用户名: 密码: 验证码:
新型智能灌浆、压水检测系统的开发与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,随着地下工程建设发展规模的不断扩大和大型水利工程的不断兴起,灌浆技术在国内外得到越来越广泛的应用。但是由于灌浆工程属于隐蔽工程,使得灌浆技术的发展至今为止还不很成熟,在灌浆工程实践运用过程中还存在理论落后于实践的情况,灌浆过程参数的自动检测程度更是直接影响灌浆技术进步。传统的灌浆工艺在现代电子技术、光纤通讯技术、数字化进程的影响下,越来越朝着检测智能化,控制数字化方向发展。论文通过理论分析,归纳总结,设计制造,并结合室内试验等分析研究手段,研究开发了新型智能灌浆、压水检测系统,确保灌浆检测数据的真实、有效。论文取得的主要研究成果如下:
     搭建了新型智能灌浆、压水检测系统主体框架,并对硬件系统和软件系统模型分别展开了设计研究。成功研制了高压胶套式油水隔离器,从根本上解决了浆液直接接触压力传感器膜片而造成压力传感器腐蚀破坏的致命问题。
     归纳总结吕荣法压水存在的弊端:①压水试验5米段平均渗透率,并不能明确表征在这段钻孔中包含着裂隙的数量和宽度及其形状如何。实际上渗流只发生在岩体裂隙内,裂隙宽度较大但数量较少的试段,与裂隙宽度较窄但数量较多的试段,可能有相同的吕荣值。②由于岩体浆径与水径迥然不同,其结果是试段透水率和灌浆量这二者之间的规律、相关性很差,有时甚至出现相反的情况。提出微分压水检测装置的设计方案,详细研究动量矩运动微分方程,设计涡轮流速仪,利用灌浆、压水室内模拟试验台,进行微分压水室内模拟实验。实验结果表明微分压水检测装置能很准确的找出渗漏点、段的具体位置和渗漏量。研究结果表明对于同一压水试验段,用吕荣法压水和微分压水法得到透水率相差甚远。
     分析地层抬动作用机理以及灌浆压力与地层抬动关系。首次将光栅技术应用于灌浆过程地层抬动参数的检测,研制了灌浆抬动传感器,该传感器与新型智能灌浆、压水检测系统相结合,实现抬动测量的自动化。它的优势不仅体现在结构简单、测量元件不易磨损,更主要的是测量精度高和连续性测量,克服当前这些测量装置存在的不能准确地、连续地反映地层抬动变化的缺陷,有利于促进灌浆全面自动
     设计系统输入输出通道接口电路,包括打印机接口线路、显示接口线路、键盘接口线路、模拟信号输入接口线路,给出了相应控制部分软件流程图。针对过去热敏打印机资料不易保存、打印贴片磨损快的缺点,改选用24针微型针式打印机与系统配套,同时解决利用单片机的汇编语言来控制打印曲线的关键技术。针对灌浆工程施工现场灰尘多、湿度大等特点,单独设计打印机的安装箱。根据灌浆现场电磁干扰的种类和特点,先后研制出变压器耦合式隔离器和光电耦合式隔离器,隔离器将电路的输入方和输出方在电气上完全隔离的电路,对消除现场强磁电的干扰和噪声,及消除通道之间的干扰,避免干扰混入输出信号具有积极的作用,同时使有用信号畅通无阻。隔离器不仅保证模拟信号的精确传输,而且可以保护单片机的A/D口不被烧掉。实验比较了变压器耦合式隔离器和光电耦合式隔离器隔离效果,结果表明在输入4-20mA直流电流为标准信号的情况下,信号经过光电耦合式信号隔离器的精度和稳定性明显高于原变压器耦合式信号隔离器。
     首次将光纤传输技术应用于灌浆检测过程模拟信号的传输,探讨光纤传输几何光学法,光纤传输的波动理论以及光纤传输特性。在传统传输模式的基础上,对光纤传输方案进行设计和比较,结合灌浆传输实际情况,研制电压频率转换、电光转换、光电转换的光纤传输系统。该传输方式不仅提高了模拟信号传输的抗干扰能力,而且彻底解决了人为改变传统传输线的电阻值大小,从而对灌浆实时采集的数据弄虚作假问题,确保模拟信号传输的中间过程更真实、准确。实验证明当输入2mV-5V的电压信号时,系统测量结果的相对误差可控制在5%以内,与理论分析的性能指标基本吻合,这说明该光纤传输系统达到了预期的效果。
     新型智能灌浆、压水检测系统能同时在线检测流量、压力、水灰比、地层抬动四个参数,根据实际情况,运用宏观吕荣法压水和微分压水两种方法检测地层渗透性,在国内灌浆、压水参数过程检测中尚属首创。
At present, with underground project enlarged and the water conservancy project prospered, grouting technology has been widely used at home and abroad. However, the development of this technology is un-mature now,which is directly iMPacted by automation detecting degree of grouting construction parameters,due to grouting engineering belonging to hidden project, and the cases of theory falling behind practice. Under the influence of modern electronic technologies fibre-optic communication technology and going digital, the traditional grouting technology is developping towards the direction of intelligence,digital. By theoretical analysis, summarizing, design and experiments,a new intelligent grouting and pressurized water detection system is presented that can ensure the authenticity and validity of data and has a wide application prospect. This paper is mainly involved in the following research achievements:
     Firstly,this thesis analyzes that how to build the main frame of the system and the systems model. In the project, high pressure gum type oil-water isolator is successfully made, and fatal problems that transistor would be eroded when cement grout directly touching were solved to the root.
     Secondly, disadvantages of Lugeon test are summarized:①The average porosity of 5-meter can not explain how many and how crannies are in the drill hole. There may be the same Lu Numbers in the two parts which is with little but wide canny and with many but narrow.②Results shows that permeability and grouting quantity of relevance is not significant due to the different physical behaviors from grout and water. In the new department of differential pressurized water testing, the seepage spots of dam can be accurately located and grouting quantity can be measured. The results of the study indicated that the calculating value of water flux by using Lugeon test is very far from by using differential revolution.
     And then according to analysing the rule of heterotaxis and the relation between grouting pressure and heterotaxis,the design and development of displacement sensor with grating technology is succeseful. Based on researches about analyzing and coMParing the working theories, advantages and disadvantages of current displacement equipments, the thesis demonstrates the superiority of grid-capacitance type such as simple structure, high-reliability,high-precision and automatic succession measure.
     Lastly, Input and Output interface circuits are introduced, including the printer interface, display interface,keyboard interface and analog signal input interface. This paper introduces the establishment of the hierarchical model in the software system. It analyzes the design of replacing thermal printer with 24 pin microprinter and how to print curves with assembly language. In order to enhance the dependability and reduce Electromagnetic Interference (EMI), two types signal isolators were successfully made in succession:transformer-coupling isolation and photoelectric-coupling isolation. It is found that strong electric-magnetic interference and interaction effect of many transistors transmission channels are effectively restrained and higher controlling accuracy and stability are possessed by photoelectric-coupling isolation.
     It is an innovation point that the fiber is used in analog signal transmission of grouting testing process. Based on the traditional transmission models, several fiber optic signal transmission solutions are coMPared. The fiber transmission systems is developped which is involved in Voltage-Frequency converter, electro-optical transformation and can process photoelectric signals. The system is powerful in function,simple on structure, reliable on work. Experiments proved that predicted and measured values were in good agreement. Relative error for predicted data (input voltage:2mV-5V) was less than 5%.
     In the new intelligent grouting and pressurized water detection system, four parameters can be deteceted on-line which are flow of water, pressure, density of cement grout (water cement ratio), and heterotaxis. And according to the actual situation, the macro Lugeon test and differential pressurized water test are choosed to detect the permeability in the system, which is a breakthrough in the field of grouting detection.
引文
[1]张景秀.坝基防渗与灌浆技术[M].北京:水利水电出版社,2002
    [2]夏可风主编,中国水利学会.2006水利水电地基与基础工程技术[M]. 北京: 水利水电出版社,2006
    [3]王萍.自动控制灌浆系统[M].水利水电工程设计,1999,(4)
    [4]孙钊编著.大坝基岩灌浆[M].北京:中国水利水电出版社,2008
    [5]王金发,高明安.GJY型灌浆自动记录仪及其在三峡工程的应用[J].人民长江,1999,30(9):9-10
    [6]张凤玲,王英贤,宋相国,康引明.GJY-Ⅱ型灌浆自动记录仪初步应用[J].长江科学院院报,1996,13(4):54-56
    [7]彭环云,黄树华,贺茉莉.灌浆强度数值数学模型初步研究[J].探矿工程,1999,6(3):1-3
    [8]李汉涛. 灌浆自动记录仪在帷幕灌浆施工中的应用[J]. 珠江现代建设,2007,(5):16-20
    [9]林耀祥,余济禹. GJY型灌浆自动记录仪的应用和展望[J].中国三峡建设,1996,(10):26-27
    [10]王英贤,张凤玲.GJY-Ⅱ型灌浆自动记录仪在GIN法灌浆中的应用[J].长江科学院院报,1998,15(1):51-53
    [11]夏可风,张志良.J31智能灌浆记录仪和J31-D多路灌浆监控系统[J].水利水电科技进展,2000,20(1):58-59
    [12]龙达云,夏可风.多路灌浆监测系统的研究与应用[J].水力发电,1999,(11):43-44
    [13]沈安正,李立刚.小浪底主坝基础灌浆施工技术进步[J].水利学报,2000,(4):69-72
    [14]韩伟,赵存厚.小浪底灌浆工程中开发和应用的灌浆监控系统[J].水利水电技术,2001,32(11):33-34
    [15]水工建筑物水泥灌浆施工技术规范DL/T5148-2001,中国水利水电出版社
    [16]徐力生,郭定明,彭环云等.LJ-Ⅱ型灌浆压水测控系统的研制与应用[J],水利水电技术,2003,34(11):67-69
    [17]张远曙,周一耕.水泥浆搅拌时间和凝结时间与形状关系[J].长江科 学学院院报,1997,14(3):31-33
    [18]徐力生,陈伟,彭怀云,徐蒙.二参数小循环灌浆的测量原理及其弊端[J].水利技术监督,2004,12(4),47-50
    [19]徐力生,陈伟,彭怀云,徐蒙.高精度动态监测水灰比的核密度计的研制及其应用[J].中南大学学报,2004,35(4):647-650
    [20]周厚贵,李焰.三峡工程坝基灌浆与围堰防渗施工新技术[J].水电能源科学,2009,27(1):140-143,219
    [21]Wildi, Theodore, Electrical machines, drives and power systems[M],北京:科学出版社,2002
    [22]钱逸秋,陆亚民.单片机原理与应用[M].北京:电子工业出版社,2002
    [23]谢宜仁,谢炜,谢东辰.单片机实用技术问答[M].北京:人民邮电出版社,2003
    [24]李建忠.单片机原理及应用[M].西安:西安电子科技大学出版社,2002
    [25]上海光华·爱而美特仪器有限公司.电磁流量计选型设计资料
    [26]周志坚,耿秀明. 新型流量传感器接口设计与探讨[J]. 有色设备,2001(6):8-9
    [27]秦钰.固态硅压阻压力传感器及其在医疗仪器中的应用[J].医疗卫生设装备,1997,2(2):26-28
    [28]吕惠民,田敬民.压力传感器的研究现状与发展趋势[J]. 半导体技术,1998,23(2):11-13
    [29]张晓群,吕惠民.压力传感器的发展、现状与未来[J].半导体杂志,2000,25(1):47-50
    [30]王丰.硅压力传感器研究现状[J].半导体情报,1999,36(6):35-37
    [31]孙以材,刘玉岭,孟庆浩.压力传感器的设计、制造与应用[M].北京:冶金工业出版社,2000
    [32]吴国熙.压力传感器的使用与维修[M].北京:化学工业出版社,1999
    [33]马少华,刘寒冰,漆东勇. 霍尔器件在多路压力检测系统中的应用[J].东北师大学报自然科学版,2001,33(2):33-36
    [34]于晓春,于涛,张柏林.谐振弦型压力检测仪的研究[J].煤矿机械,2002,2(2):16-18
    [35]《电路工程标准手册》编委会编[M]。电路工程标准手册.电路设计卷.北京:中国标准出版社,2003
    [36]李铁才,杜坤梅.电路控制技术[M].哈尔滨:哈尔滨工业大学出版社,2000
    [37]任志锦,朱家健.电路与电气控制[M].北京:机械工业出版社,2002
    [38]李仁定.电路中的微机控制[M].北京:机械工业出版社,1999
    [39]顾滨,赵伟军,王泰,鲍可进,李铁香. 单片微计算机原理、开发及应用[M].北京:高等教育出版社,2000
    [40]程周,电路设计与电控技术[M].北京:高等教育出版社,2004
    [41]李念军. 论钻孔压水试验参数选择及成果计算方法[J].湖南水电,2008,24(1):25-27
    [42]徐永江,赵玉权,曲兴辉.压水试验在坝基帷幕灌浆中的应用[J].东北水利水电,1999,5(6):34-37
    [43]李琪瑛,黄玉生.水工建筑物水泥灌浆工程实例[J]. 西部矿探工程,2009,21(5):152-153
    [44]林立.一种简单适用的压水试验方法[J]. 西部矿探工程,2007,19(3):28-32
    [45]王萍.压水自动控制灌浆系统.水利水电工程设计[J],1999,3(4):17-18
    [46]王秀文,张生祥,冯昌珍,李晓明. 钻孔压水试验技术的应用和探讨[J].甘肃水利水电技术,2005,41(2):141-142,144
    [47]季备,梁杏.基于压水试验下的某水电站坝址区基岩裂隙网络系统透水特性的研究[J].地下水,2009,31(2):5-7
    [48]翦波.裂隙岩体高压压水试验研究[J].西部矿探工程,2008,20(11):28-32
    [49]郝章飞.钻孔压水试验中应注意的问题[J].内蒙古水利,2007,(3):130-135
    [50]周志雄,袁建军.涡轮的设计与研制.湖南工业职业技术学院学报,2001,1(1):7-9
    [51]刘秀婷,李存法,王芸.涡轮旋转的微机数理分析方法.山东建筑工程学院学报,2001,16(4):93-95
    [52]林耀祥,余济禹.涡轮流量计的应用和展望.中国三峡建设,1996,4(10):26-27
    [53]王英贤,张凤玲.新型涡轮流速测控装置在灌浆中的应用.长江科学院院报,1998,15(1):51-53
    [54]黄翮,李俊.涡轮流量装置在二滩水电站应用.四川水力发电, 1998,17(4)
    [55]沈安正,李立刚.涡轮流速仪的流变特性.水利学报,2000,3(4):69-72
    [56]耿克勤,陈凤翔,刘光廷等.岩体裂隙渗流水力特性的实验研究.清华大学学报(自然科学版),1996,36(1):102-106
    [57]Esaki T, Du S, Mitani Y, etal. Development of a shear-flow test apparatus and determination of coupled properties for a single rock joint. Int J Rock Mechanics and Mining Science,1999,36:641-650
    [58]Lee H S, Cho T F. Characteristics of rough fractures in linear flow under normal and shear load. Int J Rock Mechanics and Rock Engineering,2002,35(4):299-318
    [59]速宝玉,詹美礼,王媛.裂隙渗流与应力耦合特性的实验研究.岩土工程学报,1997,19(4):1-3
    [60]郑少河,赵阳升.三维应力作用下天然裂隙渗流规律的实验研究.岩石力学与工程学报,1999,18(2):133-136
    [61]刘才华,陈从新,付少兰.剪应力作用下岩体裂隙渗流特性研究.岩石力学与工程学报,2003,22(10):1651-1655
    [62]朱珍德,徐卫亚,张爱军.脆性岩石损伤断裂机理分析与试验研究.岩石力学与工程学报,2003,22(9):1411-1416
    [63]Blair S C, Thorpe R K, Shaffer F E. Laboratory observations of the effect of geologic discontinuities on hydro fracture propagation [A]. Khair A W. Rock Mechanics as a Guide for Efficient Utilization of Natural Resources:Proceedings of the 30th U S Symposium [C]. Rotterdam: Balkema A A,1989.443-450
    [64]Vanden Hoke P J, Vanden Berg J T M, Shlyapobersky J. Theoretical and experimental investigation of rock dilatancy near the tip of a propagating hydraulic fracture [A]. Haimson B. Rock Mechanics in 1990s: Pre-print Proceedings of the 34th U S Symposium on Rock Mechanics [C]. Madison:University of Wisconsin madison.1993.351-354
    [65]Ito T, Hayashi K. Analysis of crack reopening behavior for hydrofrac stress measurement [A]. Haimson B. Rock mechanics in 1990s: Pre-print proceedings of the 34th U. S. Symposium on Rock Mechanics [C]. Madison:University of Wisconsin madison,1993.335-338
    [66]吴景浓,李健康,颜玉定,廖远群.室内水压致裂法的初步实验研究.水 利学报,1982,(7):52-57
    [67]郭金运,徐泮林,曲国庆.数字水准仪的性能比较与分析.测绘通报,2002,(3):55-57
    [68]严义珍,金文鹏.用杠杆千分表测量特殊工件的误差分析及校正方法.沈阳工业学院学报,1996,15(1):41-46
    [69]郝仙庭.千分表常见故障的修理.计量技术,2004,(1):57-57
    [70]赵访农.千分表故障诊断与调修.计量技术,2002,(11):50-52
    [71]李棣华.百分表、千分表示值误差检定方法的探讨.计量与测试技术,1997,(4):8-9
    [72]金建新.输出正交正弦波的光栅尺在位移测量中的脉冲细分原理.自动化仪表,2002,23(1):17-19
    [73]何树荣,肖宗扬.CCD直接细分光栅位移传感器的研究.光学技术,1999,(3):1-4
    [74]赵育良,李开端,许兆林等.基于线阵CCD的全息光栅位移自动测量系统的研制与开发.光学技术,2002,28(3):204-206
    [75]邾继贵,吕海宝,漆新民.位移精密测量技术的研究.国防科技大学学报,1994,16(2):43-48
    [76]曲伟.双光栅干涉仪数字式位移传感器的研究.传感器技术,2004,23(10):22-24
    [77]苏绍璟.大量程纳米级光栅位移测量理论及关键技术研究:[博士学位论文].长沙:国防科学技术大学,2001
    [78]邵根富,张旭,窦建玲.用正弦波光栅的精密位移测量.电测与仪表,1999,36(406):23-25
    [79]郑明远,林耿杰,许力梓.基于光栅的单片机精密测量系统.广东工业大学学报,2002,19(4):20-24
    [80]梁长垠.光栅传感智能位移测量系统.传感器技术,2001,20(4):41-43
    [81]雷孔成,余海波.光栅传感器中光电信号转换和处理电路的改进.制造技术与机床,2001,(5):18-19
    [82]王素凤. 单片机与微型打印机的接口硬件设计[J].科技信息,2009,8
    [83]罗志坤,徐植坚.一种新型仪表用汉字微型打印机的接口与编程[J].湖南电力,2001,21(1):9-11
    [84]周正深.丰富微型打印机的汉字打印功能[J].微型电脑应用,1998, (3):94-95
    [85]秦鹏,王积翔.微机接口技术实用教程[M]. 北京:清华大学出版社,2009
    [86]李恩林,陈斌生.微机接口技术300例[M].北京:机械工业出版社,2003
    [87]徐爱卿编著.Intel 16位单片机[M].北京:北京航空航天大学出版社,2002
    [88]胡汉才编著.单片机原理及其接口技术[M].北京:清华大学出版社,2002
    [89]求是科技编著.单片机典型模块设计实例导航[M].北京:人民邮电出版社,2004
    [90]韩全立主编.单片机控制技术及应用[M].北京:电子工业出版社,2004
    [91]朱洪文.数字电路[M].北京:高等教育出版社,2004
    [92]杨明忠,吴昌林,荣涵锐.电路设计[M].北京:机械工业出版社,2001
    [93]陆璇编著.单片机数字显示电路实现[M].北京:清华大学出版社,2001
    [94]谭茀娃,金如麟,谢宝昌.数显设计与控制基础[M].上海:上海交通大学出版社,2002
    [95]耿修林,谢兆茹.数字显示电路接口设计[M].北京:科学出版社,2002
    [96]周志雄,袁建军.灌浆压水综合自动化系统的研究[J].湖南工业职业技术学院学报,2001,1(1):7-9
    [97]鄢泰宁,曹鸿国,乌效鸣. 检测技术及勘察工程仪表[M]. 武汉:中国地质大学出版社,1996
    [98]张远平,池家春. 压力传感器灵敏度的动态标定及超压测量[J].高能量密度,2007,02:47-49
    [99]张晓群,吕惠民.压力传感器的发展、现状与未来[J]. 半导体杂志,2000,25(1):47-50
    [100]魏丽娜,管力锐.单片机在工业现场应用中的几个抗干扰技术问题[J].桂林航天工业高等专科学校学报,2009,1:35-38
    [101]龚壁建,何红光. 灌浆记录仪可靠性与抗干扰技术研究[J].长江科学院院报,2001,18(5):88-91
    [102]原明亭,范树栋.灌浆自动检测系统可靠性设计[J].山东矿业学院学报,1998,17(2):161-163
    [103]於习军,徐年丰.三峡工程基础帷幕灌浆压力的论证确定与应用分析[J]. 广西水利水电,2002,23(14):19-21
    [104]李小青,高金川.试论灌浆压力对灌浆效果的影响[J]. 地质科技情 报,1999,18(增刊):66-68
    [105]郑长成.灌浆压力对裂隙岩体可灌性的影响分析[J].湖南文理学院学院(自然科学版),2006,18(3):65-68
    [106]《地基处理手册》编辑委员会,《地基处理手册》[M],北京:中国建筑工业出版社,1988
    [107]Nonveiller, E.,顾柏林译,灌浆的理论与实践[M],沈阳:东北土学院出版社,1991
    [108]何修仁等,注浆加固与堵水[M],沈阳:东北土学院出版社,1990
    [109]E. Nonveiller, Grouting Theory and Practice[J], New York, USA, Elsevier Science Publishers B. V,1989,1-7
    [110]葛家良,注浆技术的现状与发展趋势[M],矿业世界,1995(1)
    [111]王世刚,王涛,侯晓铃等.FMS中光纤传输检测系统的理论分析.黑龙江自动化技术与应用,1998,17(4):31-34
    [112]王文良,杨继恩,成文彬.光纤直线同步传感器在航空修理中的应用.传感器技术,1998,17(6):39-41
    [113]王文良,杨继恩,李斌.光纤式直线同步传感器在自动加载台中的应用.自动化与仪器仪表,1999,(4):25-27
    [114]陆利新.光纤数显产品数据输出口的应用.上海计量测试,1995,(3):41-42
    [115]于大伟,龚仁瑞,韩立超.BJFG-1型光栅位移传感器位移检测原理.林业科技,2001,26(3):49-50
    [116]Jiro Oi. Thermal printers move to handheld market. Electronic News; New York; Sep 11,2000.
    [117]Able Systems. Thermal printer in three versions. Electronic Times; London; Sep 11,2000.
    [118]BRITISH PRINTER:Stars of the thermal screen. Printing World, Tonbridge, Jul 16,2001.
    [119]Mary Reinholz. Bubbles of invention. Graphic Arts Monthly; Newton; May 2001.
    [120]Guibert A R, Law M, Sanderson M L. A novel ultrasonic/thermal clamp on flow meter for low liquid flow rates in small diameter piper [J]. Uitrasontcs,1996, 34:435-439.
    [121]J. M. Szebeszczyk. Flow Meas Instrum.1994, Vol.5, No.2,127-131.
    [122]Lyle J H, Pitt C W. Vortex shedding fluid flow meter using optical fiber sensor[J]. Electronics Letters,1981,17(6):244-245.
    [123]Fang J X, Talor H F, Choi H S. Fiber optic fabry perot flow sensor[J]. Microwave and Optical Technology letters,1998,18(3):209-211.
    [124]Cai H. New single fiber laser Doppler flow meter based on digital signal processing[J]. Medical Engineering & Physics,1996,18(7):523-528.
    [125]Jim Pomroy:Selecting Flowmeters. Chilton's I&CS,1994,67(3):61-68

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700