].北京:中国建筑工 业出版社,1989
    [53]交通部公路规划设计院.公路工程抗震设计规范(JTJ004-89)[S].北京:人民交通出版社,1990
    [54]SEAOC. Vision 2000, Conceptual framework for performance-based seismic design[R]. Sacramento,1995
    [55]ATC. ATC-40, Seismic evaluation and retrofit of concrete buildings[R]. Redwood City, CA,1996
    [56]FEMA. FEMA 273, NEHRP guidelines for the seismic rehabilitation of buildings[R]. Washington, D. C.,1997
    [57]FEMA. FEMA 274, NEHRP commentary on the guidelines for the seismic rehabilitation of buildings[R]. Washington, D. C.,1997
    [58]Building Center of Japan. Report of development of new engineering framework for building structures(in Japanese)[R].Integrated Development Project, Ministry of construction,1996,1997 and 1998
    [59]Otani S. Recent Developments in Seismic Design Criteria in Japan[C]. Proceedings of 11th WCEE, Mexico,1996
    [60]Otani S. Development of Performance-based Design Methodology in Japan[C]. Proceedings of Workshop on Seismic Design methodologies for Next Generation Codes.Bled, Slovenia,1997:24-26
    [61]小古俊介.日本基于性能结构抗震设计方法的发展[J].叶列平译.建筑结构,2000,30(6):3-9
    [62]钱稼茹,罗文斌.静力弹塑性分析——基于性能/位移抗震设计的分析工具[J].建筑结构,2000,30(6):23-26
    [63]谢礼立.基于抗震性态设计思想的抗震设防标准[J].世界地震工程,2000,16(1):97-105
    [64]谢礼立,马玉宏.基于性态的抗震设防标准研究[J].地震学报,2002,24(2):200-208
    [65]周定松,吕西林,蒋欢军.钢筋混凝土框架梁的变形能力及基于性能的抗震设计方法[J].地震工程与工程振动,2005,25(4):60-66
    [66]梁兴文,邓明科,等.钢筋混凝土高层建筑结构基于位移的抗震设计方法研究[J].建筑结构,2006,36(7):15-22
    [67]辛力,梁兴文.基于性能理论的RC框架结构抗震设计新法[J].西安建筑科技大学学报(自然科学版),2007,39(6):790-796
    [68]中国工程建设标准化协会.建筑工程抗震性态设计通则(试用)(CECS 160:2004)
    [S].北京:中国标准出版社,2004
    [69]徐培福,戴国莹.超限高层建筑结构基于性能抗震设计的研究[J].土木工程学报,2005,138(11):1-10
    [70]徐自国,肖从真,等.北京当代MOMA结构基于性能的抗震设计及静力弹塑性分析[J].土木工程学报,2008,41(3):58-64
    [71]ATC. ATC-32, Improved seismic design criteria for California bridges:Provisional Recommendations[R]. Redwood City, California,1996
    [72]ATC, ATC-18, Seismic design criteria for California bridges and other highway structures:Current and future[R]. Redwood City, California,1997
    [73]Floren A. and Mohammadi J. Performance-based design approach in seismic analysis of bridges [J]. Journal of Bridge Engineering, ASCE,2001,6(1):37-45.
    [74]Japan Road Association. Design Specifications of Highway Bridges[S]. Part Ⅰ Common Part, Part Ⅱ Steel Bridges, Part Ⅲ Concrete Bridges, Part Ⅳ Foundations, and Part V Seismic Design,2002
    [75]李贞新,杨富成,等.公路桥梁抗震设计规范修订原则的初步设想及关键技术研究(含长大桥梁)[J].公路,2009(5):151-155
    [76]Moehle J. P. Displacement-based design of RC structures subjected to earthquakes [J]. Earthquake spectra,1992,8(3):403-428
    [77]Wallace J. W., Thomsen J. H. Seismic design of RC structural walls, Part Ⅱ [J]. Journal of the structural division, ASCE,1995,121(1):323-347
    [78]Priestley, M.J.N. Myths and fallacies in earthquake engineering-conflicts between design and reality [J]. Bulletin of the New Zealand Society of Earthquake Engineering, 1993,26(3):116-128
    [79]Kowalsky M. J. Displacement-based Design-A Methodology for Seismic Design Applied to RC Bridge Columns [D]. Master's Thesis, University of California at San Diego, La Jolla, California,1994
    [80]Calvi G. M., Kingsley G. R. Displacement-based seismic design of multi-degree-of-freedom bridge structures [J]. Earthquake Engineering and Structure Dynamics.1995(24):1247-1266
    [81]Kowalsky, M.J., Priestley, M.J.N., and MacRae, G.A. Displacement-based Design of R.C. Bridge Columns in Seismic Regions, Earthquake Engineering and Structural Dynamics.1995(24):1623-1643.
    [82]M.J.N.普瑞斯特雷,F.塞勃勒等著.桥梁抗震设计与加固[M].袁万城,胡勃等译.北京:人民交通出版社,1997
    [83]杨玉民,胡勃,袁万城.基于位移反应谱的连续梁桥抗震设计简化方法[J].同济大学学报,1999,27(2):150-154
    [84]朱晞,倪永军.桥梁结构基于位移的抗震设计方法研究进展[J].国外桥梁,2000(1):24-26
    [85]弓俊青,朱晞.以位移为基础的钢筋混凝土桥梁墩柱抗震设计[J].中国公路学报,2001,14(4):42-46
    [86]Aschheim M. Seismic design based on the yield displacement [J]. Earthquake Spectra, 2002,18 (4):581-600
    [87]Kowalsky M.J. A displacement-based approach for the seismic design of continuous concrete bridges[J]. Earthquake Engineering and Structural Dynamics,2002,31(4): 719-747
    [88]黄建文,朱晞.以位移为基础的钢筋混凝土连续梁桥抗震设计方法[J].中国公路学报,2005,18(2):28-33
    [89]黄建文,朱晞.近场地震作用下钢筋混凝土桥墩基于位移的抗震设计[J].土木工程学报,2005,38(4):84-90
    [90]王东升,李宏男,等.Ay-Dy格式地震需求谱及其在结构基于性能抗震设计中的应用[J].建筑结构学报,2006,27(1):60-65
    [91]王东升,李宏男,等.钢筋混凝土桥墩基于位移的抗震设计方法[J].土木工程学报,2006,39(10):81-86
    [92]欧进萍,何政,等.钢筋混凝土结构基于地震损伤性能的设计[J].地震工程与工程振动,1999,19(1):21-30.
    [93]何政,欧进萍.钢筋混凝土结构基于改进能力谱法的地震损伤性能设计[J].地震工程与工程振动,2000,20(2):31-38
    [94]左春仁,左振宇.基于地震损伤性能的抗震设计方法[J].大连大学学报,2000,21(6):1-7
    [95]侯钢领,何政,等.钢筋混凝土结构的屈服位移Chopra能力谱损伤分析与性能设计[J].地震工程与工程振动,2001,21(3):29-35
    [96]王丰,李宏男,等.钢筋混凝土结构直接基于损伤性能目标的抗震设计方法[J].振动与冲击,2009,28(2):128-131,144
    [97]江辉,朱晞.以性能指标为控制变量的强度折减因子[J].铁道学报,2008,30(6):88-95
    [98]朱晞,江辉.桥梁墩柱基于性能的抗震设计方法[J].土木工程学报,2009,42(4):85-92
    [99]汪梦甫,周锡元.混凝土高层建筑结构地震破坏准则研究现状分析[J].工程抗震, 2002(3):1-4,13
    [100]Krawinker H. Seneviratna G D. P. K. Pros and Cons of a Pushover analysis of seismic performance evaluation [J]. Engineering Structures,1998,20(4-6):452-464
    [101]Sasaki K. K., Freeman S. A., et al. Multimode pushover procedure (MMP)-A method to identify the effects of higher modes in a Pushover analysis. Proceedings of the 6th U.S. National Conference on Earthquake Engineering, Seattle, Washington, 1998
    [102]Fajfar P. Capacity spectrum method based on inelastic demand spectra[J]. Earthquake Engineering and Structural Dynamics,1999,28(8):979-993
    [103]Chopra A. K., Goel R. K. Capacity-demand-diagram methods based on inelastic design spectrum[J]. Earthquake Spectra,1999,15(4):637-656
    [104]Fajfar P. A nonlinear analysis method for performance-based seismic design[J]. Earthquake Spectra,2000,16(3):573-592
    [105]Gupta B, Eerim, Kunnath S. K. Adaptive spectra-based Pushover procedure for seismic evaluation of structures[J]. Earthquake Spectra,2000,16(2):367-391
    [106]叶燎原,潘文.结构静力弹塑性分析(PUSHOVER)的原理和计算实例[J].建筑结构学报,2000,21(1):37-43,51
    [107]刘清山,梁兴文,黄雅捷.对结构静力弹塑性分析方法的几点改进[J].建筑科学,2005,21(4):28-33
    [108]Mwafy A M and Elnashai A S. Static pushover versus dynamic collapse analysis of RC buildings[J]. Engineering Structures,2001,23(5):407-424.
    [109]熊向阳,戚震华.侧向荷载分布方式对静力弹塑性分析结果的影响[J].建筑科学,2001,17(5):8-13
    [110]潘龙,孙利民,范立础.基于推倒分析的桥梁地震损伤评估模型与方法[J].同济大学学报,2001,29(1):10-14
    [111]Chopra A K and Goel R K. A modal pushover analysis procedure for estimating seismic demands for buildings[J]. Earthquake Engineering and Structure Dynamics, 2002,31(3):561-582.
    [112]尹华伟,汪梦甫,周锡元.结构静力弹塑性分析方法的研究和改进[J].工程力学,2003,20(4):45-49
    [113]Aydinoglu, M. N. An incremental response spectrum analysis based on inelastic spectral displacements for multi-mode seismic performance evaluation[J]. Bulletin of Earthquake Engineering,2003,1(1):3-36.
    [114]侯爽,欧进萍.结构Pushover分析的侧向力分布及高阶振型影响[J].地震工程与 工程振动,2004,24(3):89-97
    [115]Chopra A K, Goel R K, et al. Evaluation of a modified MPA procedure assuming higher modes as elastic to estimate seismic demands[J]. Earthquake Spectra,2004, 20(3):757-778
    [116]Antoniou S., Pinho R. Advantages and limitations of adaptive and non-adaptive force-based pushover procedures[J]. Journal of Earthquake Engineering,2004,8(4): 497-522
    [117]Antoniou S., Pinho R. Development and verification of a displacement-based adaptive pushover procedure[J]. Journal of Earthquake Engineering,2004,8(5): 643-661
    [118]Fajfar P., Marusic D., et al. Torsional effects in the pushover-based seismic analysis of buildings[J]. Journal of Earthquake Engineering,2005,9(6):831-854
    [119]薛彦涛,徐培福,等.静力弹塑性分析(PUSH-OVER)方法及其工程应用[J].建筑科学,2005,12(6):1-6
    [120]柳春光,林皋.桥梁结构Push-over方法抗震性能研究[J].大连理工大学学报,2005,45(3):395-400
    [121]ATC. FEMA 440. Improvement of nonlinear static seismic analysis procedures[R]. Redwood City, California,2005
    [122]Kalkan E., Sashisk. Adaptive modal combination procedure for nonlinear static analysis of building st ructures[J], Journal of Structural Engineering,2006,132(11): 1721-1731
    [123]Grierson D E, Gong Y G and Xu Lei. Optimal performance-based seismic design using modal pushover analysis[J]. Journal of Earthquake Engineering, Vol.2006, 10(1):73-96
    [124]王克海,李茜.基于模态分析的Push-over方法在桥梁抗震分析中的应用[J].铁道学报,2006,28(2):79-84.
    [125]汪大绥,贺军利,芮明倬等.静力弹塑性分析中若干问题的研究与探讨[J].建筑结构,2007,37(5):96-99
    [126]Javaden S. I., Taghinelhad R. Evaluation of lateral load patten in pushover analysis[J]. WIT Transactions on the Built Environment,2007,93(6):279-287
    [127]Cardone D. Nonlinear static methods vs. experimental shaking table test results[J]. Journal of Earthquake Engineering,2007,11(6):847-875
    [128]易伟建,蒋蝶.一种基于滞回耗能的改进Pushover分析方法[J].自然灾害学报,2007,16(3):104-108.
    [129]周旭,黄咏政,等.罕遇地震作用下钢筋混凝土结构的静力弹塑性分析[J].建筑结构,2007,37(4):25-63.
    [130]秦泗凤,柳春光,等.基于改进ASPA法的高阶振型对桥墩抗震性能的影响评价[J].中国公路学报,2008,21(5):57-62
    [131]徐自国,肖从真,等.北京当代MOMA结构基于性能的抗震设计及静力弹塑性分析[J].土木工程学报,2008,41(3):58-64.
    [132]马千里,叶列平,陆新征.MPA法与Pushover法的准确性对比[J].华南理工大学学报,2008,36(11):121-128
    [133]王七林,闻奇光.结构模态Pushover及高振型影响的对比评估[J].土木建筑与环境工程,2009,31(1):60-71
    [134]Moehle J. P. Nonlinear analysis for performance-based earthquake engineering[J]. Struct. Design Tall Spec. Build,2005,14 (5):385-400
    [135]韩建平,吕西林,李慧.基于性能的地震工程研究的新进展及对结构非线性分析的要求[J].地震工程与工程振动,2007,27(4):15-23
    [136]Bertero, V. V. Strength and deformation capabilities of buildings under extreme environments[J]. Structural engineering and structural mechanics, K. S. Pister., ed., Englewood, Cliffs:Prentice Hall,1977,211-215
    [137]Vamvatsikos, D., and C. A. Cornell. Incremental dynamic analysis[J]. Earthquake Engng. Struct. Dyn.2002,31(3):491-512.
    [138]Vamvatsikos D., Cornell C. A. Direct estimation of seismic demand and capacity of multi-degree-of-freedom systems through incremental dynamic analysis of single degree of freedom approximation[J]. ASCE Journal of Structural Engineering,2005, 131(4):589-599.
    [139]Deierlein G. G, Haselton C. B. Developing consensus provisions to evaluate collapse of reinforced concrete buildings [C]. Proc. of the First NEES/E-DefenseWorkshoP on Collapse Simulation of Reinforced Concrete Building Structures. Berkeley,2005: 3-19
    [140]马千里,叶列平,等.采用逐步增量弹塑性时程方法对RC框架结构推覆分析侧力模式的研究[J].建筑结构学报,2008,29(12):132-140
    [141]Wen Y. K. Reliability and performance based design[C]. Proc. of the 8th ASCE Specialty Conference on ProbabilisticMechanics and Structural Reliability. Notre Dame:2000
    [142]Cornell C. A., Krawinkler H. Progress and challenges in seismic performance assessment[R]. PEER Center News,2000,3 (2):1-3
    [143]Cornell C. A., et al. Probabilistic basis for the 2000 SAC Federal Emergency Management Agency steel moment frame guidelines[J]. ASCE Journal of Structural Engineering,2002,128 (4):526-533.
    [144]Ellingwood B. R. Performance-based design:structural reliability considerations[C]. Proc. of Structures Congress 2000, Philadelphia, PA:SEI/ASCE,2000
    [145]Hamburger R. O., Foutch D. A., et al. Translating research to practice:FEMA/SAC performance-based design procedures[J]. Earthquake Spectra,2003,19(2):255-267
    [146]高小旺,魏琏,韦承基.基于概率的结构抗震设计方法[J].建筑结构学报,1988,9(6):5-11
    [147]周锡元,曾德民,等.结构抗震性能的可靠度评价.大型复杂结构的关键科学问题和设计理论研究论文集[M].同济大学出版社,2001,356-363
    [148]程耿东,李刚.基于功能的结构抗震设计中一些问题的探讨[J].建筑结构学报,2000,21(1):4-10
    [149]吕大刚,李晓鹏,王光远.基于可靠度和性能的结构整体地震易损性分析[J].自然灾害学报.2006,15(2):107-114
    [150]侯钢领,欧进萍.基于结构可靠度的PBSD抗震设防标准研究[J].自然灾害学报,2008,17(1):202-210
    [151]Sues R.H., Y. K. Wen, et al. Stochastic evaluation of seismic structural performance[J]. Journal of Structral Englneering,1985,111(6):1204-1218
    [152]Motoyuki Suzukj, Mitsuyoshi Akeyama, et al. Safety evaluation method of structural system and its application to seismic design of RC bridge Pier[J]. Concrete Library of JSCE,1998,32:43-68
    [153]Suck Song. Structural reliability and seismic performance of reinforced concrete building in the performance-based design[D]. Ph.D.Dissertation, Dept.of Civil and Environmental Engineering, University of Califomia, LosAngeles,2001
    [154]Marano G. C. and Greco R. A performance-reliability-based criterion for the optimum design of bridge isolators[J]. ISET Journal of Earthquake Technology,2004, 41(2-4):261-276
    [155]李国强.基于概率可靠度进行结构抗震设计的若干理论问题[J].建筑结构学报,2000,21(1):12-16,20
    [156]Deierlein G.G., Krawinkler H., et al. A framework for performance-based earthquake engineering[C].2003 Pacific concerence on earthquake engineering, Washington D. C.,2003
    [157]Porter K. A. An overview of PEER's performance-based earthquake engineering methodology[C]. Ninth International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP9). San Francisco,2003:1-8
    [158]Deierlein G. G. Overview of a comprehensive framework for earthquake performance assessment[C]. Proc. of the International Workshop on Performance-Based Seismic Design-Concepts and Implementation. Bled, Slovenia, 2004
    [159]Moehle J. P. and Deierlein, G. G. A framework methodology for performance-based earthquake engineering[C]. Proc. of 13th World Conference on Earthquake Engineering. Vancouver,2004
    [160]ATC. FEMA 445, Next-generation performance-based seismic design guidelines-program plan for new and existing buildings[R]. Redwood City,2006
    [161]ATC. ATC-58 25% Complete Draft. Guidelines for seismic performance assessment of buildings [S]. Redwood City, California,2005
    [162]ATC. ATC-58 35% Complete Draft. Guidelines for Seismic Performance Assessment of Buildings[S]. Redwood City, California,2007
    [163]Krawinkler H., Zareian F, et al. Decision support for conceptual performance-based design[J]. Earthquake Engng Struct. Dyn.,2006,35 (1):115-133
    [164]ASCE. FEMA 356, Prestandard and commentary for the seismic rehabilitation of buildings[R]. Washington, D. C.,2000
    [165]谢礼立,张晓志,周雍年.论工程抗震设防标准[J].地震工程与工程振动,1996,16(1):l-18
    [166]马玉宏.基于性态的抗震设防标准研究[D].中国地震局工程力学研究所博士学位论文,2000
    [167]AASHTO. Standard specifications for highway Bridges[S]. Washington D.C.,2002
    [168]CEN. Eurocode 8:Design of structures for earthquake resistance-Part 1:General rules, seismic actions and rules for buildings (BS EN 1998-1)[S],2004
    [169]国家地震局.中国地震动参数区划图(GB18306-2001)[S].北京:中国地震出版社,2001
    [170]CEN. Eurocode 8:Design of structures for earthquake resistance-Part 2:Bridges (BS EN 1998-2) [S],2005
    [171]中华人民共和国建设部.建筑工程抗震设防分类标准(GB 50223-2004)[S].北京:中国建筑工业出版社,2004
    [172]齐怀恩,王光远.公路桥梁抗震设防标准的研究[J].东北公路,1999,22(4):48-51
    [173]叶爱君,范立础.大型桥梁工程的抗震设防标准探讨[J].地震工程与工程振动,2006(26):8-12
    [174]李龙安,何友娣,等.公路桥梁抗震设计的设防标准研究[J].桥梁建设,2006(增刊2):135-139
    [175]王克海,李茜,等.桥梁工程抗震设防标准问题[J].桥梁建设,2008(2):60-62
    [176]范立础,卓卫东.桥梁延性抗震设计[M].北京:人民交通出版社,2001
    [177]马玉宏,谢礼立.考虑地震环境的设计常遇地震和罕遇地震的确定[J].建筑结构学报,2002,23(5):42-47,67
    [178]Priestley M.J.N, Kowalsky M.J. Aspects of drift and ductility capacity of rectangular cantilever struetural walls[J]. Bulletin of the NewZealand National Soeiety for Earthquake Engineering,1998,31(6):73-85
    [179]Priestley M.J.N., Calvi GM. Direct displacement-based seismic design of concrete bridges[C]. ACI International Conference on Seismic Bridge Design and Retrofit, La Jolla,2003
    [180]Kowalsky M.J. Deformation limit states of circular reinforced conerete bridge columns[J]. Journal of Structural Engineering,2000,126(8):869-878
    [181]Berry M.P., Ebethard M.O. Performance models for flexural damage in reinforced concrete columns[R]. PEER Report 2008/13, College of Engineering University of California, Berkeley,2003
    [182]Trezos C.G. Reliability consideration on the confinement of RC columns for ductility[J]. Soil Dynamics and Earthquake Engineering,1997,3:184-191
    [183]Kappos A.J. Chryssanthopoulos M.K., et al. Uncertainty analysis of strength and ductility of conerete reinforced concrete members [J]. Engineering Structures,1999, 9(21):195-208
    [184]马宏旺,赵国藩.钢筋混凝土矩形柱截面曲率延性系数概率分析[J].大连理工大学学报,2001,41(4):485-90
    [185]Yong Lu, Xiaoming Gu. Probability analysis of RC member deformation limits for different Performance levels and reliability of their deterministic calculations [J]. Struetural Safety,2004,26:367-389
    [186]王建民,朱晞.圆截面RC桥墩曲率极限状态和延性的概率分析[J].土木工程学报,39(12):88-94
    [187]中华人民共和国交通部.公路钢筋混凝土及预应力混凝土桥涵设计规范(JTGD62-2004)[S].北京:人民交通出版社,2004
    [188]张树仁,郑绍硅,等.钢筋混凝土及预应力混凝土桥梁结构设计原理[M].北京: 人民交通出版社,2004
    [189]李扬海,鲍卫刚,等.公路桥梁结构可靠度与概率极限状态设计[M].北京:人民交通出版社,1997
    [190]邹天一.结构可靠度[M].北京:人民交通出版社,1998
    [191]过镇海.钢筋混凝土原理[M].北京:清华大学出版社,1999
    [192]Kent D.C. Park. R. Flexural members with confined concrete[J]. ASCE,1971, 97(ST7):1969-1990
    [193]Mander J.B., Priestley M.J.N. and Park R. Theoretical stress-strain model for confined concrete[J]. ASCE Journal of Sturctural Engineering,1988,114(8): 1804-1826
    [194]中华人民共和国国家标准.钢筋混凝土用热轧带肋钢筋(GB1499-1998)[S].北京:中国计划出版社,1998
    [195]胡勃.桥梁抗震概率性设计方法的研究[D].上海:同济大学博士学位论文,2001
    [196]国家地震局.中国地震烈度区划图[S].北京:中国地震出版社,1990
    [197]崔江余,杜修力.重大工程设定地震动确定[J].世界地震工程,2000,16(4):25-28
    [198]易立新,胡晓,等.基于EPA的重大工程设计地震动确定[J].地震研究,2004,27(4):271-276
    [199]钟菊芳,胡晓,等.重大工程设定地震方法研究进展[J].水力发电,2005,31(4):22-24
    [200]陈厚群,李敏,等.基于设定地震的重大工程场地设计反应谱的确定方法[J].水利学报,2005,36(12):1399-1404
    [201]卢寿德.GB17741-2005《工程场地地震安全性评价》宣贯教材[M].北京:中国标准出版社,2006
    [202]高小旺,鲍霭斌.地震作用的概率模型及其统计参数[J].地震工程与工程振动,1985,5(1):13-22
    [203]欧进萍,段宇博,等.结构随机地震作用及其统计参数[J].哈尔滨建筑工程学院学报,1994,27(5):1-10
    [204]陈厚群,侯顺载.水电工程抗震设防概率水准和地震作用概率模型[J].自然灾害学报,1993,2(2):91-98
    [205]Housner G.W. Characteristics of strong motion earthquakes[J]. Bull. of Seism. Soc. Of Am.,1947,37(1):19-31
    [206]Goodman L.E., Rosenblueth E., et al. A seismic design of firmly bounded elastic structures[J]. ASCE,1955,120
    [207]Bycroft G. M. White noise representation of earthquake[J]. J. of Engr. Mech. Div. ASCE,1960, (EM2)
    [208]Housner G W., Jennings P. C. Generation of artificial earthquake[J]. J. of Engr. Mech. Div., ASCE,1964, (EMI)
    [209]Shinozuka M., Sato Y. Simulation of nonstationary random process[J]. J. of Engr. Mech. Div., ASCE,1967, (EMI)
    [210]Amin M. Ang A. H. Nonstationary stochastic model of artificial earthquake motions[J]. J. of Engr. Mech. Div., ASCE,1968,94 (EM2)
    [211]Chang M.K. Kwiatkowski J.W., et al. ARMA models for earthquake ground motions[J]. EERC,1979,19
    [212]钟万勰.结构动力方程的精细时程积分[J].大连理工大学学报,1994,34(2):131.136
    [213]蔡志勤,顾元宪,钟万勰.一类非线性周期系统响应的精细积分法[J].力学季刊,2000,21(2):145-148
    [214]孔向东,钟万勰.非线性动力系统刚性方程精细时程积分法[J].大连理工大学学报,42(6):2002,42(6):654-658
    [215]裘春航,吕和祥,钟万勰.求解非线性动力学方程的分段直接积分法[J].力学学报,2002,34(3):369-378
    [216]刘靖华,范益群,钟万勰.粘弹性固体的精细积分有限元算法[J].计算力学学报,2004,21(1):109-114
    [217]王前信.弹塑性反应谱.地震工程研究报告集[M],第二集.北京:科学出版社,1965
    [218]Newmark N.M., Hall W. J. Seismic design criteria and nuclear reactor facilities [R]. U S Department of Commerce, Report No.46. California,1973:209-236
    [219]Riddell R., Newmark N.M. Statistical analysis of the response of nonlinear systems subjected to earthquakes[R]. Department of Civil Engineering, University of Illinois, Series No.468, Urbana,1979:54-65
    [220]陈聃.抗震结构的延性谱.清华大学抗震抗爆工程研究报告集[M].北京:清华大学出版社,1980
    [221]韦承基.弹塑性结构的位移比谱[J].建筑结构学报,1986,4(1):40-48
    [222]Nassar A A, Krawinkler H. Seismic demands for SDOF and MDOF systems[R]. John A. Blume Earthquake Engineering Center, Report No.95, Stanford University, CA. 1991
    [223]Miranda, E., Evaluation of site-dependent inelastic seismic design spectra[J]. Journal of Structural Engineering, ASCE,1993,119(21):1319-1338
    [224]Vidic T, Fajfar P. Consistent inelastic design spectra:strength and displacement[J]. Earthquake Engineering and Structural Dynamics,1994,24(5):507-521
    [225]MacRae GA., Kawashima K. Post-earthquake residual displacement of bilinear oscillators[J]. Earthquake Engrg. and Struct. Dyn.,1997,26(5):701-716
    [226]Kawashima K., MacRae GA., et al. Residual displacement response spectrum[J]. Journal of Structural Engineering,1998,124(5):523-530
    [227]Lee L.H., Han S.W., et al. Determination of ductility factor considering different hysteretic models[J]. Earthquake Engineering and Structural Dynamics,1999,28(9): 957-977.
    [228]Borzi B., Elnashai A.S. Refined force reduction factors for seismic design[J]. Engineering Structures,2000,22(5):1244-1260
    [229]卓卫东,范立础.结构抗震设计中的强度折减系数研究[J].地震工程与工程振动,2001,21(1):84-88
    [230]吕西林,周定松.考虑场地类别与设计分组的延性需求谱和弹塑性位移反应谱[J].地震工程与工程振动,2004,24(1):39-48
    [231]瞿长海,公茅盛,等.工程结构等延性地震抗力谱研究[J].地震工程与工程振动,2004,24(1):22-29
    [232]Sakai J., Mahin S. A. Nonlinear response spectra for strong ground motion records from the 2004 Niigata-Ken Chuetsu earthquakes[J]. Journal of Japan Association for Earthquake Engineering,2005,5(1):17-27
    [233]周靖,蔡健,等.钢筋混凝土结构抗震强度折减系数的谱分析[J].华南理工大学学报(自然科学版).2006,34(2):100-106
    [234]翟长海,谢礼立.考虑设计地震分组的强度折减系数的研究[J].地震学报,2006,28(3):284-294
    [235]欧进萍,刘会仪.基于随机地震动模型的结构随机地震反应谱及其应用[J].地震工程与工程振动,1994,14(1):14-23
    [236]欧进萍,侯钢领,吴斌.概率Pushover分析方法及其在结构体系抗震可靠度评估中的应用[J].建筑结构学报,2001,22(6):81-86
    [237]易伟建,张海燕.结构随机延性需求谱的理论研究[J].工程力学,2006,23(5):14-19
    [238]Kanai. K. Semi-Empirical Formula for the seismic characteristics of ground[J]. Bull. Earthq. Res. Inst., Tokyo University.1957,35:306-325
    [239]胡聿贤,周锡元.弹性体系在平稳和平稳化地面运动下的反应.地震工程研究报 告集,第一集[M].北京:科学出版社,1982:33-35
    [240]Clough R. W. and Penzien J.(著),王光远等(译),结构动力学[M].北京:科学出版社,1983:403-405
    [241]欧进萍,牛荻涛,杜修力.设计用随机地震动的模型及其参数确定[J].地震工程与工程振动,1991,11(3):45-54
    [242]杜修力,胡晓,陈原群.强震地运动随机过程模拟[J].地震学报,1995,17(1):103-109
    [243]江近仁,洪峰.功率谱与反应谱的转化与人造地震波[J].地震工程与工程振动,1984,4(3):1-11
    [244]Bracci J.B., Kunnath S.K., et al. Seismic performance and retrofit evaluation of reinforced concrete structures[J]. Journal of Structural Engineering, ASCE,1997, 123(1):3-10
    [245]徐金,龚晓玲,等.静力弹塑性分析方法中不同加载模式的对比[J].中国民航学院学报,2006,24(6):27-30
    [246]Albanesi T., Nuti, C., et al. A simplified procedure to assess the seismic response of nonlinear structures[J]. Earthquake Spectra,2000,16(4):715-734
    [247]Tsopelas P., Constantinou, M.C., et al. Evaluation of simplified methods of analysis of yielding structures[R]. Technical Report, NCEER-97-0012, National Center for Earthquake Engineering Research, State University of New York, Buffalo,1997
    [248]Ambraseys N.N, Sarmi S. Liquefaction of soils by earthquakes[J]. BSSA,1989, 69(2):651-664

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700