用户名: 密码: 验证码:
超长大直径钢管桩竖向承载特性试验分析与预测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超长大直径钢管桩因单桩承载力较高、沉桩工艺相对简单、排土量较小及良好的抗弯能力越来越广泛应用于跨海大桥、大型深水港码头等重大工程。实际工程项目依据规范确定的设计参数往往偏于保守,造成很大的浪费,少数有条件的工程则通过静载荷试验确定桩的承载力等参数,试验成本非常高。此外,目前积累的超长大直径钢管桩的承载力试验及研究资料较少,其沉降确定方法的研究则更为薄弱,鲜见深入系统的研究资料。所以,研究超长大直径钢管桩的承载特性具有重大的理论意义和现实意义。
     首先,本文根据三座特大跨海大桥的静载荷试验资料,对超长大直径钢管桩的竖向承载特性进行了深入分析,指出了超长大直径钢管桩承载类型及特点,并采用Matlab软件进行曲线拟合得到了该类型桩典型的荷载沉降关系式。
     其次,本文通过有限差分法模拟计算得到超长大直径钢管桩Q-s曲线、轴力和桩侧摩阻力分布曲线,并与实际工程静载试验结果进行对比,采用有限差分法对均质土中超长大直径钢管桩的承载特性进行研究,深入、系统地分析了桩长、桩径、长径比、桩土弹性模量比、桩端土与桩周土弹性模量比等因素对Q-s曲线、桩侧摩阻力分布的影响,得到以下结论。
     (1)模拟计算结果和静载荷试验结果相差很小,表明采用有限差分的数值方法对桩在竖向荷载下的承载特性进行分析、对工作状态下桩的承载特性进行预测是合适的。
     (2)随着桩长的增加,一方面桩极限承载力增大、桩顶沉降减小,但幅度逐渐降低,超过一定值后,继续增加桩长对桩的承载特性改善效果不明显;另一方面桩侧摩阻力增加,桩侧摩阻力分担荷载比增大,桩端阻力分担荷载比减小,在相同桩顶荷载作用下,桩侧摩阻力随着桩长的增加而减小,桩侧摩阻力峰值位置不随桩长的改变而改变。
     (3)随着桩径的增加,桩极限承载力增大、桩顶沉降减小,且承载力增加的幅度增大,对桩顶沉降的改善也显著,桩径的改变比桩长对承载特性的影响更显著。同时,随着桩径的增加,桩侧摩阻力分担荷载比减小,桩端阻力分担比增大;在相同桩顶荷载作用下,桩侧摩阻力随桩径的增加而增大,其峰值位置则随桩径的增加而向下移动。
     (4)当桩径保持不变时,随长径比的增大,极限承载力增加,且增长率逐渐减小,桩顶沉降减小;当桩桩长保持不变时,随长径比的增大,极限承载力减小,且速率逐渐降低,桩顶沉降增加。这表明,对于超长大直径钢管桩,过分增加长径比提高承载力的效果并不显著。因此,在实际工程中借助本方法的合理选择长径比是可行的,有助于提高设计的经济性。
     (5)当桩弹性模量不变时,随着桩土弹性模量比的减小,桩的承载力增加,桩顶沉降减小,且在同一荷载下,沉降值减小的幅度逐渐减小。当土体弹性模量超过一定值后,桩承载力和沉降的改善幅度降低,随着土体弹性模量的增加,桩侧阻力分担荷载比增大,桩端阻力分担荷载比减小
     (6)当桩周土体的弹性模量不变时,桩端土与桩周土的弹性模量比越大,桩的承载力越大,沉降越小,桩端阻力分担荷载比增加,桩侧摩阻力也增大,端阻对侧阻有强化效应。当桩端弹性模量为一定值时,随着桩端土与桩周土弹性模量比的减小,桩承载力增加,沉降减小。
     最后,为了对上述的结论进行验证,本文利用智能方法和数值方法对超长大直径桩的承载特性预测方法进行了研究,主要内容如下:
     (1)通过分析静载试验数据,从桩长、土层参数、桩—土参数3个方面建立了桩承载力模型SVM-Q、ICASVM-Q,实验结果表明这2个模型能准确预测超长大直径钢管桩侧摩阻力与承载力,说明了这2个模型的可行与有效;并且很好地诠释了超长大直径钢管桩的桩长、土层参数、桩—土参数对桩侧摩阻力与桩承载力的变化规律。
     (2)通过分析超长大直径钢管桩的承载力与沉降数据,扩展了求解沉降过程中的反应沉降随承载力变化的承载力变化量与沉降变化量2个因素,这2个增加的因素扩大了数据处理的内容,使得建立的模型更为准确。在此基础上建立了求解沉降的SVM-S、ICASVM-S、TANEXP-S模型,并利用这3个模型,分析、计算了承载力、承载力变化量与沉降变化量3个因素的不同组合对桩沉降的影响,计算结果表明以上3种模型能准确预测桩沉降,很好地解释了超长大直径钢管桩的承载力对沉降影响的变化规律。
     (3)同一地域的土层参数、沉降随承载力的变化具有一定的共性特征。通过学习同一地域1根桩的数据,利用支持向量机和独立分量分析建立反应土层特征的支持向量机模型和反应沉降变化的支持向量机模型;然后,在此基础上对其他桩的数据求得相应的土层特征建立了预测同一地域不同桩侧摩阻力模型LearnPre-Q和预测沉降的预测模型LearnPre-S。实验结果表明本文提出的LearnPre-Q和LearnPre-S预测结果准确,验证了算法的可行、有效;同时与第2章和第3章分析结果一致,更好地解释了超长大直径钢管桩的桩承载力与沉降的变化规律。
The super-long and large-diameter steel pipe piles have been more and more widely used in large-scale Sea-Crossing Bridge and large scale deep water piers projects due to its higher bearing capacity, relatively simple pile driving process, smaller amount of dumping, and good ability of anti-bend. Currently, determining the design parameters of actual project according to the empirical parameters in national standards is somewhat conservative, and often results in a great waste of resources. A small number of projects have conditions to determine bearing capacity and other parameters through the static load test, whose cost is very high. The current accumulated text and research data is less, and the calculating and determining of settlement is a relatively weak part in the field of pile research, and there is rare systemic research data. So, researching bearing characteristics of super-long and large-diameter steel pipe piles is of great theoretical and practical significance.
     On the basis of the typical static load test of three very large-scale Sea-Crossing Bridge, this paper deeply analyzes the bearing properties of super-long and large-diameter steel pipe, points out the bearing types and characteristics of super-long and large-diameter steel pipe piles, and has got the load settlement relationship by curve fitting using Matlab software.
     This essay takes advantage of finite difference method to analog calculation. It gets the Q-s curve, the distribution of shaft axis force and the lateral friction resistance, and compares with the static load test results of actual project. It also analyses the bearing properties of super-long and large-diameter steel pipe piles in isotropic soil with finite difference method. It has systematically discussed the factors which can influence the relation of Q-s curve and distribution of lateral friction resistance, including pile-length, pile-diameter, and ratio of length to diameter, elastic modulus ratio of pile to soil, elastic modulus ratio of under and beside pile. The following conclusions are obtained:
     Firstly, the difference between simulation results and the static load test is small, which shows it is appropriate to use finite difference numerical method to analyze the bearing properties of super-long and large-diameter steel pipe pile under vertical load and predict the bearing properties of the pile under working state.
     Secondly, as the pile-length increases, the ultimate bearing capacity of the pile is increasing and the settlement is reducing, but the rate of bearing capacity to increase and settlement to reduce is decreasing. When the pile-length exceeds to a certain value, it's unobvious to improve the bearing properties if the pile-length continues to increase. As the pile-length increases, the lateral friction resistance increases, and the load ratio of the lateral friction resistance increases but the tip resistance decreases. If the same load affects on the top of pile, as the pile-length increases, the lateral friction resistance decreases, but the position of the ultimate bearing capacity doesn't change.
     Thirdly, as the pile-diameter increases, the ultimate bearing capacity of the pile is increasing and the settlement is reducing, and also the rate of bearing capacity to increase and settlement to reduce is increasing. That is to say changing pile-diameter is better than pile-length to improve the bearing properties. But increasing the pile-diameter will increase the cost. Therefore, we should choose the appropriate pile-diameter. As the pile-diameter increases, the load ratio of the lateral friction resistance decreases but the tip resistance increases. If the same load affects on the top of pile, as the pile-diameter increases, the lateral friction resistance decreases, and the position of the ultimate bearing capacity moves down.
     Fourthly, when the pile-diameter is unchanged, as the ratio of length to diameter increase, the ultimate bearing capacity of the pile is increasing and the settlement is reducing, but the rate of bearing capacity to increase is decreasing. When the pile-length is unchanged, as the ratio of length to diameter increase, the ultimate bearing capacity of the pile is reducing and the settlement is increasing, but the rate of bearing capacity to reduce is decreasing. This indicates that it's not significant to increasing the ratio of length to diameter of super-long and large-diameter steel pipe pile to improve the bearing properties. Therefore, we should consider the ratio of length to diameter and the economic benefits in practical engineering, and choose appropriate pile-length and pile-diameter.
     Fifthly, when the pile elastic modulus is unchanged, as the elastic modulus ratio of pile to soil decreases, the bearing capacity of pile is increasing, and the settlement is reducing. When the soil modulus exceeds to a certain value, the improvement of bearing capacity and settlement is reducing. As the elastic modulus of the soil increases, the load ratio of the lateral friction resistance increases but the tip resistance decreases.
     Sixthly, when the elastic modulus of soil beside pile is unchanged, the larger the elastic modulus ratio of soil under and beside pile is, the greater the bearing capacity of pile is and the smaller the settlement is. Also the load-sharing ratio of tip resistance and the lateral friction resistance are increasing. It is to say that tip resistance can strengthen the lateral friction resistance. When the elastic modulus of soil under pile is unchanged, as the elastic modulus ratio of soil under and beside pile decreases, the bearing capacity of pile is increasing and the settlement is reducing.
     Meanwhile, in order to verify the above conclusions, the paper use intelligent methods and numerical methods to research the bearing property predicting methods of the super-long and large-diameter steel pipe piles, mainly as follows:
     (1) By analyzing the static load test data of the super-long and large-diameter steel pipe pile, it has stabled pile bearing capacity model SVM-Q, ICASVM from three aspects, which are the pile length, soil parameter, pile-soil parameters. The results show that these two model can accurately predict the shaft resistance and bearing capacity of the super-long and large-diameter steel pipe pile, and illustrate that the two models are feasible and effective; and the results can well explain the variation of the pile length, soil parameters and pile-soil parameters of the super-long and large-diameter steel pipe pile on shaft resistance and bearing capacity.
     (2) By analyzing the bearing capacity and settlement data of the super-long and large-diameter steel pipe pile, it extends the two factors bearing capacity variation and settlement variation which reflect the changes of the settlement on bearing capacity in the process of solving the settlement. The two factors increase the expansion of the data processing content, and make the model more accurate. On the basis, the models SVM-S, ICASVM-S, TANEXP-S for solving settlement are established, and the three models are used to analyze and calculate the influence on settlement caused by different combinations of the three factors bearing capacity, bearing capacity variation and settlement variation. The results show the above three kinds of model can accurately predict the pile settlement, which can well explain the variation of bearing capacity of the super-long and large-diameter steel pipe pile on the settlement.
     (3) The change of soil parameters and settlement of the same area with bearing capacity has some common features. Through the study of the data of a pile of the same area, this paper use support vector machines and independent component analysis to establish support vector machine model which reflects the soil characteristics and support vector machine model which reflects the change of settlement; then, on the basis of this it obtains the corresponding soil characteristics by the data of other piles, and establishes model LearnPre-Q predicting the frictional resistance of different pile of the same area and predicting model LearnPre-S predicting settlement. Experimental results show that the proposed LearnPre-Q and LearnPre-S prediction is accurate, and verify the algorithm feasible and effective; at the same time the results is the same with the results of Chapter 2 and Chapter 3. It can better explain the variation of bearing capacity and settlement of the super-long and large-diameter steel pipe pile.
引文
[1]张明义.静力压入桩的研究与应用[M].北京:中国建材工业出版社,2004.
    [2]高大钊,赵春风,徐斌.桩基础的设计方法与施工技术[M].北京:机械工业出版社,1999.
    [3]中国建筑科学研究院.建筑桩基基础设计规范(JGJ94-94)[S].北京:中国建筑工业出版社,1995.
    [4]黄明聪,龚晓南,赵善锐.钻孔灌注长桩试验曲线型式及破坏机理探讨[J].铁道学报,1998,20(4):72-76.
    [5]朱向荣,方鹏飞,袁洪勉.深厚软基超长桩工程性状试验研究[J].岩土工程学报,2002,Vol.25(1):76-9.
    [6]俞亚南,冯世挺,宋连峰.软土地区超长钻孔灌注桩承载性状试验研究[J].工业建筑,2002,VOI.23(11):33-35.
    [7]阮长青.钢管桩设计中的若干问题探讨[J].地下工程,2003,22(1),87-89.
    [8]交通部公路规划设计院.《公路桥涵地基与基础设计规范》(TJJ024-85)[S].北京:人民交通出版社,1985.
    [9]中国人民共和国交通部.《港口工程桩基规范》(JTJ254-98)[S].北京:人民交通出版社,2002.
    [10]史佩栋.实用桩基工程手册[M].北京:中国建筑工业出版社.1999.
    [11]蔡长庚.广东静载试桩堆载达2106吨[M].岩土工程界,2000,3(3):7-11.
    [12]张旷成,张镇,丘建金.深圳地区的地质条件和建筑桩基工程桩基设计施工与检测[M].北京:中国建筑工业出版社,2001.
    [13]徐攸在.桩的动测新技术[M].北京,2002,10-15
    [14]黄锋,刘朝钢,李广信等.桩承载力确定方法的探讨[J].清华大学学报,1998,38(1):28-32
    [15]刘松玉.关于“单桩竖向静载试验存在的若干理论与实践问题”的讨论[J].岩土工程学报,2001,23(5).
    [16]Jori Osterberg. New Device for Load Testing Driven Piles and Drilled Shaft Separates Friction and End Bearing.Piling and Deep Foundations[J]. Netherlands:1989.421-427.
    [17]龚维明,蒋永生,翟晋.桩承载力自平衡测试法[J].岩土工程学报,2000,22(5):532-536.
    [18]史佩栋,黄勤.桩的静载荷试验新技术.桩基工程技术[M].北京:中国建材工业出版社,1996:400-409.
    [19]姚丽章,匡翠萍,徐明磊.自平衡法测试钢管桩承载力的可靠性探讨[J].华南港工,2008(2):70-74.
    [20]徐风云,黄文机.桩承载力自平衡法存在的几个关键问题[J].1170-1176.
    [21]王伯惠.评桩基测试自平衡法[J].公路,2005,7,(7):24-32.
    [22]吴鹏,龚维明,梁书亭.桩基自平衡测试的可靠性分析[J].岩土工程学报,2005,5,27(5):545-548.
    [23]冷曦晨,佴磊,刘永平.自平衡法桩基承载力测试中一些问题的探讨[J].地震工程与工程振 动,2005,4,25(2):160-164.
    [24]《桩基工程手册》编写委员会.桩基工程手册[M].北京:中国建筑工业出版社,1997.1-757
    [25]赵明华.桥梁桩基计算与检测[M].北京:人民交通出版社,2000.
    [26]赵明华.基础工程专题[J].长沙:湖南大学土木系地基教研室,1992.
    [27]Seed HB, Reese LC. The action of soft clay along friction piles. Transactions, ASCE,1957,122:731-754.
    [28]Kezdi, A. The Bearing Capacity of Pile and Pile Groups. Proc,4th, ICSMFE, London,1957, Vol.2,46-51.
    [29]佐滕悟.基桩承载力机理[J].土工技术,1965,20(1):1-5.
    [30]Gardner, W.S. Consideration in The Design of Drilled Piles. Design. Construction and Performance of Deep Foundation,1975.
    [31]刘树亚.嵌岩桩桩-土-岩共同作用分析方法[J].土工基础,2000,14(2)14-19.
    [32]郭忠贤,杨志红,宋杰等.夯实水泥土桩的荷载传递特性[J].岩土力学,2000,21(3):284-288.
    [33]刘利民,陈有亮.计算复合地基沉降的位移协调法[J].上海大学学报,1996,2(6):608-613.
    [34]黄生根.多级挤扩钻孔灌注桩的荷载传递特性分析[J].工程勘察,1998,(5):19-21.
    [35]Coyle HM, Reese LC. Load Transfer for Axially Loaded Piles in Clay. Journal of the soil Mechanics and Foundations Division,ASCE,1966,92 (SMZ):1-26.
    [36]Kraft L M, Foeht J A, Amerasinghe S F. Friction capacity of piles driven into clay. Journal of the Geotechnical Engineering Division, ASCE,1981,107(GT11):1521-1541.
    [37]陈龙珠,梁国钱,朱金颖等.桩轴向荷载-沉降曲线的一种解析算[J].岩土工程学报,1994,6(6):30-38.
    [38]房卫民,赵明华,苏检来.由沉降量控制桩竖向极限承载力的分析[J].中南公路工程,1999,24:23-25.
    [39]曹汉志.桩的轴向荷载传递及荷载—沉降曲线的数值计算方法[J].岩土工程学报,1986,8(6):39-49.
    [40]潘时声.桩基础分层位移迭代法计算理论及其应用[D].上海:同济大学,1993.
    [41]阳吉宝.单桩沉降计算的荷载传递法讨论[J].岩土工程技术,1998,(6):31-38.
    [42]Poulos,HG(1968). Analysis of the settlement of pile groups. Geotechnique,18(3):449-471
    [43]Butterfield, R Banerjee, PK(1971). The problem of Pile-Group-Pile Cap Interaction. Geotechnique,21(1):43-60.
    [44]Geddes,JD. Stress in foundation soils due to vertical subsurface Loading. Geotechnique,16(3):231-255
    [45]费勤发.任意层状土中可压缩单桩的弹性分析[J].上海城建学院院报,1987(1).
    [46]吕凡任.倾斜荷载作用下斜桩基础工作性状研究[D].杭州:浙江大学,2004.
    [47]邵江,谢红强,周德培,胡德贵.桩的轴向静载-沉降曲线的模拟分析[J].岩土力学,2004,25(7):1107-1110.
    [48]Cooke, R.W.&Price, G(1973). Strains and displacements around friction piles. Proc 8th ICSMFE,Moscow,Vol.2:53-60.
    [49]M F Randolph and C P Wroth. Analysis of deformation of vertically loaded piles. ASCE,1979, 104(12):1465-1488.
    [50]CHAU K T. Fluid Point Source and Point Forces in Linear Elastic Diffusive Half2spaces [J]. Mechanics of Materials,1996,23(3):241-253.
    [51]宰金氓,杨嵘昌.桩周土非线性位移的广义剪切位移法[J].南京建筑工程学院院报,1993(1):1-16.
    [52]阳吉宝.超长桩的荷载传递机理[J].岩土工程学报,1998,20(6):108-112.
    [53]池跃君.大直径超长灌注桩承载特性的试验研究[J].工业建筑,2000,30(8):26-29.
    [54]池跃君.超长桩承载特性的数值拟合[J].工程力学,2001,18(2):46-50.
    [55]许启斌.大直径钢管桩承载力的非线性研究[J].桩基研究与地基基础,2005,4:49-55
    [56]胡利文,贾德庆,傅洁馨,刘永锋.开口钢管桩承载力影响因素[J].水运工程,2005,9,9:17-22
    [57]港口工程基桩静载荷试验规程(JTJ255-2002)[S].北京:人民交通出版社,2002.
    [58]王春青,贾明彦.由P-S曲线确定摩擦桩单桩的有效桩长[J].西安科技学院学报,2001,1(21):24-26.
    [59]钱晓丽,大直径桩基极限承载力的计算机模拟与统计分析,学位论文,辽宁工程技术大学,2001
    [60]方鹏飞.超长桩承载性状研究,博士论文,浙江大学,2003
    [61]王岩松,张宏斌.长春工业大学学报(自然科学版),2005,26(2):169-172
    [62]朱金颖,陈龙珠,葛炜.层状地基中桩静载试验数据的拟合分析,岩土工程学报,1998,20(3):34-39
    [63]阳吉宝.超长桩荷载-沉降曲线的拟合方法[J].工业建筑,1995,8(25):29-32.
    [64]王志亮,高峰,殷宗泽等.考虑侧向变形的路堤沉降一维法计算修正系数研究.岩土力学,2005,26(5):763-769
    [65]王志亮,涂许杭,殷宗泽.高速公路沉降计算中e-lop法修正探讨[J].岩土力学,2004,25(5):719-722
    [66]王志亮,孙锡杰.考虑土体应力历史影响的沉降修正初探[J].岩土力学,2006,27(10):1723-17260
    [67]李珍玉.武广客运专线红粘土地基沉降数值分析及试验研究[D].2009,5.
    [68]张仪萍.地基沉降泊松曲线拟合的概率方法[J].岩土工程学报,2005,27(7):837-340.
    [69]刘利民,舒翔,熊巨华.桩基工程的理论进展与工程实践[M].北京:中国建材工业出版社,2002.
    [70]俞振全.钢管桩的设计与施工[M].北京:地震出版社,1993:17-21.
    [71]李学民,伍军,李国亮等.开口钢管桩竖向承载力机理及计算探讨[J].桥梁建设,2005,4:38-40.
    [72]覃勇刚.杭州湾跨海大桥南岸超长栈桥设计研究[D].南京:东南大学,2006.
    [73]黄润秋,许强.显示拉格朗日差分分析方法在掩饰边坡工程中的应用[J].岩石力学与工程学报,1995(4):346-354.
    [74]杜延华,李冰冰.桩锚土钉联合支护的深基坑的FLAC3D模拟与分析[J].科技信息,2008(3):254-257.
    [75]王广国,杜明芳,侯学渊.深基坑的大变形分析[J].岩石力学与工程学报,2000,19(4):509-512.
    [76]陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2008.
    [77]刘波,韩彦辉.FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005.
    [78]胡中雄.土力学与环境土工学[M].上海:同济大学出版社,1997
    [79]阳吉宝.超长桩承载机理分析与有效桩长确定[J].力学与实践,1995,17(5):17-18.
    [80]曾友金,章为民,王年香等.基桩有效桩长几个问题的探讨[J].岩土力学,2003(24):529-534.
    [81]舒翔,黄雨.基桩有效桩长的确定方法[J].工业建筑,2001,31(1):72-74.
    [82]阳吉宝.确定超长桩有效桩长的简易方法[J].建筑技术开发,1996,23(4):13-14.
    [83]罗惟德.单桩承载机理分析与载荷-沉降曲线的理论推导[J].岩土工程学报,1990,12(1):35-44.
    [84]Tom M, Mitchell. Machine Learning, McGraw Hill,1997.
    [85]A. Blumer, A. Ehrenfeucht, D. Haussler and M. Warmuth. Learnability and Vapnik-Chen-vonenkis dimension, J. ACM 36,1989:929-965.
    [86]Vladimir N. Vapnik. Statistical Learning Theory, John Wiley & Sons, Inc,1998.
    [87]A. Aizerman, E. M. Braverman, and L. I. Rozonoer. The problem of pattern recognition learning and the method of poteneial functions, Autom, Remote Control 25,1964:1175-1193.
    [88]Aronszajn. The theory of reproducing kernels and their applications, Cambridge Phil. Soc. Proc,39,1943:133-153.
    [89]Luo Zhong, Zhe Li, Zichun Ding, Cuicui Guo, Huazhu Song:Multiple Sources Data Fusion Strategies Based on Multi-class Support Vector Machine. ISNN (1) 2008:715-722.
    [90]Huazhu Song, Zichun Ding, Cuicui Guo, Zhe Li, Hongxia Xia:Research on Combination Kernel Function of Support Vector Machine. CSSE (1) 2008:838-841.
    [91]Aapo Hyvarinen, Erkki Oja. Independent Component Analysis:Algorithms and Applications, 13(4-5):411-430,2000.
    [92]A. Hyvjauml;rinen, J. Karhunen, E. Oja. Independent Component Analysis, John Wiley & Sons,2001.
    [93]Luo Zhong, Huazhu Song, Bo Han, Extracting Structural Damage Features:Comparison Between PCA and ICA, ICIC-2006, Kunming, China,2006.
    [94]Huazhu Song, Luo Zhong, Bo Han:Structural damage detection by integrating independent component analysis and support vector machine. Int. J. Systems Science 37(13),2006:961-967.
    [95]J V Stone. Independent Component Analysis:A Tutorial Introduction, MIT Press,2004.
    [96]T W Lee. Independent Component Analysis:Theory and Application, Kluwer Academic Publishers,1998.
    [97]A. Hyvarinen. Survey on Independent Component Analysis, Neural Computing Surveys,2, 1999:94-128.
    [98]Roberts S J, Everson, R. Independent component analysis:principles and practice. Cambridge University Press,2001.
    [99]张贤达.矩阵分析与应用,北京:清华大学出版社,2004.
    [100]陈宝林.最优化理论与算法(第二版),清华大学出版社,2005.
    [101]章广成,艾传井.地基沉降预测模型和方法研究,煤田地质与勘探[J],35(6),2007:44-50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700