用户名: 密码: 验证码:
大型水电站地下洞室群施工力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二十一世纪是地下工程的世纪,随着经济的发展和科技的进步,一大批水电工程地下洞室规模正朝着大埋深、大跨度、高边墙方向发展,多个洞室交叉布置,形成庞大的地下洞室群。地下洞室群在施工过程中不仅会遇到复杂的地质条件,而且面临复杂的施工程序,不同的施工程序导致围岩体产生不同的应力路径,从而对成型后的地下洞室围岩稳定产生不同的结果,因而是一个复杂的力学过程。本文以笔者亲历的向家坝水电站地下洞室群工程为背景,基于非连续介质理论,从现场地质调查、结构设计、岩体力学试验、理论研究、现场施工因素、数值模拟和现场监测等多方面开展工作,对地下洞室群岩体施工前的优化和施工过程中的力学行为进行了系统而深入的研究,主要包括以下内容:
     (1)根据向家坝右岸地下洞室群岩体现场地质调查、试验资料以及实测地应力结果,使用应力回归分析方法,首次采用基于非连续介质理论的三维离散元法反演计算得到右岸地下洞室群围岩初始地应力场,获得了工程区岩体初始地应力场主要影响因素和分布规律,作为工程计算和监测分析的基础;
     (2)研究了地下洞室群开挖过程中的能量耗散特征,首次将能量法引入向家坝地下洞室群围岩施工方案的优化计算评价,结合计算得到的围岩变形、应力分布和塑性区分布特征,综合评价多方案开挖路径下的围岩状态,从而比选出最优开挖方案;基于评选出来的最优开挖方案,对地下洞室群拟定的四种锚固方案分别进行计算分析和综合评价,得到最优的锚固参数方案。结果为实际工程所应用;
     (3)针对大断面地下洞室开挖跨度大,埋藏深,地质条件和施工程序复杂的特点,结合现场的实际监测资料,采用三维离散元法研究了多个工作面推进过程中的复杂施工工序下围岩体力学特征,获得了施工过程中的围岩变形特征,主应力大小、倾向和倾角随工程开挖的变化规律以及最大剪应力的变化规律,并基于以上研究成果,首次提出了在复杂开挖环境下,基于围岩变形、主应力值的大小、倾向、倾角以及最大剪应力的变化过程,来确定大断面地下洞室围岩合理的支护时机;
     (4)基于现场监控量测和数值计算,系统研究了大型地下洞室群不同开挖时期的围岩变形和地应力变化规律;针对层状岩体地下洞室围岩出现的软弱夹层现象,基于现场工程地质调查、监测资料分析和数值模拟,获得了软弱夹层对洞室围岩稳定性影响的规律;发现了软弱夹层在大型洞室不同部位分布时,相应部位穿过夹层的锚杆应力值出现的一些规律性的现象;在以上研究方法的基础上,结合施工因素的分析,对地下厂房岩锚梁顶部混凝土与围岩交界部位出现的纵向裂缝这一新的工程现象,研究了裂隙的成因,提出软弱夹层的存在是产生这一裂缝的根本原因,施工因素为另一重要原因,并进一步研究了裂隙的发展变化趋势。分析结论为实际工程采用;
     (5)基于现场监测得到的5.12汶川地震波形、地下厂房围岩变形和锚索应力监测等资料,借助离散元软件UDEC,研究了地震力作用下地下洞室群围岩不同部位的围岩变形特征、塑性区分布和波速特征,获得了大型地下洞室群不同部位围岩在地震中的响应规律。
     研究工作紧密结合工程实际,既以建立大型地下洞室群围岩施工力学行为方法为目的,又以解决工程实际问题为目的,工作历经了初步设计与施工的多个阶段,使得研究内容与研究成果具有鲜明的工程特色,并为工程的动态设计优化与施工所采用。论文采用多种手段,系统研究地下洞室群岩体力学行为的方法独具特色,是初步设计与施工期大型地下工程岩体力学行为研究方面的一次成功实践。
21st century is the age of underground engineering. A large number of underground caverns appear as the development of economy and the advance of science and technology, and these caverns have the tendency of deep situated, big span space and high side wall. Large-scale underground powerhouse and several other chambers and tunnels make up of huge underground caverns. During the construction of these chambers and tunnels, not only will we face complex geological conditions, complex procedures are always appeared in front of us. Different constructional procedure will make the surrounding rock mass undergo different stress path, which will affect the final stability of the surrounding rock mass differently, therefore it's a complex mechanical procedure. With the background of the underground caverns of Xiangjiaba hydropower station which the author of this thesis experienced, based on nonlinear theory, the research work was carried out from several aspects, such as in-situ geological investigation, structural design, mechanical test of rock mass, theoretical analysis, in-situ construction, numerical modeling and in-situ monitoring, et al., systematic and an in-deep study was performed of the underground caverns about the optimization before construction and mechanical behavior during construction, and the main results can be summarized as following:
     (1) According to the in-situ geological investigation, indoor-outdoor test of rock mass and in-situ ground stress test result, with stress regression method, this thesis back analyzed the initial ground stress field of the Xiangjiaba hydropower station underground caverns with the three dimensional discrete element program 3DEC for the first time, and acquired the main infect factors and distribution of regularities, which can be used for latter engineering computation and monitoring analysis;
     (2) Character of energy dissipation of underground caverns was studied during construction, and energy method was used for evaluating the optimization of underground engineering constructional procedure for the first time. The energy method, together with the deformation character, stress and plastic zone distribution character of surrounding rock mass, all of these were used for synthetically evaluating the state of surrounding rock mass of several excavation schemes, and through comparing these schemes, select the best one. Based on the selected excavation scheme, computation and comprehensive evaluation were carried out for evaluating the four drafted anchoring optimization schemes, and the best one was selected. All these results were used in practice;
     (3) The large area underground powerhouse has the character of big span space, deep buried with complex geological condition and constructional procedure, incorporated with in-situ monitoring results, the complex mechanical character of the surrounding rock mass with several working faces pushing forward during construction was carefully studied using the three dimensional discrete element method. Results such as the surrounding rock mass'deformation character, magnitude, dip direction and dip angle of the principal stress and the maximum shear stress during construction were achieved. Based on the research work shown above, reasonable support occasion was put forward for the first time;
     (4) Based on the in-situ monitoring and numerical simulation, deformation and the ground stress of the surrounding rock mass at different constructional stages were systematically researched on. Aimed at the weak interlayer appear at the surrounding rock mass of the underground caverns, depend on in-situ geological investigation, monitoring material and numerical simulation, the influence of the weak interlayer to the stability of the surrounding rock mass was achieved. Research works also find that the stress value of rock anchor through weak interlayer at different parts of the surrounding rock mass shows different value, and the regularity was found. Based on all these research work shown above, associate with the. factor of construction, a new engineering phenomenon, i.e, longitudinal cracks appeared between the concrete of rock-anchored beam with the surrounding rock mass was found during the construction of the underground powerhouse. The cause analysis was conducted, and the development trend of the crack was forecasted. Results indicate that the existence of the weak interlayer at the surrounding rock mass is the principal reason, and construction is the other factor which results in the crack. The research achievement was used in practice;
     (5) Based on the monitoring earthquake waveform, which induced by the Wenchuan earthquake occurred at Sichuan province, south-west of China, in May 12,2008, together with the in-situ deformation and cable force monitoring results, the deformation character, plastic zones and wave velocity at different parts of the underground caverns were put into research using the two dimensional program UDEC, and the response of the underground engineering surrounding rock during this earthquake was acquired.
     The research work of this thesis combined with practice tightly, which aimed not only at establishing the constructional mechanical behavior method of the large-scale underground caverns, but also with purpose at solving the engineering practical problem. This work experienced the engineering stages of preliminary design and construction, which make the research contents and achievement have strikingly engineering feature, and were adopted in dynamic design optimization and construction. Several means were used and the systematically research method with its special feature, which is a successful experience with research on the mechanical behavior of underground rock mass engineering during the stages of preliminary design and construction.
引文
[1]张有天.水工地下结构.潘家铮,何臻主编.中国大坝50年.北京:中国水利水电出版社,2000,615-653
    [2]和孙文,周宇.水利水电地下工程若干问题浅议.水利学报,2007,10(增):49-53
    [3]和孙文,杨元红.水利水电大型地下厂房施工技术.水利水电施工,2008,(1):46-55
    [4]周宇,葛浩然.水利水电地下工程发展现状.岩土力学,2003,24(增):651-654
    [5]张有天,周建平.水电站大型地下工程建设的新进展.水力发电,2004,30(12):64-68
    [6]郑治.水工地下工程回顾与展望.贵州水力发电,2001,15(3):29-30
    [7]中水顾问集团中南勘测设计研究院.龙滩工程关键技术研究——巨型地下洞室群开挖及围岩稳定研究专题报告.长沙:中南勘测设计研究院,2005
    [8]朱维申,何满潮.复杂条件下围岩稳定性与岩体动态施工力学.北京:科技出版社,1996
    [9]中水顾问集团中南勘测设计研究院.大广坝、东风、乌江渡、凤滩地下厂房回顾与思考.长沙:中南勘测设计研究院,2008
    [10]谷兆祺,彭守拙,李仲奎.地下洞室工程.北京:清华大学出版社,1994
    [11]王宝仲.索风营水电站岩锚梁混凝土温度裂缝与控制.贵州水利发电,2006,20(4):41-42
    [12]王悌剀,彭琦,汤荣,等.地下厂房岩锚梁裂缝成因分析.岩石力学与工程学报,2007,26(10):2125-2129
    [13]陈炳祥,杜彬.岩锚梁梁体混凝土裂缝的分析与控制.铁道建筑技术,1998,(6):41-44
    [14]徐彬,李宁.水电站地下厂房岩锚吊车梁稳定性分析剖析.水利发电学报,2007,26(2):47-53
    [15]Wittke, W., New design concept for under-ground openings in rocks. Infinite Elements in Geomechanics, Aschen,1972
    [16]PELLI F, KAISER P K, MORGERNSTERN N R. Three-dimensional simulation of rock liner interaction near tunnel face//Proceedings of the 2nd International Symposium on Numerical Models in Geomechanics. Ghent:[s. n.],1986:359-368
    [17]SWOBODA G, MERTZ W, SCHMID A. Three-dimensional numerical model to simulate tunnel excavation//Proceedings of the 3rd International Conference on Numerical Models in Geomechanics. Niagara Falls:[s. n.],1989:536-548
    [18]朱维申,王平.岩体动态施工力学.岩土力学,1992,13(2,3):1-7
    [19]朱维申,王平.岩体动态施工力学与动态规划原理在工程中的应用.水电站设计,1993,9(2):1-6
    [20]Zhu, W., Xu, J., Wang, P.,1995. Application of dynamic construction mechanics and intellectual system for constructing order majorization of the cavern group. Proceedings of the 8th International Congress on Rock Mechanics, Vol.2, pp.911-913
    [21]朱维申,何满潮.复杂条件下围岩稳定性与岩体动态施工力学.北京:科技出版社,1996
    [22]Zhu W, Li S. Optimizing the construction sequence of a series of underground openings using dynamic construction mechanics and a rock mass fracture damage model. Int J Rock Mech Min Sci,2000(37):517-523
    [23]朱维申,李术才,白世伟等.施工过程力学原理的若干发展和工程实例分析.岩石力学与工程学报,2003,22(10):1586-1591
    [24]曹志远.土木工程分析的施工力学方法.工程力学(增),1996,71-77
    [25]曹志远.土木工程分析的施工力学与时变力学基础.土木工程学报.2001,34(3):41-46
    [26]段文峰,王蕾笑,廖雄华.岩土工程施工力学问题数值模拟方法探讨.吉林建筑工程学院学报,2003,20(2):16-22
    [27]Wittke, W., Pieran, B. Three dimensional stability analysis of tunnel in jointed rock. Proc EF conf. Numerical Methods in Geomechanics, Blacksburg,1976
    [28]Dolvezelove M. The influence of construction work sequence on the stability of underground openings.3rd int. conf. on numerical methods in Geomechanics. Aachen,1979:561-569
    [29]俞裕泰,黄赛超.坚硬而不完整岩体中地下洞室的分期开挖.地下工程,1984,11:31-35
    [30]杨淑清.地下洞室围岩开挖稳定分析.武汉水利电力学院学报,1986,19(1):73-82
    [31]Zhu Weishen, Wu Bailin, Lin Shisheng. Optinum non-linear analysis on Resonable excavating order and anchoring treatment of large sized rock chambers. Int Sym on Large Rock Caverns, Helsinki,1986
    [32]Zhu Weishen, Wang Kejun, Zhan Caozao. The time space effects of excavation for underground chambers on stability of surrounding rock mass, 2nd World Cong. On Non-metallic Minerals, Beijing,1989
    [33]李术才,朱维申,陈卫忠.小浪底地下洞室群施工顺序优化分析.煤炭学报,1996,21(4):393-398
    [34]朱维申,李术才.动态施工力学和能量损伤模型及其工程应用.岩土力学(增),1997,18:19-23
    [35]朱合华,丁文其.地下结构施工过程的动态仿真模拟分析,岩石力学与工程学报,1999,18(5):497-502
    [36]吴波,高波,漆泰岳,等.城市地铁区间隧洞群开挖顺序优化分析.中国铁道科学,2003,24(5):23-28
    [37]卢山.地下工程位移反分析及开挖顺序优化方法研究:[博士学位论文].长沙:湖南大学,2006
    [38]戚蓝,陈勇,张樑,等.大跨度输水洞穿高速浅埋暗挖方案模拟比选研究.岩土力学,2008,29(2)545-548
    :[39] 杨海霞,刘志鹏,卓家寿.地下洞室群开挖顺序优化设计.河海大学学报(自然科学版),2008,36(6):786-789
    [40]张志强,李宁.大规模引水隧洞群施工方案三维有限元分析.水力发电学报,2004,23(6):83-87
    [41]杨明举,常艄东.超大型地下洞室群施工开挖程序及围岩稳定分析.西南交通大学学报,2000,35(1):32-35
    [42]陈卫忠,朱维申,李术才,等.水布垭大型地下厂房施工顺序和锚固参数优化分析研究.岩石力学与工程学报,2003,22(10):1623-1628
    [43]陈卫忠,李术才,朱维申,等.急倾斜层状岩体中巨型地下洞室群开挖施工理论与优化研究.岩石力学与工程学报,2004,23(19):3281-3287
    [44]陈先国,高波.重叠隧道的施工力学研究.岩石力学与工程学报,2003,22(4):606-610
    [45]王芝银,李云鹏,郭书太.大型地下储油洞粘弹性稳定性分析.岩土力学2005,26(11):1705-1710
    [46]Qian-bang Zeng, Guo-ming Cheng, Huan-yu Liu. The influence of Auger mining excavation sequence on inter-hole pillar stability below the final highwall of a surface coal mine. Int J Rock Mech Min Sci 2006:1134-1138
    [47]王成虎,何满潮.水电站深部洞室群应力场相关性研究,湖南科技大学学报,2007,22(3):56-60
    [48]王华宁,曹志远.岩体施工过程损伤演化预测的时变力学分析.应用力学学报,2002,19(4):134-139
    [49]喻渝,赵东平,曾满元,等.客运专线超大断面隧道施工过程三维力学分析.现代隧道技术,2005,42(4):20-24
    [50]张志强,何川.连拱隧道中隔墙设计与施工力学行为研究.岩石力学与工程学报,2006,25(8):1632-1638
    [51]王明年,关宝树.地下工程的施工力学分析.工程力学(增),1999:815-819
    [52]丁文其,王晓形,李志刚,等.龙山浅埋大跨度连拱隧道施工方案优化分析.岩石力学与工程学报,2005,24(22):4042-4047
    [53]贾永刚.双连拱隧道两种工法的施工力学分析.岩石力学与工程学报(增2),2005,24(2):5728-5732
    [54]吴梦军,黄伦海.四车道公路隧道动态施工力学研究.岩石力学与工程学报(增),2006,25:3057-3062
    [55]时亚昕,王明年,李强.单洞双层地铁隧道施工力学行为.岩石力学与工程学报(增1),2006,25:2985-2990
    [56]许崇帮,夏才初,朱合华.双向八车道连拱隧道施工方案优化分析.岩石力学与工程学报,2009,28(1):66-73
    [57]张明,孙思奥,李仲奎,等.地下厂房布置优化及施工过程的显式有限差分法数值模拟.岩石力学与工程学报(增2).2008,27(2):3760-3767
    [58]Duddeck H. Application of numerical analysis for tunneling. Int J Numer Anal Methods Geomech 1991;15(4):223-39
    [59]Pan XD, Hudson JA. Plane strain analysis in modelling three dimensional tunnel excavations. Int J Rock Mech Min Sci Geomech Abstr 1988;25(5):331-337
    [60]Kielbassa S, Duddeck H. Stress-strain fields at the tunneling face of Three-dimensional analysis for two-dimensional technical approach. Rock Mech Rock Engng 1991;24(3):115-132
    [61]Seki J, Noda K, Washizawa E, Suzuki T, Nishino K. Effect of bench length on stability of tunnel face. In Abdel-Salam ME, editor. Proceedings of the International Congress on Tunnelling and Ground Conditions. Cairo. Rotterdam:A.A. Balkema,1994. p.531-542
    [62]Martin CD. Seventeenth Canadian Geotechnical Colloquium:The effect of cohesion loss and stress path on brittle rock strength. Can Geotech J 1997;34(5):698-725
    [63]Panet M, Guenot A. Analysis of convergence behind the face of a tunnel. In: Jones MJ, editor. Tunnelling'82:Third International Symposium. Brighton. London:The Institution of Mining and Metallurgy,1982. p.197-204
    [64]Swoboda G, Mertz W, Schmid A. Three-dimensional numerical models to simulate tunnel excavation. In:Pietruszczak S, Pande GN, editors. Proceedings of the Third International Symposium on Numerical Models in Geomechanics (NUMOG Ⅲ). Niagra Falls. London:Elsevier Applied Science, 1989. p.536-48
    [65]Renato EB, Karel R. Tunnel design and construction in extremely difficult ground conditions. Tunnel,1998, (8):23-31
    [66]Schubert W, Budil A. The importance of longitudinal deformation in tunnel excavation. In:Fujii T, editor. Proceedings of the Eighth International Congress on Rock Mechanics. Tokyo. Rotterdam:A.A. Balkema,1995. p. 1411 - 1414
    [67]Abel JF, Lee FT. Stress changes ahead of an advancing tunnel. Int J Rock Mech Min Sci Geomech Abstr 1973;10(6):673-697
    [68]Martin CD, Read RS, Dzik EJ. Near-face cracking and strength around underground openings. In:Rossmanith H-P, editor. Proceedings of the Second International Conference on the Mechanics of Jointed and Faulted Rock. Vienna. Rotterdam:A.A. Balkema,1995. p.765-70
    [69]E.Eberhardt. Numerical modelling of three-dimension stress rotation ahead of an advancing tunnel face. International Journal of Rock Mechanics & Mining Sciences 38 (2001) 499-518
    [70]T.G. Sitharam, Sridevi J, Shimizu N. Practical equivalent continuum characteri zation of jointed rock masses. Int J Rock Mech Min Sci 2001; 38:437-48.
    [71]T.G. Sitharam, G. Madhavi Latha. Simulation of excavations in jointed rock masses using a practical equivalent continuum approach. Int J Rock Mech Min Sci 2002;39:517-525
    [72]姜忻良,崔奕,李园,等.天津地铁盾构施工地层变形实测及动态模拟.岩土力学,2005,26(10):1612-1616
    [73]姜忻良,赵志民,李园.天津地铁盾构施工对邻近工程设施影响的动态模拟.天津大学学报,2006,39(2):188-193
    [74]姜忻良,崔奕,赵保建等.盾构隧道施工对临近建筑物的影响.天津大学学报,2008,41(6):725-730
    [75]于宁,朱合华.盾构施工仿真及其相邻影响的数值分析.岩土力学,2004,25(2 J:292-296.
    [76]张志强,何川.深圳地铁隧道邻接桩基施工力学行为研究.岩土工程学报,2003,25(3):204-207
    [77]许江,顾义磊,康骥呜.隧道与地表构筑物相互影响的研究.岩土力学,2005,26(6):889-892
    [78]卿伟宸,廖红建,钱春字.地下隧道施工对相邻建筑物及地表沉降的影响.地下空间与工程学报,2005,1(6):960-963.
    [79]李强,王明年,李德才.地铁车站暗挖隧道施工对既有桩基的影响.岩石力学与工程学报,2006,25(1):184-190
    [80]刘芳,谭忠盛,董志明.北京地铁渡线暗挖隧道施工力学分析.铁道建筑,2006(3):41-44
    [81]李国成,丁烈云.武汉长江隧道盾构施工引起的地表沉降预测.铁道工程学报,2008,5:59-62
    [82]张海波,殷宗泽,朱俊高.地铁隧道盾构法施工过程中地层变位的三维有限元模拟.岩石力学与工程学报,24(5):755-760
    [83]姜谙男,刘建,李洪东.水布垭枢纽地下厂房开挖支护过程三维数值模拟.岩土力学,2004,25(1):45-54
    [84]朱维申,刘建华,杨法玉.小浪底水利枢纽地下厂房岩体支护效果数值分析研究.岩土力学,2006,27(7):1087-1091
    [85]张成良,李新平,郭运华.地下厂房工程卸荷开挖模拟研究.武汉理工大学学报,2007,29(12):97-100
    [86]杨典森.地下储库岩体施工过程及套管与岩石相互作用数值模拟.岩石力学与工程学报,2007,26(2):4245-4250
    [87]杨典森,陈卫忠,杨为民,等.龙滩地下洞室群围岩稳定性分析.岩土力学,2004,25(3):391-395.
    [88]徐平.三峡工程地下厂房洞室群围岩稳定性及加固效果数值分折.岩石力学与工程学报,2000,19(增):952-956.
    [89]张社荣,顾岩,张宗亮.超大型地下洞室围岩锚杆支护方式的优化设计.水利发电学报,2007,26(5):47-52
    [90]王贵君.节理裂隙岩体中大断面隧洞围岩与支护结构的施工过程力学状态.岩石力学与工程学报,2005,24(8):1328-1334
    [91]刘君,孔宪京.节理岩体中隧道开挖与支护的数值模拟.岩土力学,2007,28(2):321-326
    [92]宋卫东,陈瑞宏,杜建华,等.北京地铁10号线国贸—双井区间土压平衡盾构施工数值模拟研究.岩石力学与工程学报(增2),2008,27:3401-3407
    [93]孙统立,张庆贺,胡向东,等.双圆盾构施工土体沉降有限元数值模拟.同济大学学报(自然科学版),2008,36(4):466-471
    [94]丁伯阳,陶海冰.虚拟场地上杭州地铁隧洞开挖数值模拟.岩土力学,2009,30(3):693-698
    [95]蒋宇静,肖俊,棚桥由彦,等.三维数值模拟技术在深部大型发电站厂房信息化施工中的应用.岩石力学与工程学报,2003,22(6):957-964
    [96]刘建华,朱维申,李术才,等.小浪底地下厂房流变分析.岩石力学与工程学报,2005,24(14):2484-2489
    [97]沈新普,沈国晓.地下储库岩体施工过程及套管与岩石相互作用数值模拟.岩石力学与工程学报,2007,26(2):4245-4250
    [98]肖明,叶超,傅志浩.地下隧洞开挖和支护的三维数值分析计算.岩土力学,2007,28(12):2501-2505
    [99]张明,孙思奥,李仲奎,等.地下厂房布置优化及施工过程的显式有限差分法数值模拟.岩石力学与工程学报(增2).2008,27(2):3760-3767
    [100]苏学清,齐之龙,郝玉生.青岛某地下工程超浅埋暗挖段施工效应分析.岩石力学与工程学报.1999,18(4):465-468
    [101]张玉祥,包四根.复杂地质体中地下硐室的施工优化与稳定性评价.岩石力学与工程学报,2000,19(6):722-725
    [102]吴波,刘维宁,高波,等.地铁分岔隧道施工性态的三维数值模拟与分析.岩石力学与工程学报.2004,23(18):3081-3086
    [103]佘健,何川.软弱围岩段隧道施工过程中围岩位移的三维弹塑性数值模拟.岩石力学与工程学报.2006,25(3):623-628
    [104]霍卫华.软岩大跨隧道施工力学研究.河北理工学院学报,2004,26(4):96-100
    [105]尹光志,曹多阳,李铃.复杂地质条件下隧道围岩和支护稳定性分析.湖南科技大大学学报,2007,22(2):65-67
    [106]吴梦军,许锡宾,赵明阶,等.岩溶地区公路隧道施工力学响应研究.岩石力学与工程学报,2004,23(9):1525-1529
    [107]任旭华,王树洪,王美芹等.深埋隧洞围岩稳定性分析及结构设计研究.湖南科技大学学报(自然科学版),2004,19(3):39-42
    [108]吴世勇,任旭华,陈祥荣等.锦屏二级水电站引水隧洞围岩稳定分析及支护设计.岩石力学与工程学报,2005,24(20):3777-3782
    [109]张志强,何川.用冻结法修建地铁联络通道施工力学研究.岩石力学与工程学报,2005,24(18):3211-3217
    [110]谢和平,彭瑞东,鞠杨.岩石变形破坏过程中的能量耗散分析.岩石力学与 工程学报,2004,23(21):3565-3570
    [111]Cook, N.G.W. The design of underground excavations. In Proc.8th U.S. Symposium on Rock Mechanics, Univ. of Minnesota, Edited by:C. Fairhurst, 1967, pp.167-193
    [112]Salamon, M.D.G. (1984). Energy Considerations in Rock Mechanics: Fundamental Results. J. South Afr. Inst. Min. Metall.,84,233-246
    [113]Momoh, O.A., Mitri, H.S., and Rizkalla, M. (1996). Numerical modeling of distress blasting. In Proc. Of 2nd North American Rock Mechanics Symposium, Tools and Techniques in Rock Mechanics. Edited by:Aubertin, M., Hassani, F.P. and Mitri, H., volume 2, pp.1911 - 1918
    [114]Jay Prataprao Aglawe. Unstable and violent failure around underground openings in highly stressed ground [D]. Queen's University at Kingston, Kingston, Ontario,1999
    [115]刘小明,李焯芬.脆性岩石损伤力学分析与岩爆损伤能量指数.岩石力学与工程学报,1997,16(2):140-147
    [116]陈卫忠,李术才,朱维申等.考虑裂隙闭合和裂隙表面摩擦效应的节理岩体损伤理论与应用.岩石力学与工程学报,2000,19(2):131-135
    [117]赵阳升,冯增朝,万志军.岩体动力破坏的最小能量原理.岩石力学与工程学报,2003,22(11):1781-1783
    [118]华安增,地下工程周围岩体能量分析.岩石力学与工程学报,2003,22(7):1054-1059
    [119]李树忱,李术才,朱维申.能量耗散弹性损伤本构方程及其在围岩稳定分析中的应用.岩石力学与工程学报,2005,24(15):2646-2653
    [120]李造鼎,宋纳新,贾立宏.岩土动态开挖的灰色突变建模.岩石力学与工程学报,1997,16(3):252-257
    [121]朱维申,程峰.能量耗散本构模型及其在三峡船闸高边坡稳定性分析中的应用.岩石力学与工程学报,2000,19(3):261-264
    [122]朱维申,李术才,程峰.能量耗散模型在大型地下洞群施工顺序优化分析中的应用.岩土工程学报,2001,23(3):333-336
    [123]鞠杨,李业学,谢和平.节理岩石的应力波动与能量耗散.岩石力学与工程学报,2006,25(12):2426-2434
    [124]谢和平,彭瑞东,鞠杨等.岩石破坏的能量分析初探.岩石力学与工程学报,2005,24(15):2603-2608
    [125]谢和平,鞠杨,黎立云.基于能量耗散与释放原理的岩石强度与整体破坏准则.岩石力学与工程学报,2005,24(17):3003-3010
    [126]彭瑞东,谢和平,鞠杨.砂岩拉伸过程中的能量耗散与损伤演化分析.岩石力学与工程学报,2007,26(12):2526-2531
    [127]谢和平,鞠杨,黎立云.岩体变形破坏过程的能量机制.岩石力学与工程学报,2008,27(9):1729-1740
    [128]苏国韶,冯夏庭,江权,等.高地应力下地下工程稳定性分析与优化的局部能量释放率新指标研究.岩石力学与工程学报,2006,25(12):2453-2460
    [129]苏国韶,冯夏庭,江权,等.高地应力下大型地下洞室群开挖顺序与支护参数组合优化的智能方法.岩石力学与工程学报(增1),2007,26:2800-2808
    [130]陈国庆,冯夏庭,张传庆,等.深埋硬岩隧洞开挖诱发破坏的防治对策研究.岩石力学与工程学报,2008,27(10):2064-2071
    [131]唐军峰,徐国元,唐雪梅,等.向家坝地下洞室群围岩稳定3DEC分析与信息化施工.湖南科技大学学报(自然科学版),2009,24(1):67-72
    [132]邹红英,肖明.地下洞室围岩施工期监测资料动态分析.人民长江2009,39(13):79-81
    [133]Toshio Maejima, Hiroshi Morioka, Takayuki Mori, Kenji Aoki. Evaluation of loosened zones on excavation of a large underground rock cavern and application of observational construction techniques. Tunnelling and Underground Space Technology,2003, (18):223-232
    [134]丁秀丽,董志宏,卢波,等.陡倾角沉积岩地层中大型地下厂房开挖围岩变形失稳特征和反馈分析.岩石力学与工程学报,2008,27(10):2019-2026
    [135]彭琦,王悌剀,邓建辉,等.地下厂房围岩变形特征分析.岩石力学与工程学报,2007,26(12):2583-2587
    [136]张孝松.龙滩水电站地下洞室群布置及监控设计.岩石力学与工程学报.2005,24(21):3983-3989
    [137]张志国,肖明.地下洞室监测位移场的反演和围岩稳定评判分析.岩石力学与工程学报,2009,28(4):813-818
    [138]王克忠,张文雷,蔡美峰.地下电站厂房层状围岩位移的动态效应研究.水力发电学报,2005,24(4):99-103
    [139]王克忠,蔡美峰.西龙池地下洞室围岩的现场监测及其稳定性分析.岩石力学与工程学报.2005,24(增2):5956-5960
    [140]王克忠,李仲奎,包中坚.水电站地下厂房层状围岩现场监测及稳定性研究.岩石力学与工程学报,2007,26(10):2148-2152
    [141]张璞,李新平,郭运华,等.水电站地下洞室围岩现场监测及稳定性分析.中国水运,2007,7(05):60-61
    [142]杨典森,陈卫忠,杨为民,等.龙滩地下洞室群围岩稳定性分析.岩土力 学,2004,25(3):391-395
    [143]姜谙男,刘建,李洪东.水布垭枢纽地下厂房开挖支护过程三维数值模拟.岩土力学,2004,25(1):45-54
    [144]朱维申,李晓静,郭彦双,等.地下大型洞室群稳定性的系统性研究.岩石力学与工程学报,2004,23(10):1689-1693
    [145]肖明.基于混沌理论的地下厂房围岩变形特征参数分析.水力发电学报,2008,27(6):84-89
    [146]张茹,谢和平,刘建锋,等.单轴多级加载岩石破坏声发射特性试验研究.岩石力学与工程学报,2006,25(12):2584-2588
    [147]江权,冯夏庭,苏国韶,等.基于松动圈-位移增量监测信息的高地应力下洞室群岩体力学参数的智能反分析.岩石力学与工程学报,2007,26(增1):2654-2662
    [148]江权,侯靖,冯夏庭,等.锦屏二级水电站地下厂房围岩局部不稳定问题的实时动态反馈分析与工程调控研究.岩石力学与工程学报,2008,27(9):1989-1907
    [149]石广斌,李宁.高地应力下大型地下硐室块体变形特征及其稳定性分析.岩石力学与工程学报.2009,28(增1):2884-2890
    [150]夏元友,朱瑞赓.大型硐室围岩监测方法及其在某水电站边坡洞室的成功应用.岩石力学与工程学报.1995,14(4):329-335
    [151]谭恺炎.地下洞室施工安全监测的设计与实施.水力发电,2008,34(9):81-84
    [152]高俊启,施斌,张巍,等.分布式光纤传感器监测预应力锚索应力状态的试验研究.岩石力学与工程学报,2005,24(增2):5604-5610
    [153]孙新民,孙红月,严细水.FBG传感器在量测围岩内部位移中的应用.岩石力学与工程学报,2008,27(增2):3847-3851
    [154]赵星光,邱海涛.光纤Bragg光栅传感技术在隧道监测中的应用.岩石力学与工程学报,2007,26(3):587-593
    [155]宋波,李悦,单宏兰,等.爆破作用对地下金属矿山围岩稳定性的影响.岩石力学与工程学报,2007,26(1):3461-3467
    [156]车用太.岩体工程地质力学入门.北京,科学出版社,1983
    [157]朱焕春,Brummer Richard,Andrieux Patrick.节理岩体数值计算方法及其应用(一):方法与讨论.岩石力学与工程学报,2004,23(20):3444-3449
    [158]王明华,白云,张电吉.含软弱夹层岩体质量评价研究.岩土力学,2007,28(1):185-187
    [159]李树森,符文熹,聂德新.洞室顶部软弱夹层和层状岩体的稳定性分析.山地学报,2000,18(2):156-160
    [160]Goodman, R.E., Taylor, R.L., Brekke, T.L... A model for the mechanics of jointed rock. Journal of the Soil Mechanics and Foundations Division, ASCE SM3,1968,637-695
    [161]Desai, C.S., Zaman, M.M., Lightner, J.G., Siriwardane, H.J..Thin-layer element for interfaces and joints. International Journal for Numerical and Analytical Methods in Geomechanics,1984,8:19-43.
    [162]Beer, G., Poulsen, B.A..Efficient numerical modelling of faulted rock using the boundary element method. International Journal of Rock Mechanics and Mining Sciences & Geomechanics, Abstract,1994,31 (5):485-506
    [163]王祥秋,杨林德,高文华.含软弱夹层层状围岩地下洞室平面非线性有限元分析.岩土工程学报.2002,24(6):729-732
    [164]金峰,邵伟,张立翔,等.模拟软弱夹层动力特性的薄层单元及其工程应用.工程力学,2002,19(2):36-40
    [165]张志强,李宁,Swoboda G.软弱夹层分布部位对洞室稳定性影响研究.岩石力学与工程学报,2005,24(18):3253-3257
    [166]张志强,李宁,陈方方,等.不同分布距离的软弱夹层对洞室稳定性的影响研究.岩土力学,2007,28(7):1363-1368
    [167]Jing, L..Formulation of discontinuous deformation analysis (DDA)-an implicit discrete element model for block system. Engineering Geology,1998, 49:371-381
    [168]Y. H. Hao, R. Azzam. The plastic zones and displacements around underground openings in rock masses containing a fault. Tunnelling and Underground Space Technology,2005, (20):49-61
    [169]唐军峰,徐国元,唐雪梅.地下厂房岩锚梁纵向裂缝成因分析及发展趋势.岩石力学与工程学报.2009,28(5):1000-1009
    [170]董遵德,袁澄文.岩体软弱夹层现场慢剪切试验研究.岩石力学与工程学报,1994,13(2):149-159
    [171]张奇华,彭光忠.链子崖危岩体软弱夹层的蠕变性质研究.岩土力学,1997,18(1):60-64
    [172]刘晶辉,王长山,杨洪海.软弱夹层流变试验长期强度确定方法.勘察科学技术,1995,(5):3-7
    [173]闫汝华,樊卫花.马家岩水库坝基软弱夹层剪切特征及强度.岩石力学与工程学报,2004,23(22):3761-3764
    [174]Sinha, B. Singh. Testing of rock joints filled with gouge using a triaxial apparatus. U. N. International Journal of Rock Mechanics and Mining Sciences,2000, (37):963-981
    [175]谌文武,孙冠平,宋畅,等.低应力环境岩体软弱夹层的渗透特征.岩石力学与工程学报,2003,22(增2):2587-2581
    [176]吉林,赵启林,冯兆祥,等.软弱夹层与结构面的力学参数反演.水利学报,2003,11:107-111
    [177]范留明,闫娜,李宁.薄弹性软弱夹层的动力响应模型.岩石力学与工程学报,2006,25(1):88-92
    [178]黄润秋,余嘉顺.软弱夹层特性对地震波强度影响的模拟研究.工程地质学报,2003,11(3):312-317
    [179]Jing L., Hudson J.A. Numerical methods in rock mechanics. International Journal of Rock Mechanics & Mining Science,2002,39(3):409-427
    [180]Cundall, P.A.1971. A computer model for simulating progressive large scale movement in blocky rock systems. International Symposium on Rock Mechanics. International Society of Rock Mechanics, Nancy, p. Ⅱ-8
    [181]Cundall, P.A... Formulation of a three dimensional distinct element model: Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int. J. Rock Mech. Min. Sci. Geomech. Abstr.1988, 25:107-116
    [182]Marc-Andre Brideau, Doug Stead. Structural and engineering geology of the East Gate Landslide, Purcell Mountains, British Columbia, Canada. Rejean Couture. Engineering Geology,2006,84,183-206
    [183]朱焕春,吴海斌,石安池.论三峡永久船闸中隔墩北倾变形机制.岩石力学与工程学报,2005,24(23):4289-4296
    [184]汤明高,许强,黄润秋,等.小湾水电工程6#山梁节理岩体高边坡3DEC分析.水文地质工程地质,2006,3:57-60
    [185]刘艳辉,刘大安,李守定,等.龙滩水电工程左岸B区边坡压脚工程效果分析.工程地质学报,2006,14(02):239-244
    [186]熊传治,徐诚.富家坞露天矿边坡稳定性的二维离散元分析.矿冶工程.1999,19(1):14-17
    [187]殷跃平,张加桂,陈宝荪,等.三峡库区巫山移民新城址松散堆积体成因机制研究.工程地质学报.2000,08(03):265-271
    [188]张玉军,朱维申,邱祥波.小湾水电站坝前堆积体预应力锚索加固方案的三维有限元分析.云南水利发电.2000,16(2):18-21
    [189]朱维申,张玉军,邱祥波.小湾水电站坝前堆积体三维有限元加固分析.岩石力学与工程学报,2000,19(4):459-463
    [190]张玉军,朱维申.小湾水电站左岸坝前堆积体在自然状态下稳定性的平面离散元与有限元分析.岩石力学与工程学报,1999,18(5):497-502
    [191]黄波林,陈小婷,刘广宁,等.巫山县望霞乡桐心村危岩体变形破坏机制分析.工程地质学报,2008,16(4):459-464
    [192]纪玉石,申力,刘晶辉.采矿引起的倾倒滑移变形机理及其控制.岩石力学与工程学报.2005,24(19):3594-3598
    [193]F. Cappa, Y. Guglielmi, V.M. Soukatchoff, etc. Hydromechanical modeling of a large moving rock slope inferred from slope levelling coupled to spring long-term hydrochemical monitoring:example of the La Clapie're landslide (Southern Alps, France). Journal of Hydrology,2004,291:67-90
    [194]Junfeng TANG, Yongqiang WANG, Xuemei TANG. Research on Deformation Mechanics of Myyanpo Slope Creep Deformation Rock Mass. ISRM-Sponsored International Symposium on Rock Mechanics:Rock Characterisation, Modelling and Engineering Design Methods, Univ. of Hong Kong,2009
    [195]向强,陈彰贵.某滑坡的成因机制数值模拟分析.地质灾害与环境保护.2007,18(1):28-32
    [196]M. Souley, F. Homand, A. Thoraval. The effect of joint constitutive laws on the modeling of an underground excavation and comparison with in situ measurements. Int. J. Rock. Mech. Min. Sci.34(1), pp,97-115,1997
    [197]Rajinder hnasin, Kaare Hoeg. Parametric study for a large cavern in jointed rock using a distinct element model (UDEC-BB). Int. J. Rock Mech. Min Sci. 1998,35(1):17-29
    [198]Seungwon Lee. Stability around underground openings in rock with dilative, non-persistent and multi-scale wavy joints using a discrete element method [D]. University of Illinois at Urbana-Champaign,2003
    [199]P. P. Nomikos, P. V. Yiouta-Mitra, A. I. Sofianos. Stability of Asymmetric Roof Wedge under Non-Symmetric Loading. Rock Mech. Rock Engng.2005, DOI 10.1007/s00603-005-0058-3
    [200]J. Kemeny.Time-dependent drift degradation due to the progressive failure of ock bridges along discontinuities. J. Kemeny. International Journal of Rock Mechanics & Mining Sciences.2005,42:35-46
    [201]Y.H. Hao, R. Azzam. The plastic zones and displacements around underground openings in rock masses containing a fault. Tunnelling and Underground Space Technology.2005,20:49-61
    [202]王涛,朱焕春,李浩,等.论生成节理随机数的直接法.岩石力学与工程学报,2002,21(4):489-492.
    [203]王涛,陈晓玲,于利宏.地下洞室群围岩稳定的离散元计算.岩土力学,2005,26(12):1936-1940
    [204]王涛,陈晓玲,杨建.基于3DGIS和3DEC的地下洞室围岩稳定性研究.岩石力学与工程学报,2005,24(19):3476-3481
    [205]王涛,盛谦,陈晓玲.基于直接法节理网络模拟的三维离散单元法计算.岩石力学与工程学报,2005,24(10):1649-1653
    [206]唐军峰,李学政,徐国元,等.复杂开挖条件下大断面洞室围岩的变形及力学特征研究.武汉大学学报(工学版)(增).2009,(41):59-66
    [207]Sotirios S. Vardakos, Marte S. Gutierrez, Nick R. Barton. Back-analysis of Shimizu Tunnel No.3 by distinct element modeling. Tunnelling and Underground Space Technology,2007,22:401-413
    [208]Qiu-Ming Gong, Jian Zhao, Yu-Yong Jiao. Numerical modeling of the effects of joint orientation on rock fragmentation by TBM cutters. Tunnelling and Underground Space Technology,2005,20:183-191
    [209]Q.M. Gong, J. Zhao, A.M. Hefny. Numerical simulation of rock fragmentation process induced by two TBM cutters and cutter spacing optimization. Tunnelling and Underground Space Technology,2006,21:263
    [210]陈寿根,邓稀肥,梁自强.离散单元法隧洞施工全过程仿真技术研究.人民长江.2008,39(13):48-56
    [211]马海君,王姗,贾瑞华.大断面偏压隧道塌方加固区处理效果数值分析.中外公路.2007,27(5):106-108
    [212]罗禄森,王明年,郭军.浅埋黄土隧道破坏模式的探讨.现代隧道技术.2005,45(04):28-31
    [213]许延春,张玉卓.应用离散元法分析采矿引起厚松散层变形的特征.煤炭学报.2002,27(3):268-272
    [214]谢文兵,史振凡,陈晓祥,等.部分充填开采围岩活动规律分析.中国矿业大学学报.2004,33(2):162-165
    [215]谢文兵.综放沿空留巷围岩稳定性影响分析.岩石力学与工程学报.2004,23(18):3059-3065
    [216]谢文兵,笪建原,冯光明.综放沿空留巷围岩控制机理.中南大学学报(自然科学版).2004,35(4):657-661
    [217]程国明.综放开采顶煤裂隙及其渗透性研究:[博士学位论文].中国矿业大学,2002
    [218]曹胜根,钱鸣高,缪协兴,等.综放开采端面顶板稳定性的数值模拟研究.岩石力学与工程学报.2000,19(4):472-475
    [219]方新秋,钱鸣高,曹胜根,缪协兴.不同顶煤条件下支架工作阻力的确定.岩土工程学报,2002,24(2):233-236
    [220]方新秋,万德钧,王庆,等.离散元法在分析综放采场矿压中的应用.湘潭矿业学院学报,2003,18(4):11-14
    [221]刘传孝.无人工作面开采坚硬顶板冲击运动的3DEC数值模拟研究.岩土力学(增),2004,25:285-288
    [222]刘传孝.冲击性顶板运动阻尼效应的数值模拟及混沌动力学分析.岩石力学与工程学报,2005,24(11):1875-1880
    [223]刘传孝.坚硬顶板运动特征的数值模拟及非线性动力学分析.岩土力学,2005,26(5):759-762
    [224]苏生瑞,STEPHAN SSON Ove,王士天.瑞典爱斯泼硬岩实验场地应力研究.工程地质学报,2001,09(01):100-106
    [225]苏生瑞,朱合华,王士天,等.断裂物理力学性质对其附近地应力场的影响.西北大学学报(自然科学版),2002,32(6):655-658
    [226]苏生瑞,朱合华,王士天,等.岩石物理力学性质对断裂附近地应力场的影响.岩石力学与工程学报,2003,22(3):370-377
    [227]H. Konietzky, L. te Kamp, H. Hammer, etc.Numerical modeling of in situ stress conditions as an aid in route selection for rail tunnels in complex geological formations in South Germany. Computers and Geotechnics, 2001,28:495-516
    [228]X. Zhang, D. J. Sanderson, R. M. Harkness,etc. Evaluation of the 2-D permeability tensor for fractured rock masses, Int. J. Rock Mech. Min. Sci. & Geomech,1996,33(1):17-37,
    [229]Xing Zhang, David J. Sanderson. Numerical modeling of the effects of fault slip on fluid flow around extensional faults. Journal of Structural Geology, 1996,18(1):109-119
    [230]D. Mas Ivars. Water inflow into excavations in fractured rock-a three-dimensional hydro-mechanical numerical study. International Journal of Rock Mechanics & Mining Sciences,2006,43:705-725
    [231]B. INDRARATNA, P.G. RANJITH, W. GALE. Single phase water flow through rock fractures. Geotechnical and Geological Engineering,1999,17: 211-240
    [232]Ki-Bok Min, J. Rutqvist, Chin-Fu Tsang, etc. Stress-dependent permeability of fractured rock masses:a numerical study. International Journal of Rock Mechanics & Mining Sciences,2004,41:1191 -1210
    [233]Goodman, R. E. Meshods of Geological Engineering in Discontinuous Rocks. West Publishing, St. Paul.1976
    [234]S. G. CHEN, J. G. CAI, J. ZHAO, etc. Discrete element modeling of an underground explosion in a jointed rock mass. Geotechnical and Geological Engineering,2000,18:59-78,
    [235]J. Zhao. A study of UDEC modeling for blast wave propagation in joint rock mass, Int. J. Rock Mech. Min. Sci.1998,35(1):93-99,
    [236]夏祥,李俊如,李海波,等.爆破荷载作用下岩体振动特征的数值模拟.岩土力学,2005,26(1):50-56
    [237]王鲁明,赵坚,华安增,等.节理岩体中应力波传播规律研究的进展.岩土力学(增),2003,24:602-610
    [238]赵坚,陈寿根,蔡军刚,等.用UDEC模拟爆炸波在节理岩体中的传播.中国矿业大学学报.2002,31(2):111-115
    [239]Y.Q.Liu, H.B. Li, J.Zhao, etc. UDEC Simulation for Dynamic Response of a Rock Slope Subject to Explosions. Int. J. Rock Mech. Min. Sci.41 (3):1-5
    [240]刘亚群,李海波,李俊如,等.爆破荷载作用下黄麦岭磷矿岩质边坡动态响应的UDEC模拟研究.岩石力学与工程学报.2004,23(21):3659-3663
    [241]刘亚群,李海波,赵坚,等.确定岩质边坡安全阈值的新方法.爆炸与冲击.2004,24(5):448-452
    [242]S.C. Fan, Y.Y. Jiao, J. Zhao.On modelling of incident boundary for wave propagation in jointed rock masses using discrete element method, Computers and Geotechnics,2004,3157-66
    [243]J.G. Dickens, P.J. Use of distinct element model to simulate behaviour of dry-stone walls. Walker. Structural engineering review,1996,8(3):187-199,
    [244]A. Giordano, E. Mele. De Luca. Modelling of historical masonry structures: comparison of different approaches through a case study. Engineering Structures,2002,24:1057-1069
    [245]朱焕春,Andrieux Patrick,钟辉亚.节理岩体数值计算方法及其应用(二):工程应用.岩石力学与工程学报,2005,24(1):89-96
    [246]中华人民共和国行业标准,SL266-2001.水电站厂房设计规范.北京:中国水利水电出版社,2001
    [247]中华人民共和国国家标准,GB279-2002.水工隧洞设计规范.北京:中国水利水电出版社,2003
    [248]邱祥波,李术才,李树忱.三维地应力回归分析方法与工程应用.岩石力学与工程学报,2002,22(10):1613-1617
    [249]杨志法,熊顺成,王存玉,等.关于位移反分析的某些考虑.岩石力学与工程学报,1995,14(1):11-16
    [250]肖明,刘志明.锦屏二级水电站三维地应力场反演回归分析.人民长江,2000,31(9):42-44
    [251]郭怀志,马启超,薛玺成,等.岩体初始应力场的分析方法.岩土工程学报,1983,5(3):64-75
    [252]杨林德.岩土工程问题的反演理论与工程实践.北京:科学出版社,1999
    [253]李莉,何江达,林正伟,等.糯扎渡水电站地下厂房初始地应力场研究.红水河,2003,22(4):28-32
    [254]朱伯芳.岩体初始地应力反分析.水利学报,1994,(10):30-35
    [255]中水顾问集团中南勘测设计研究院.金沙江向家坝水电站可行性研究报告——工程地质.长沙:中南勘测设计研究院,2005
    [256]唐军峰,曾祥喜,熊建平,等.向家坝水电站右岸地下厂房工程地质报告(中间报告).长沙:中南勘测设计研究院,2009
    [257]中水顾问集团中南勘测设计研究院.金沙江向家坝水电站可行性研究报告——岩土试验总报告.长沙:中南勘测设计研究院,2005
    [258]中水顾问集团中南勘测设计研究院.向家坝水电站右岸地下厂房岩体流变特性及长期稳定性研究(中期报告).长沙:中南勘测设计研究院,2008
    [259]中华人民共和国国家标准,GB50287-2006.水力发电工程地质勘察规范.北京:中国计划出版社,2008
    [260]Cundall, P.A.. Numerical modeling of jointed and faulted rock. In:Rossmanith, H.P. (Ed.), Mechanics of Jointed and Faulted Rock. A. A. Balkema, Rotterdam, 1990, pp.11 - 18
    [261]Hao, Y.H... Numerical modeling of the effect of fault on large scale underground cavern. Division of engineering geology and hydrogeology, RWTH Aachen,2003
    [262]Itasca. UDEC, Vers.4.0 User's Mannual. ITASCA Consulting Group, Minneaspolis, USA,2004
    [263]Itasca.3DEC, Vers.4.0 User's Mannual. ITASCA Consulting Group, Minneaspolis, USA,2004
    [264]符兴义,燕柳斌,苏国韶.某电站地下厂房趋于初始地应力反演分析.广西大学学报(自然科学版),2008,33(增):15-18
    [265]胡斌,冯夏庭,黄小华,等.龙滩水电站左岸高边坡区初始地应力场反演回归 分析.岩石力学与工程学报,2005,24(22):4055-4064
    [266]李攀峰.大型水工洞室研究现状与发展展望.四川水利,2002(1):10-12
    [267]王启耀.陡倾角层状岩体大中型地下洞室群围岩变形的预报与控制:[博士学位论文].同济大学,2003
    [268]中水顾问集团中南勘测设计研究院.金沙江向家坝水电站可行性研究报告——地下厂房洞室群围岩稳定分析研究报告.长沙:中南勘测设计研究院,2003
    [269]http://www.scio.gov.cn/xwfbh/xwbfbh/wqfbh/2008/0904/200809/t215245.htm
    [270]http://www.csndmc.ac.cn/newweb/wenchuan/wenchuan_aftershocks.htm
    [271]Junfeng TANG, Xuemei TANG, Guoyuan XU. Behavior of counter-inclined bedded high slope during Wenchuan earthquake. ISRM-Sponsored International Symposium on Rock Mechanics:Rock Characterisation, Modelling and Engineering Design Methods, Univ. of Hong Kong,2009
    [272]陆晓敏,刘春霞.地下厂房岩壁吊车梁的力学分析及设计.河海大学学报(自然科学版),2007,35(1):30-34
    [273]陈彬,杜汉青,安萍,等.复杂条件下的地下厂房岩壁梁岩台开挖爆破实践.爆破,2006,23(2):38-52
    [274]涂志军,崔巍.小湾水电站地下厂房岩锚梁现场试验研究.岩土力学,2007,28(6):1139-1144
    [275]肖明,陈俊涛,袁金亮.复杂地质条件下岩锚吊车梁结构三维数值分析.岩石力学与工程学报,2003,22(增1):2294-2298
    [276]郭凌云,肖明,刘嫦娥.岩锚吊车梁破坏机制数值模拟分析.武汉大学学报(工学版),2008,41(2):11-18
    [277]赵震英,曾亚武.岩锚梁承载机制模型试验研究.岩土工程学报,2002,24(2):150-153
    [278]李仲奎,徐千军,罗光福.大型地下水电站厂房洞群三维地质力学试验.水利学报,2002,33(5):31-36
    [279]李善忠,杨天吉,曾浩.龙滩水电站地下厂房开挖技术.水力发电,2005,31(4):57-59
    [280]陈松,曹西高.拉西瓦水电站高地应力区特大地下厂房开挖施工技术.水力发电,2007,33(11):74-76
    [281]杨林德,邓涛,陈海军.龙滩水电站地下厂房主支洞交叉处稳定性分析.地下空间与工程学报,2005,1(5):679-684
    [282]李术才,王汉鹏,郑学芬.分岔隧道稳定性分析及施工优化研究.岩石力学与工程学报,2008,27(3):447-457
    [283]李宁,孙宏超,姚显春,等.地下厂房母线洞环向裂缝成因分析及处理措施.岩石力学与工程学报,2008,27(3):439-446

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700