用户名: 密码: 验证码:
汽车制动器热衰退性能及相关制动安全检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着道路条件日益改善以及行驶车速的不断提高,汽车制动能耗也有了较大增加。有时汽车在一些路段上的控速制动或车辆动力学控制作用常会使汽车产生严重热衰退,同时影响与此相关制动安全性。基于虚拟试验环境可以快速、经济地对数字化汽车仿真模型进行抗热衰退性能或制动安全性检测等方面试验研究。本文在人-车-环境系统框架内,综合考虑制动器摩擦性能热衰退、汽车制动效能变化、制动方向稳定性等方面与不同使用工况条件下相关影响因素之间的耦合作用关系及作用机理,运用不同建模方法进行深入研究,这对于目前复杂道路交通环境中常见肇事运营车辆——大、中型客车及商用车的制动器温度场耦合分析及热衰退摩擦性能确定、整车的抗热衰退性能研究及必要研究平台构建、汽车制动热衰退安全性检测分析与评价等有关研究的方法探索及获取必要关键支持技术具有重要理论和实际意义。
     针对制动器输出力矩热衰退的多物理过程耦合事实,建立了描述其热-机耦合传热规律的数学模型及三维热-机耦合有限元模型,通过耦合温度场仿真结果与台架试验结果比较验证蹄-鼓副的摩擦系数温度特性。提出了结合摩擦系数温度特性进行制动器热衰退及后续的汽车抗热衰退性能研究思路,根据QC/T 479-1999,编程构建制动器摩擦性能热衰退虚拟试验系统,进行热衰退摩擦性能分析与评价。
     根据Ⅰ型试验要求,明确参考汽车在循环制动过程中所存在耦合问题的层次、耦合类型、载体、耦合参数等信息。对应用系统集成整合方法建立的耦合制动车辆模型进行道路试验验证;利用验证后的车辆模型,依据GB12676-1999中Ⅰ型试验要求,编程构建循环制动汽车抗热衰退性能虚拟试验系统,对不同因素变化时的制动器热衰退、汽车抗热衰退性能等进行分析探讨,另外还对装用ABS时的循环紧急制动情况也进行了相关的探讨分析。
     根据Ⅱ型试验要求,明确参考汽车在恒速制动过程中所存在耦合问题的层次、耦合类型、载体、耦合参数等信息。根据前向与后向相结合的系统建模方法及GB12676-1999中Ⅱ型试验要求,编程构建恒速制动汽车抗热衰退性能虚拟试验系统并对不同因素以及发动机档位选择变化时的各制动器热衰退、汽车抗热衰退性能等进行研究。根据循环制动过程与恒速制动过程中汽车在热衰退方面的差异和区别,考虑在汽车下坡行驶过程中利用模糊控速调节策略的循环减速下坡方式,在保证不影响交通顺畅及平均车速不致过大降低的情况下,可较好地提高汽车抗热衰退性能和改善制动器输出力矩稳定性。
     从方法探索及应用的角度,明确制动热衰退安全性检测的必要性。推导得到热衰退过程中实际制动力分配系数与名义分配系数之间定量关系表达式。根据安全性检测主要内容和方法以及循环与恒速制动汽车抗热衰退性能虚拟试验系统,通过编程构建的汽车制动热衰退安全性检测分析评价系统对在不同影响因素作用下的典型直线制动热衰退过程中有关安全性检测内容进行了检测分析,并做出相应的安全性评价。
With the increasing improvment of road and the enhancement velocity of vehicle, the total braking engery consumption has been greater than ever. In some braking cases, such as speed-controlled braking or the action of vehicle dynamic integrated control systems, the serious braking heat-fade of vehicle can be generated. The related braking safety is degraded. In the vitual test environment, the study including vehicle's antifade performance, braking safety detection and so on can be carried out rapidly and economically by simulating the digitzed vehicle model. Within the framework of HVE(Human Vehicle Environment) system and in light of comprehensive considerations of coupling relationships or coupling mechanism among the affecting factors including brakes’frictional properties, braking effectiveness, directional stabilities and so on, the relative studies are carried out deeply by using various modeling methods. There are more important theoretical and practical significances for method explorations and pivotal supporting technologies of relative studies which are mainly including coupling analysises and determinations of brake temperature field and its frictional performance variation, the studies and corresponding research platform estabilishments of vehicle's anti-heatfade performance, the safety detections and assessments of braking fade process.
     In light of coupling reality of multi-physical process of the brake's output torque variation, the mathematical model and its corresponding 3D thermo-mechanical finite element simulation model which describe heat transfer mechanism and temperature distribution are established. The relationship between temperature and frictional factor of rubbing pairs (RTFFRP) is validated through comparing the simulation results with test data. A new thought is put forward which concerns that the virtual test systems of brake's frictional performance and subsequent anti-heatfade performance of vehicle is established by using the validated relationship. The virtual test and assessment of brake frictional performance are carried out by using brake virtual bench test system.
     Based on I type test requirements, the hierarchy, type, carrier and parameters of coupled problem need to be specified. The vehicle dynamic simulation model with brake temeperature variation (VDSMBTV) is validated by comparing the simulation results with the road test results. The virtual cycle braking test system which is based on the I type test requirements of standard GB12676-1999 is used to analyzing the variations of brake heat-fade or vehicle anti-fade performance which are caused by different factors. In addition, the corresponding analysises of emergent 20-cycles braking are carried out for the test vehicle with ABS(anti-lock braking system).
     Based onⅡtype test requirements, the hierarchy, type, carrier and parameters of coupled problem need to be specified. The corresponding virtual test system is established which is based on the system method combining the forward direction with the backward direction and is accorded with theⅡtype test requirements of standard GB 12676-1999. Then the virtual system is used to analyzing the variations of brake heat-fade or vehicle anti-fade performance which are caused by different factors including various gears in engine braking. On the basis of the differences between cycles braking and downhill braking wih constant velocity, the fuzzy-logical velocity regulations are utilized during driving on the continuous downhill path. The virtual test results indicate that the vehicle's anti-fade performance and the stability of brake's output torque are all improved or bettered by this way which ensures the smooth traffic and don't decelerate the velocity greatly.
     From the viewpoint of the exploration and application of method, the necessity of braking safety detection need to be specified. The expression of quantitative relationship between nominal braking force distribution coefficient and practical braking force distribution coefficient is derived and received. Based on the main contents or methods of braking safety detection and the corresponding virtual test systems of continuous cycle or downhill braking, the braking safety detection and accessment system are established. The related contents of braking safety detection are carried out under various factor influences and the corresponding safety assessments are put out.
引文
[1]吴京梅,何勇.连续长大下坡安全处置技术[M].北京:人民交通出版社,2008:1-60
    [2]高建平,柳本民,郭忠印.货车交通对高速公路安全性的影响[J].同济大学学报(自然科学版),2005,33(6):763-767
    [3]公安部交通管理局[EB/OL]. http://www.mps.gov.cn/n16/n1252/n1837/index.html
    [4]严世同.货车对高速公路安全的影响与对策[J].重庆职业技术学院学报,15(3):134-136
    [5]高延龄.汽车运用工程[M].北京:人民交通出版社,1999:1-123
    [6]任卫群.多领域统一建模方法在汽车性能仿真中的应用[J].计算机仿真,25(11):274-277
    [7]Johnson L.K., Fancher P.S., Gillespie T.D.. An empirical model for the prediction of the torque output of commercial vehicle air brakes[R]. U.S.A:Michigan University,1978
    [8]Gillespie T.D., Johnson L.K., Fancher P.S. Modeling the in-stop torque performance of hydraulically-actuated truck brakes[R]. U.S.A:Michigan University,1978
    [9]袁伟.鼓式制动器温升计算模型及其应用研究[D].西安:长安大学,2003
    [10]钟掘,陈先霖.复杂机电系统耦合与解耦设计-现代机电系统设计理论的探讨[J].中国机械工程,1999,10(9):1051-1054
    [11]王亚幂,李世其,宋少云.多场耦合系统协同设计方法研究[J].机械制造,2006,44(4):34-37
    [12]Blok H., Theoretical Study of Temperature rise at surfaces of actual contact under oiliness conditions [J], Proc Inst of Mechanical Engineers General Discussion of Lubrication, Institution of Mechanical Engineers, London,1937(2):222-235
    [13]Jaeger J.C., Moving sources of heat and the temperatures of sliding contacts [J], Proc. Roy. Soc. N.S.W.,1942(76):203-224
    [14]Abdel-Aal H. A., Hartnett J.P., Minkowycz W.J.. A remark on the flash temperature theory[J]. Int. Comm. Heat Mass Transfer,1997,24(2):241-250
    [15]马保吉,朱均.摩擦制动器接触表面温度计算模型[J].1999,19(1):35-39
    [16]向上升.气压盘式制动器物理建模与仿真分析[D].武汉:武汉理工大学,2007
    [17]Evtushenko O.O., Ivanyk E. H., Horbachova N. V.. Analytic methods for thermal calculation of brakes(Review)[J]. Materials Science,2000,36(6):857-862
    [18]Cameron A., Gordon A.N., Symm G.T., Contact temperatures in rolling/sliding surface[J]. Proc. Roy. Soc. of London,1965,286(1404):45-61
    [19]Sinclair B.G.. On multiple moving sources of heat and implications for flash temperatures[J]. ASMEJ of Heat Transfer,1994,116(1):230-233
    [20]Kuhlman-Wilsdorf. D, Demestifying Flash Temperatures, part I:Analytical Expression based on a Simple Model[J]. Materials Science and Engineering,1987,93(107):232-238
    [21]Ling F. On temperature transients in sliding interface[J]. ASME Journal of Lub Tech, 1969,7:397-405
    [22]Marscher W.D. A critical Evaluation of the Flash temperature Concept[J]. Tribology Transactions,1982,25(2):157-174
    [23]Barber J.R. An Asymptotic Solution for Short-time Transient heat conduction between two similar contacting bodies[J]. International Journal of Heat and Mass Transfer,1989, 32(5):943-949
    [24]Chichinadze A.V.. Calculation and Investigation of External Friction During Braking[M]. Moscow:Science,1967:100-200
    [25]Chichinadze A.V., Braun E.D., Ginsburg A.G. et al. Calculation, test and selection of frictional couples[M], Moskow: Nauka,1979:30-150
    [26]Yevtushenko A.A., Ivanyk E.G., Sykora O.V.. The transient temperature processes in local friction contact[J]. Heat Mass transfer,1995,38(13):2395-2401
    [27]Yevtushenko A.A., Kuciej M.. Frictional heating during braking in a three-element tribosystem. International Journal of Heat and Mass Transfer,2009,52(13-14):2942-2948
    [28]Ho T.L., Peterson M.B., Ling F.F.. Effect of frictional heating on braking materials[J]. Wear,1974,30(1):73-79
    [29]Fasekas G.A.G.. Temperature gradients and heat stresses in brake drums[J]. SAE Trans., 1953,61:279-284
    [30]Olesiak Z., Pyryev Yu., Yevtushenko A.. Determination of temperature and wear during braking[J]. Wear,1997,210 (1-2):120-126
    [31]Evtushenko O.O., Pyrev Yu.O.. Calculation of the contact temperature and wear of frictional elements of brakes[J]. Materials Science,1998,34 (2):249-254
    [32]Pyryev Yu., Yevtushenko A., The influence of the brakes friction elements thickness on the contact temperature and wear[J]. Heat and Mass Transfer,2000,36 (4):319-323
    [33]Evtushenko O.O., Pyrev Yu.O.. Temperature and wear of the friction surfaces of a cermet patch and metal disk in the process of braking[J]. Materials Science,2000,36 (2):218-223
    [34]Blok H..'Seizure-Delay’method for determining the seizure protection of EP lubricants[J], SAE Journal,1939,44 (5):193-196
    [35]Krushchov M.M.. Investigation in Bearing Materials and Journals Work[M]. Moscow: Izdatelstvo AN USSR,1946:1-300
    [36]Blok H.. The flash temperature concept[J]. Wear,1963,6(6):1-483
    [37]Yevtushenko A., Ivanyk E.. Effect of the rough surface on the transient frictional temperature and thermal stresses near a single contact area[J]. Wear,1996,197(1-2):160-168
    [38]Carslaw H. S., Jaeger J. C.. The conduction of heat in solids[M]. Oxford:Clarendon Press, 1959:1-350
    [39]Limpert Rudolf. Brake Design and Safety[M]. U.S.A:SAE International,1999:1-380
    [40]马保吉,韩莉莉,朱均.盘式制动器的温度场分析[J].西安工业学院学报,1998,18(4):311-315
    [41]王涛,朱文坚.摩擦制动器[M].广州:华南理工大学出版社,1992: 1-180
    [42]Kennedy T. C., Plengsaard C., Harder R. F.. Transient heat partition factor for a sliding railcar wheel[J]. Wear,2006,261(7):932-936
    [43]Noyes Robert N., Vickers P. T.. Prediction of Surface Temperatures in Passenger Car Disc Brakes[J]. SAE Paper, NO.690457
    [44]Hartter L.L.; Schwartz H.W.; Rhee S.K.. Evaluating Copper Alloy Brake Discs by Thermal Modeling[J]. SAE Paper, NO.740560
    [45]Peer M.. Numerical Optimization for Internal Expanding Brake[D]. U.S.A:Naval Postgraduate School,1981
    [46]Yu Changming, Yang Jingguang, He Deyu, Du Xiao. A Numerical Method for Calculating Temperature Rise of the Friction Brake[J]. Chinese Journal of Mechanical Engineering,1984,20(4):43-53
    [47]周凡华,吴光强,沈浩等.盘式制动器15次循环制动温度计算[J].汽车工程,2001,23(6):411-418
    [48]邹定平,沈荣华,黎桂英.汽车盘式制动器瞬态温度场分析.机械[J],1998,25(增刊):287-289
    [49]刘芳华.提高车辆制动性能的方法及动态仿真[D].镇江:江苏理工大学,2000
    [50]Dittrich H., Lang R.. Finite Element Analysis of the Thermal Loads Acting on a Passenger-Car Brake Disk[J]. Automobiltech. Z,1984,86(6):265-269
    [51]Ramachandra Rao V.T.V.S., Ramasubramanian H., Seetharamu K.N.. Analysis of temperature field in brake disc for fade assessment[J].1989,24(1):9-17
    [52]#12
    [53]Chikovani M.G., Fedoseev V.N.. Temperature Field of the Ventilated Disk of a Disk-block Brake with Arbitrarily Shaped Channels [J]. Izv Vyssh Uchebn Zaved Mashinostr, 1985,3:14-19
    [54]郭应时,付锐,杨鹏飞等.鼓式制动器瞬态温度场数值模拟计算[J].长安大学学报(自然科学版),2006,26(3):87-90
    [55]罗庆生,韩宝玲.汽车摩擦片摩擦热分布规律的分析与研究[J].润滑与密封,2004,3:20-26
    [56]李非雪,张文明,方湄.湿式多片制动器摩擦片温度分布规律[J].北京科技大学学报,2001,23(6):539-542
    [57]方明霞,冯奇,宋建培等.鼓式制动器摩擦片的有限元分析[J].重型汽车,1998,47(4):14-17
    [58]Kennedy Jr. F. E., Ling F. F.. Thermal, Thermoelastic, and Wear Simulation of A High-Energy Sliding Contact Problem[J]. American Society of Mechanical Engineers,1973, 73(8):497-507
    [59]Zagrodzki, P.. Analysis of thermomechanical phenomena in multidisc clutches and brakes[J]. Wear,1990,140(2):291-308
    [60]Padovan, J.; Padovan, P. Modelling wear at intermittently slipping high speed interfaces
    [61]Dufrenoy P.; Weichert D.. Thermomechanical analysis of disc brakes with contact surfaces variations[J]. Zeitschrift fuer Angewandte Mathematik und Mechanik,1996, 76(5):1-129
    [62]Evtushenko A. A., Gorbacheva N. V., Ivanik E. G.. Thermomechanical processes in the friction heating of disk brakes[J]. Inzhenerno-Fizicheskii Zhurnal,1997,70(1):111-116
    [63]Kao T. K., Richmond J. W., Douarre A.. Brake disc hot spotting and thermal judder: an experimental and finite element study[J]. International Journal of Vehicle Design,2000, 23(3):276-296
    [64]Koetniyom S., Brooks P. C., Barton D. C.. The development of a material model for cast iron that can be used for brake system analysis[J]. Proceedings of the Institution of Mechanical Engineers,2002,216(5):349-362
    [65]Thuresson Daniel. Influence of material properties on sliding contact braking applications[J]. Wear,2004,257(5):451-460
    [66]Cho H. J., Cho C. D. A study of thermal and mechanical behaviour for the optimal design of automotive disc brakes[J]. Proceedings of the Institution of Mechanical Engineers, 2008,222(6):895-915
    [67]Hassan M. Zahir, Brooks P. C., Barton D. C.. A predictive tool to evaluate disk brake squeal using a fully coupled thermo-mechanical finite element model[J]. International Journal of Vehicle Design,2009,51(1):124-142
    [68]Jiayin Li, Barber J. R.. Solution of transient thermoelastic contact problems by the fast speed expansion method[J]. Wear,2008,265 (3):402-410
    [69]吕振华,亓昌.蹄-鼓式制动器热弹性耦合有限元分析[J].机械强度,2003,25(4):401-407
    [70]黄健萌,高诚辉,唐旭晟等.盘式制动器热-结构耦合的数值建模与分析[J].机械工程学报,2008,44(2):145-151
    [71]黄健萌,高诚辉,林谢昭.盘式制动器摩擦界面接触压力分布研究[J].固体力学学报,2007,28(3):297-302
    [72]汪成明,石琴,夏国林.盘式制动器制动时的热应力分析[J].合肥工业大学学报(自然科学版),2007,30(11):1436-1439
    [73]葛振亮,吴永根,袁春静.盘式制动器热弹性耦合分析[J].烟台大学学报(自然科学与工程版).2007,20(3):215-221
    [74]Vinod Kumar, Salvio Chacko, Biswadip Shome. Computational Methods in Brake System Design[A]. Altair CAE Users Conference2005[C]. Bangalore:Altair CAE Users Conference,2005
    [75]Wentenkamp H. R., Kipp R. M.. Hot Spot Heating by Composite Shoes[J]. American Society of Mechanical Engineers,1975,75(2):453-458
    [76]van Swaaij J. L.. Thermal Damage to Railway Wheels[J]. Institution of Mechanical Engineers,1979,9:95-100
    [77]Dow T. A.. Thermoelastic Effects in Brakes[J]. Wear,1979,59(1):213-221
    [78]Fee M. C., Sehitoglu H.. Thermal-Mechanical Damage in Railroad Wheels due to Hot Spotting[J]. Wear,1984,102(1):31-42
    [79]Santini J. J., Kennedy F. E.. An Experimental Investigation of Surface Temperatures and Wear in Disk Brakes[J]. Lub. Eng.,1975,31:402-417
    [80]Kwangjin Lee, Barber J. R.. An Experimental Investigation of Frictionally-Excited Thermoelastic Instability in Automotive Disk Brakes Under a Drag Brake Application[J]. Journal of Tribology,1994,116(3):409-414
    [81]Chichinadze A. V. Calculation and Modeling of the Operation of Braking and Frictional Devices [M], Moscow: Nauka,1974.
    [82]Rovinskii D. Ya., Panaioti I.I.. Experimental Investigation of the Surface Temperature of Heated-up Frictional Disks of a Heavy-duty Brake[J]. Powder Metallurgy and Metal Ceramics,1975,14(6):93-98
    [83]主安成,高诚辉,黄健萌.制动器表面温度测试技术探讨[J].机械制造,2005,43(495):62-65
    [84]陈建,邓强,张文汉等.薄制动盘温度变化过程的测试技术[J].机械设计,1996(7):29-30
    [85]常颖,崔岸,张军等.离合器摩擦过程中的温度研究[J].机械科学与技术,1998,17(5):835-837
    [86]李非雪,张文明,方湄.测量湿式多片制动器摩擦表面的温度分布[J].矿山机械,2000,(12):56-58
    [87]Venkataramana B., Sundararajanb G.. The influence of sample geometry on the friction behaviour of carbon-carbon composites[J]. Acta Materialia,2002,50(5):1153-1163.
    [88]蔡丹,魏宸官,宋文悦.离合器片表面温度的测量与表面应力的计算[J].车辆与动力技术,2000(4):7-11
    [89]贺奉嘉,黄伯云.汽车制动摩擦材料的发展.粉末冶金技术[J],1993,11(3):213-216
    [90]陈学龄译.石棉摩擦材料译文集[M].北京:中国建筑工业出版,1982: 1-200
    [91]何东新,王成国,王海庆.汽车用摩阻材料研究状况[J].工程塑料应用,2002,30(2):54-57
    [92]张明喆,刘勇兵,杨晓红.车用摩擦材料摩擦学研究进展[J].摩擦学学报,1999,19(4):379-384
    [93]王成焘.汽车摩擦学[M].上海:上海交通大学出版社,2002: 367-400
    [94]Friedrich K. Composite Materials Series 8 [M]. The Netherlands:Elsevier Science Publishers B V,1993
    [95]Jack M. G., Stang P. H., Rhee S. K.. Automotive friction material evolution during the past decade [J]. Wear,1984,100(1):503-515
    [96]刘绍忠,贺奉嘉,黄伯云.浅析汽车摩擦材料现状与发展趋势[J].汽车科技,1995,126(3):50-55
    [97]刘惟信.汽车制动系的结构分析与设计计算[M].北京:清华大学出版社,2004:1-180
    [98]Kim S. J., Choi N. C., Jang H.. Effect of Humidity on Friction Characteristics of Automotive Friction Materials[J]. Proceedings of Korean Society of Tribologists and Lubrication Engineers,1998,2(2):323-329
    [99]Mikael Eriksson, Filip Bergman, Staffan Jacobson. On the nature of tribological contact in automotive brakes[J]. Wear,2002,252 (1):26-36
    [100]Stefanovic I. S.. Tribo-Mutations in Automotive Brakes[A]. FISITA World Automotive Congress 2004[C]. BARCELONA:FISITA World Automotive Congress,2004
    [101]Duboka C., Arsenic Z., Tribo-mutations in tribo-mechanical systems[A]. Balkantrib'96 2nd International Conference on Tribology Proceedings[C]. Thessaloniki:2nd International Conference on Tribology Proceedings,1996:703-710
    [102]Milosavljevic M., Mariotti G. V., Duboka C.. Tribo-mutation effect on wear in Friction mechanisms[A]. XV Conference Science and Motor Vehicles[C]. Belgrade:Conference Science and Motor Vehicles,1995
    [103]Ellis J. R.. The Dynamics of Vehicles During Braking[A]. Symposium Control of Vehicles Automobile Division[C]. London:Inst. Mech. Engrs.,1963:20-29
    [104]Bode O., Gorge W.. Mathematical Investigation of the Braking Performance of Articulated Vehicles. Deutsche Kraftfahrtforschung,1961,49:21-28
    [105]Limpert, R.. An Investigation of the brake Force Distribution of Tractor-Semitrailer Combinations[J]. SAE Paper, NO.710044
    [106]North M.R., and Oliver S.J.. Transient Load Transfer in an Articulated Vehicle Under Braking Cunditions[R]. England:MIRA. Ltd,1967
    [107]Mikulcik E.C.. The Dynamics of Tractor-Semitrailer Vehicles: The Jackknifing Problem[D]. U.S.A:Cornell University,1968
    [108]Leucht P.M.. The Directional Dynamics of the Commercial Tractor-Semitrailer Vehicle During Braking[J]. SAE Paper, NO.700371
    [109]Murphy R.W., Bernard J.E., Winkler C.B.. A computer based mathematical method for predicting the braking performance of trucks and tractor-trailers[R]. U.S.A:University of Michigan,1972
    [110]Winkler C., Bernard J., Fancher P. et al. Predicting the Braking Performance of Trucks and Tractor-Trailers, [R]. U.S.A:University of Michigan,1976
    [111]Canova J. H. Vehicle Design Evaluation Using the Digital Proving Ground[J]. SAE Paper, NO.2000-01-0126
    [112]Roberts S. G., Day T. D.. Integrating Design and Virtual Test Environments for Brake Component Design and Material Selection[J]. SAE Paper, NO.2000-01-1294
    [113]Lawrence Jackson, Kristin Poland. Downhill Commercial Vehicle Simulations-Part A (Tractor-Semi-trailer Brake Fade) [J]. SAE Paper, NO.2003-1
    [114]Volvo XC70 Surf Rescue Concept (2007) [EB/OL]. http://www.volvocars.com,2007-09-11
    [115]庄继德.汽车电子控制系统工程[M].北京: 机械工业出版社,1998:1-400
    [116]Canova, J.H.. Vehicle design evaluation using the digital proving ground [J]. SAE Paper No.2000-01-0126
    [117]Day, T.D.. A computer graphics interface specification for studying Humans, vehicles and their environment [J]. SAE Paper No.930903
    [118]Day, T.D. Validation of the EDVSM 3-dimensional vehicle simulator [J]. SAE Paper No.970958
    [119]Day, T.D.. Validation of the SIMON Model for Vehicle Handling and Collision Simulation --Comparison of Results with Experiments and Other Models [J]. SAE Paper No.2004-01-1207.
    [120]Allen R. W., Rosenthal T. J., Aponso B. L. et al. A Low-Cost, Pc-Based Driving Simulator for Prototyping and Hardware-In-The-Loop Applications [J]. SAE Paper No. 980222
    [121]Richard Romano. Real-time Driving Simulation Using A Modular Modeling Methodology [J]. SAE Paper No.2000-01-1297
    [122]张立军, 司扬, 余卓平.非均匀盘式制动器热机耦合特性试验研究[J].汽车技术,2008(6):45-49
    [123]王志刚.制动器摩擦材料的热衰退现象研究[J].矿山机械,2006,34(12):66-68
    [124]李润方.接触问题数值方法及其在机械设计中的应用[M].北京: 机械工业出版社,1990: 1-180
    [125]王志刚.制动器摩擦热效应分析[J].润滑与密封,2005,6: 164-175
    [126]郭应时,袁伟,付锐.实验法求解汽车鼓式制动器对流换热系数.长安大学学报(自然科学版),2006,26(4):92-94
    [127]陈兴旺.鼓式制动器制动温度场的研究[D].西安:长安大学,2006
    [128]王静.鼓式制动器温升特性台架试验研究[D].西安:长安大学,2007
    [129]QC/T 479-1999,货车、客车制动器台架试验方法[S].北京:中国标准出版社,2000
    [130]GB 5763-1998,汽车用制动器衬片[S].北京:中国标准出版社,1999
    [131]王国权.虚拟试验技术[M].北京:电子工业出版社,2004: 1-100
    [132]L.鲁道夫.汽车制动系统的分析与设计[M].北京:机械工业出版社,1985:1-300
    [133]GB 12676-1999,汽车制动系统结构、性能和试验方法[S].北京:中国标准出版社,2000
    [134]Bakker E., Pacejka H.B., Lidner L.. A new tire model with an application in vehicle dynamics studies [J]. SAE Paper No.890087
    [135]交通部人-车-环境重点实验室.国道213线郎木寺至川主寺公路改建工程汽车制动试验报告[R].长安大学,2006
    [136]GB 7258-1997,机动车运行安全技术条件[S].北京:中国标准出版社,1998
    [137]《汽车工程手册》编辑委员会.汽车工程手册(试验篇)[M].人民交通出版社,2000:200-246
    [138]柯愈治.装用ABS车辆的制动器热力学分析[J].客车技术与研究,1995,17(4):241-246
    [139]A.φ.马什克,B.Γ.罗扎诺夫.汽车的制动系[M].北京:人民交通出版社,1980:1-170
    [140]余强,陈荫三,马建等.客车发动机制动性能研究[J].西安公路交通大学学报,1999,19(4):90-92
    [141]余强,陈荫三,马建等.客车发动机制动下坡能力[J].长安大学学报(自然科学版),2003,23(2):95-97
    [142]杨少伟.可能速度与公路线形设计方法研究[D].西安:长安大学,2004
    [143]邵毅明,胡燕,徐进等.道路事故多发路段动力学仿真识别系统[J].交通运输工程学报,2008,8(1):123-126
    [144]周伟,罗石贵.路段交通事故多发点的冲突判定方法[J].中国公路学报,2000,13(1):81-86
    [145]方守恩,郭忠印,杨轸.公路交通事故多发位置鉴别新方法[J].交通运输工程学报,2001,1(1):90-98
    [146]陈涛,魏朗.人-车-路互动模式虚拟仿真系统[J].长安大学学报(自然科学版).2007,27(1):67-71
    [147]余志生.汽车理论(第四版)[M].北京:机械工业出版社,2007:89-130
    [148]陈荫三.汽车制动过程非稳态描写[J].汽车工程,1985,4:20-36
    [149]孔祥谦.热应力有限单元法分析[M].上海:上海交通大学出版社,1999: 1-221
    [150]蔡永恩.热弹性问题有限元法及程序设计[M].北京:北京大学出版社,1997:1-348
    [151]Dave Crolla,喻凡.车辆动力学及其控制[M].北京:人民交通出版社,2004:1-217
    [152]Peter J. B.. Compositions, Functions, and Testing of Friction Brake Materials and Their Additives[R]. U. S. A:Department of Energy,2001
    [153]威鲁麦特H.P..车辆动力学模拟及其方法[M].北京:北京理工大学出版社,1998:1-220
    [154]顾柏良,唐振声等译.BOSCH汽车工程手册[M].北京:北京理工大学出版社,1999:382-420
    [155]ADINA. ADINA-T theory and modeling guide[M]. ADINA company,2006:1-600
    [156]Bathe K. J.. Finite element procedures[M]. Prentice-Hall,1996:1-400
    [157]庄茁.连续体和结构的非线性有限元[M].北京:清华大学出版社,2002: 100-258
    [158]Pacejka H. B.. Tyre and Vehicle Dynamics(Second Edition)[M]. UK: Elsevier Linacre House,2006:1-300
    [159]Pacejka H. B., Bakker E.. Tyre Modeling for Use in Vehicle Dynamics Studies [J]. SAE Paper No.870421
    [160]Lienhard J.H.. A heat transfer textbook(Third Edition) [M]. Phlogiston Press,2005:1-594

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700