用户名: 密码: 验证码:
直喷汽油机稀薄燃烧与氮氧化物排放控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
日益严峻的能源和环境问题是汽车工业发展所面临的严重挑战,内燃机的继续发展必然要求低油耗和低排放。汽油机稀薄燃烧不仅能够有效降低燃油消耗,从而减少温室气体的排放,还可以大大降低HC和CO的排放,但是稀燃条件下NOx的排放问题制约了稀燃汽油机的发展。本文在自主研发的4G15型缸内直喷汽油机上进行了汽油机稀薄燃烧及其氮氧化物NOx排放控制的研究。
     首先,研究了直喷汽油机滚流稀薄燃烧系统的组成、结构及其控制。通过稳流气道试验和CFD瞬态数值模拟研究了4G15型直喷汽油机的进气滚流特性。结果表明,该直喷汽油机具有较强的滚流性能,有利于分层混合气的形成和稀薄燃烧。进而采用合理的控制策略,成功实现了稀薄燃烧,稀燃极限可达25~27,并分析了汽油机排放生成机理、稀燃排放特性以及机内净化控制NOx排放的措施。
     研究了三效催化器吸附NO的机理,结合直喷汽油机稀燃排放特征,在高空燃比稀燃和三效催化器控制NOx排放试验的基础上,进一步提出了利用三效催化器NO吸附还原机理控制稀燃NOx排放的新方法,可以较大程度上降低排气中的NO浓度,并充分利用浓燃时的高浓度还原性气体CO,提高三效催化器对NOx的转化效率。
     采用化学反应动力学计算软件CHEMKIN 4.0,从瞬态模拟的角度研究了通过三效催化器对NO吸附还原进而控制直喷汽油机稀燃NOx排放机理的合理性。深入分析了空燃比浓稀转换策略中的关键参数,如转换比例和频率、排气流量和排气温度对稀燃NOx排放控制的影响及其原因。
     针对利用三效催化器NO吸附还原机理控制稀燃NOx排放进行了大量的试验研究,结果显示,空燃比浓稀转换的比例、频率和浓燃空燃比与稀燃直喷汽油机有害气体排放及燃油经济性有很大关系,对这些策略控制参数的选取要综合考虑NOx排放、HC和CO排放以及发动机的燃油消耗率。同时,发动机的转速负荷工况不同,也会对NOx排放及其催化转化率产生影响。台架排放试验证明,通过这种方法可以将高空燃比稀燃条件下NOx的转化效率提高到50%以上,使稀燃排放达到较低水平。该方法采用目前比较成熟的商用三效催化器,在稀燃催化器尚无法推广普及的情况下,具有重要的现实意义。
The development of the automobile industry has been greatly affected by more and more severe problems of energy source lacking and environment pollution. The further development of internal combustion engines has to meet the demands of low fuel consumption and low emissions. Lean combustion techniques in gasoline engines can both reduce fuel consumption effectively so as to reduce the emission of greenhouse gas and lower the emissions of HC and CO significantly. However, the problem of controlling NOx emissions at lean combustion conditions constrains the development of lean combustion gasoline engines. In this paper, the lean combustion and NOx emissions control technology on 4G15 gasoline direct injection (GDI) engine which is researched and developed by our own are studied.
     Firstly, this paper studies the components, structure and control of the tumble-stratification lean combustion system on GDI engine. The intake flow tumble characteristics of 4G15 GDI engine are analyzed by using both flow rig and CFD transient numerical simulation. The results show that a rather strong tumble motion exists in this GDI engine, which is beneficial to the formation of stratified mixture and lean combustion. Then, the lean combustion is achieved successfully by adopting reasonable control strategies, and the lean combustion limit can reach 25~27. Formation mechanisms and characteristics of the gasoline engine emissions at lean combustion conditions and the methods to reduce NOx emissions in the cylinder, such as increasing air-fuel ratio, optimizing spark timing and injection timing and applying EGR system, are examined.
     The mechanism of adsorbing NO in three-way catalyst is analyzed. Based on the characteristics of emissions on GDI engines at lean combustion conditions, combining leaner combustion and NOx emissions control experiments by using three-way catalyst, a new method is proposed, which utilizes the mechanism of NO adsorption and reduction in three-way catalyst. It can reduce the NO concentration in the exhaust significantly and make full use of the reductive gas such as carbon monoxide in the rich period to increase the NOx conversion efficiency of three-way catalyst.
     With CHEMKIN 4.0 chemical kinetic software, the rationality of controlling lean-combustion NOx emissions on GDI engine by utilizing the mechanism of NO adsorption and reduction in three-way catalyst is studied from the perspective of transient simulation. The impact on emissions and the causes of key parameters in the conversion strategies of air-fuel ratio from rich to lean, such as conversion ratio and frequency, exhaust flow and exhaust temperature, are analyzed deeply.
     A large number of experiments on NOx emissions control by utilizing the mechanism of NO adsorption and reduction in three-way catalyst are carried out. The results show that the conversion ratio and frequency of air-fuel ratio from rich to lean and the rich air-fuel ratio have a great relationship with air pollution emissions and fuel economy of lean combustion GDI engine. The selection of these control strategy parameters should consider the NOx, HC and CO emissions and the fuel consumption rate of the engine comprehensively. Simultaneously, the speed and load conditions of the engine also have a influence on NOx emissions and catalytic conversion efficiency. The bench test results show that the NOx catalytic conversion efficiency on leaner combustion conditions can be increased to 50% or more and the NOx emissions can reach a lower level by taking this method. Because the lean-combustion catalyst can not be promoted and popularized currently, so this method in which the relatively mature commercial three-way catalyst at present is used has important practical significance.
引文
[1]史绍熙,李德桃,郑杰等,关于建立和完善我国汽车排放法规若干问题的探讨和建议,内燃机学报,1996,14(2):111~118
    [2] Shi Shao-xi , Recent Process in Combustion Technologies for Automotive Engines,燃烧科学与技术,2001,7(1):1~15
    [3]中国石油学会石油炼制分会,21世纪我国石油供给分析,北京:中国石油学会石油炼制分会,2005
    [4]盛杨怿,我国石油供给、需求现状及战略分析,经济前沿,2005,11(5):8~11
    [5]牛建英,战略矿产资源供应安全研究:[博士学位论文],北京;中国地质大学,2007
    [6] Philip Gott,Sustainable Powertrain Technologies,北京2006内燃机可持续发展国际论坛,北京:中国内燃机工业协会,2006
    [7]村进俊水,汽车发动机技术的发展方向,天津大学-日本丰田公司汽车技术研讨会技术资料(二),1997
    [8] Emission Standards:USA,http://www.dieselnet.com/standards/us/
    [9] Klaus P Schindler,Why Do We Need the Diesel,SAE Paper 972684,1997
    [10] Klaus P Schindler,Constanti Arcoumanis,Mixture Formation and Combustion in the DI Diesel Engine,SAE Paper 972681,1997
    [11]安德?巴斯蒂安,大众汽车公司开创柴油机的新时代,国际车用柴油机技术研讨会,北京:中华人民共和国科学技术部,2000
    [12]魏春源,张卫正,葛蕴珊,高等内燃机学,北京:北京理工大学出版社,2001,185~201
    [13] Emission Standards:European Union,http://www.dieselnet.com/standards/eu/
    [14]欧洲议会批准汽车污染物排放欧Ⅴ、欧Ⅵ标准,新华网,2006,12,http://news.xinhuanet.com/auto/2006-12/15/content_5489095.htm
    [15]国内外汽车排放法规对比分析,中国发动机网,2005,8,http://www.cnengine.com/article/Article_Show.asp?ArticleID=505
    [16]刘巽俊,用高新技术改造我国的汽车发动机,迎接经济全球化的严峻挑战,中国内燃机学会汽油机煤气机分会、中国汽车工程学会2001年度联合学术年会论文集,贵阳:中国内燃机学会汽油机煤气机分会、中国汽车工程学会,2001
    [17] Herbert H. Heitland,G. Rinne,M. Willmann,et al.,IC Engines for 100 Miles/Gallon Cars,SAE Paper 2001-01-0258,2001
    [18]刘伍权,夏利2000型四气门火花点燃式发动机可变进气系统及其稀薄燃烧研究:[博士学位论文],天津;天津大学,2002
    [19]邱先文,降低车用稀燃汽油机有害排放物NOx的排气再循环的研究:[博士学位论文],天津;天津大学,2002
    [20]李志军,马智,刘书亮等,控制车用汽油机排气污染的催化技术及其发展,汽车技术,2000,(2),1~3
    [21] Toshiharu Nogi,Yoshishige Ohyama,Teruo Yamauchi,et al.,Mixture Formation of Fuel Injection Systems in Gasoline Engines,SAE Paper 880558,1988
    [22] Gang Chen,Michael T. Vincent,Terry R. Gutermuth,The Behavior of Multiphase Fuel-Flow in the Intake Port,SAE Paper 940445,1994
    [23] Makoto Nagaoka,Hiromitsu Kawazoe,Naomi Nomura,Modeling Fuel Spray Impingement on a Hot Wall for Gasoline Engines,SAE Paper 940525,1994
    [24] F. Zhao,M. C. Lai,D. L. Harrington,Automotive Spark-Ignited Direet-Injection Gasoline Engines , Progress in Energy and Combustion Science,1999,(25):420~475
    [25] A. J. Scussel,A. O. Simko,W. R. Wade,The Ford Proco Engine Update,SAE Paper 780699,1978
    [26] M. Alperstein,G. H. Schafer,,Texaco’s Stratified Charge Engine—Multifuel,Efficient,Clean,and Practical,SAE Paper 740563,1974
    [27] Y. Hardalupas,A. M. K. P. Taylor,J. H. Whitelaw,Influence of Injection Timing on In-Cylinder Fuel Distribution in a Honda VTEC-E Engine,SAE Paper 950507,1995
    [28] Ather A. Quader,What Limits Lean Operation in Spark Ignition Engines—Flame Initiation or Propagation,SAE Paper 760760,1976
    [29] Bruce D. Peters,Ather A. Quader,"Wetting" the Appetite of Spark Ignition Engines for Lean Combustion,SAE Paper 780234,1978
    [30] Ather A. Quader,The Axially-Stratified-Charge Engine,SAE Paper 820131,1982
    [31] Ellen Johnson,Chad Stovell,Ronald D. Matthews,et al.,Effects of Fuel Parameters on Ftp Emissions of a 1998 Toyota With a Direct Injection Spark Ignition Engine,SAE Paper 2000-01-1907,2000
    [32] Rainer Ortmann,Stefan Arndt,Jurgen Raimann,et al. Methods and Analysis of Fuel Injection , Mixture Preparation and Charge Stratification in Different Direct-Injected SI Engines,SAE Paper 2001-01-0970,2001
    [33] Akihiko Kakuhou,Tomonori Urushihara,Teruyuki Itoh,et al.,Characteristics of Mixture Formation in a Direct-Injection SI Engine with Optimized In-Cylinder Swirl Air Motion,SAE Paper 1999-01-0505,1999
    [34] Yoshihiro Okada,Iwane Inokuchi,Masanari Yanagisawa,Development of a High-Pressure Fueling Systems for a Direct-Injection Gasoline Engine,SAE Paper 981458,1998
    [35] Hiroshi Tatsuta,Motohiro Matsumura,Junichi Yajima,et al., Mixture Formation and Combustion Performance in a New Direct-Injection SI V6 Engine,SAE Paper 981435,1998
    [36] Yamaguchi J.,Nissan Direct-injection Gasoline V6,Automotive Engineering,1998,(1),91~93
    [37] Hirohisa Tanaka,Mari Yamamoto,Improvement in Oxygen Storage Capacity,SAE Paper 960794,1996
    [38] Johnson TV,汽油车排放-SAE1999回顾,国外内燃机,2002,34(1),42~56
    [39] Naoto Miyoshi,Shin'ichi Matsumoto,Kenji Katoh, et al.,Development of New Concept Three-Way Catalyst for Automotive Lean-Burn Engines,SAE Paper 950809,1995
    [40] Takamitsu Asanuma,Shinichi Takeshima,Tetsuya Yamashita,et al.,Influence of Sulfur Concentration in Gasoline on NOx Storage-Reduction Catalyst,SAE Paper 1999-01-3501,1999
    [41] Michel Molinier,NOx Adsorber Desulfurization Under Conditions Compatible With Diesel Applications,SAE Paper 2001-01-0508,2001
    [42] Hans Bosch,Frans Janssen,Preface,Catalysis Today,1988,2(4):5
    [43] David R. Monroe,Craig L. DiMaggio,Donald D. Beck,et al.,Evaluation of a Cu/Zeolite Catalyst to Remove NOx From Lean Exhaust,SAE Paper 930737,1993
    [44] Akihide Takami,Takasi Takemoto,Hideharu Iwakuni,et al.,Development of Lean Burn Catalyst,SAE Paper 950746,1995
    [45] G. Lepperhoff,K. Hentschel,Peter Wolters,et al.,Lean-Combustion Spark-Ignition Engine Exhaust Aftertreatment Using Non Thermal Plasma,SAE Paper 982512,1998
    [46]冯明志,许振忠,李玉峰等,四气门火花点火式发动机缸内的空气运动,天津大学学报,2000,33(3):355~359
    [47]王健,刘德新,刘书亮等,四气门汽油机进气道流动特性的稳流试验研究,内燃机学报,2004,22(2):183~186
    [48] Endres H,Neuber H J,Wurms R,新措施优化滚流改善燃烧,国外内燃机,1995,299(5):12~16
    [49] Constantine Arcoumanis,N. Kampanis ,S. Kometani,et al.,Flow, Combustion and Emissions in a Five-Valve Research Gasoline Engine,SAE Paper 2001-01-3556,2001
    [50]余国核,摩托车汽油机进气脉动对发动机性能的影响:[硕士学位论文],天津:天津大学,2004
    [51]史绍熙,刘书亮,李玉峰等,用单一循环LDA测量法研究四气门汽油机缸内滚流运动的湍流结构,工程热物理学报,1997,18(3):370~374
    [52] C. R. Stone,N. Ladommatos,The Measurement and Analysis of Swirl in Steady Flow,SAE Paper 921642,1992
    [53] Kern Yong Kang,Ki Hyung Lee,Choongsik Bae,The Effects of Tumble Flow on Lean Burn Characteristics in a Four-Valve SI Engine,SAE Paper 970791,1997
    [54] T. Kume,Y. Iwamoto,K. Iida,et al.,Combustion Control Technologies for Direct Injection SI Engine,SAE Paper 960600,1996
    [55] K. Kuwahara,T. Watanabe,M. Yokoe,et al.,Intake-Port Design for Mitsubishi GDI Engine to Realize Distinctive In- Cylinder Flow and High Charge Coefficient,SAE Paper 2000-01-2801,2000
    [56] Yamaguchi J.,Mitsubishi Extends Gasoline Direct-Injection to V6,Automotive Engineering,1997,(8),77~81
    [57]一汽-大众奥迪2.0T FSI发动机,汽车与运动,2006,(12):58~60
    [58]强添纲,大众汽车FSI发动机技术,汽车与配件,2008,10(22):44~47
    [59] Hongming Xu,Some Critical Technical Issues on the Steady Flow Testing of Cylinder Heads,SAE Paper 2001-01-1308,2001
    [60] Ricardo Consulting Engineers,Analysis of Steady Flow Tests on Inlet and Exhaust Ports,Ricardo Report DP 80/1123,1980
    [61]刘书亮,冯洪庆,王天友等,四气门火花点火发动机缸内滚流运动的研究,燃烧科学与技术,2004,10(2):181~186
    [62] S. Omori,K. Iwachido,M. Motomochi,et al.,Effect of Intake Port Flow Pattern on the In-Cyliner Tumbling Air Flow in Mlti-Valve SI Engines,SAE Paper 910477,1991
    [63] John Abraham , What Is Adequate Resolution in the Numerical Computations of Transient Jets,SAE Paper 970051,1997
    [64] Kaoru Horie,Kazutoshi Nishizawa,Toru Ogawa,et al.,The Development of a High Fuel Economy and High Performance Four- Valve Lean Burn Engine,SAE Paper 920455,1992
    [65] F. Millo,C. V. Ferraro,L. Pilo,A Numerical Contribution to the Improvement of Individual Cylinder AF Control in a 4-Cylinder S.I. Engine,SAE Paper 2001-01-1009,2001
    [66]王莉,准均质稀薄燃烧发动机的建模与控制:[博士学位论文],天津;天津大学,2003
    [67] Paul E. Kapus , Peter Poetscher , ULEV and Fuel Economy– A Contradiction,SAE Paper 2000-01-1209,2000
    [68] D. E. Webster,25 Years of Catalytic Automotive Pollution Control:A Collaborative Effort,Topics in Catalysis,2001,16(1):33~38
    [69] David R. Worth,K. C. Yang,Daniel Swallow,et al.,A New Approach to Meeting Future European Emissions Standards with the Orbital Direct Injection Gasoline Engine,SAE Paper 2000-01-2913,2000
    [70] Shigeru Onishi,Souk Hong Jo,Katsuji Shoda,et al.,Active Thermo-Atmosphere Combustion (ATAC)—A New Combustion Process for Internal Combustion Engines,SAE Paper 790501,1979
    [71] Masaaki Noguchi,Yukiyasu Tanaka,Taro Tanaka,et al.,A Study on Gasoline Engine Combustion by Observation of Intermediate Reactive Products During Combustion,SAE Paper 790840,1979
    [72] Norimasa Iida , Combustion Analysis of Methanol-Fueled Active Thermo- Atmosphere Combustion (ATAC) Engine Using a Spectroscopic Observation,SAE Paper 940684,1994
    [73] R. H. Thring, Homogeneous Charge Compression Ignition (HCCI) Engines,SAE Paper 892068,1989
    [74] Rudolf H. Stanglmaier,Homogeneous Charge Compression Ignition (HCCI): Benefits,Compromises,and Future Engine Applications,SAE Paper 1999-01-3682,1999
    [75] Hua Zhao,Z. Peng,John Williams,et al.,Understanding the Effects of Recycled Burnt Gases on the Controlled Auto-ignition(CAI) Combustion in Four-Stroke Gasoline Engines,SAE Paper 2001-01-3607,2001
    [76] Jian Li,Hua Zhao,Nicos Ladommatos,et al.,Performance and Analysis of a 4-Stroke Multi-Cylinder Gasoline Engine With CAI Combustion,SAE Paper 2002-01-0420,2002
    [77] Jian Li,Hua Zhao,Nicos Ladommatos,et al.,Research and Development of Controlled Auto-Ignition (CAI) Combustion in a 4-Stroke Multi-Cylinder Gasoline Engine,SAE Paper 2001-01-3608,2001
    [78] Heywood John B.,Internal Combustion Engine Fundamentals,New York:McGraw-Hill,1988,28~29
    [79] R. H. Thring , Homogeneous Charge Compression Ignition (HCCI) Engines,SAE Paper 892068,1989
    [80]蒋德明,内燃机燃烧与排放学,西安:西安交通大学出版社,2001
    [81]周龙保,刘巽俊,高宗英,内燃机学,北京:机械工业出版社,1999
    [82]裴普成,刘书亮,任立红等,汽油机分层废气再循环与稀薄混合气燃烧,清华大学学报(自然科学版),2002,42(4):520~522
    [83] Sergio Eduardo Maisuls , Multiphase Catalysts For Selective Reduction of NOx With Hydrocarbons:[博士学位论文],荷兰;Universiteit Twente,2000
    [84] Nicholas Fekete,Juergen Leyrer,Roland Kemmler,et al.,Evaluation of NOx Storage Catalysts for Lean Burn Gasoline Fueled Passenger Cars,SAE Paper 970746,1997
    [85] Patrick Gilot,S. Fendeleur,C. Pope,et al.,A Laboratory Study of NOx Reduction During the Rich Operating Period Over a NoDx Storage Catalyst,SAE Paper 1999-01-3502,1999
    [86] Owen H Bailey,Danan Dou,Gregory W Denison,Regeneration Strategies for NOx Adsorber Catalysts,SAE Paper 972845,1997
    [87]沈炳振,张利雯,奥迪燃油直喷(FSI)发动机的构造与性能分析,河北交通科技,2008,5(4):54~57
    [88]汪云青,汽油发动机的新生—FSI直喷式发动机技术,中国新技术新产品精选,2008,(6):18~19
    [89]林静,本田公司开发的i-CTDi系列柴油机,汽车与配件,2005,19(49):31~33
    [90]刘越,更环保的本田新低污染柴油引擎,轻型汽车技术,2006,(10):38~39
    [91] Orbital Corp.,DI Vehicle Achieves EuroⅢwithout a Lean NOx Catalyst,1999,http://www.orbital.com.au./
    [92]李云涛,毛宇杰,钟秦等,SCR催化剂的组成对其脱硝性能的影响,燃料化学学报,2009,37(5):601~606
    [93] Timothy V. Johnson, Regeneration Strategies for NOx Adsorber Catalysts,SAE Paper 2001-01-0184,2001
    [94] Sung-Mu Choi,Seok-Jae Kim,Young-Kee Youn,et al.,Regeneration Strategies for NOx Adsorber Catalysts,SAE Paper 2001-01-0519,2001
    [95] W. R. Miller,J. T. Klein,R. Mueller,et al.,Regeneration Strategies for NOx Adsorber Catalysts,SAE Paper 2000-01-0190,2000
    [96] H. Laxders,R. Backes,G. Haxthwohl,et al.,A Urea Lean NOx Catalyst System for Light Duty Diesel Vehicles,SAE Paper 952493,1995
    [97] W.Frank,G.Hüthwohl,B.Maurer,SCR systems for commercial vehicles for compliance with Euro 4 emission standards in 2005,3~21
    [98] Christian Enderle,Guido Vent,Markus Paule,et al.,BLUETEC Diesel Technology—Clean , Efficient and Powerful , SAE Paper 2008-01-1182,2008
    [99]黄鹏,国外车用柴油机SCR技术的应用研究,车用发动机,2005,157(3):5~7
    [100]马国胜,谭祖健,SCR在国内的应用与展望,内燃机,2008,(3):1~5
    [101] H. Klein,V. S. Lopp,E. Lox,et al.,Hydrocarbon DeNOx Catalysis - System Development for Diesel Passenger Cars and Trucks,SAE Paper 1999-01-0109,1999
    [102]谭宇新,王乐夫,纪红兵,贫燃条件下汽车尾气净化催化剂的研究,上海环境科学,1999,18(9):397~399
    [103] David R. Monroe,Craig L. DiMaggio,Donald D. Beck,et al.,Evaluation of a Cu/Zeolite Catalyst to Remove NOx From Lean Exhaust,SAE Paper 930737,1993
    [104] Axel Karnig,Thomas Richter,Edward Jobson,et al.,Research Results on Processes and Catalyst Materials for Lean NOx Conversion,SAE Paper 962041,1996
    [105]李兰冬,章福祥,关乃佳等,金属-ZSM-5/堇青石整体式催化剂上稀燃汽车尾气的净化,催化学报,2006,27(1):41~44
    [106] Masao Hori,A Okumura,Hideki Goto,et al.,Development of New Selective NOx Reduction Catalyst for Gasoline Lean-Burn Engines,SAE Paper 972850,1997
    [107] A. Raj,T.H.N. Le,S. Kaliaguine,et al.,Involvement of nitrate species in the SCR of NO by NH3 at ambient conditions over TS-1 catalysts,Applied Catalysis B: Environmental,15(3-4):259~267
    [108] Andre L Boehman,Numerical Modeling of NO Reduction Over Cu-Zsm-5 Under Lean Conditions,SAE Paper 970752,1997
    [109]王建昕,傅立新,黎维彬,汽车排气污染治理及催化转化器,北京:化学工业出版社,2000,5~6
    [110] Teuvo Maunula,Juha Ahola,Tapio Salmi,et al.,Investigation of CO oxidation and NO reduction on three-way monolith catalysts with transient response techniques,Applied Catalysis B:Environmental,1997,12 (4):287~308
    [111] J.M.A. Harmsen,J.H.B.J. Hoebink,J.C. Schouten,NO reduction by CO over automotive exhaust gas catalysts in the presence of O2,Catalysis Letters,2001,71(1-2):81~90
    [112] J.M.A. Harmsen,J.H.B.J. Hoebink,J.C. Schouten,Kinetic modeling of transient NO reduction by CO in the presence of 02 over an automotive exhaust gas catalyst,Studies in Surface Science and Catalysis,2001,133:349~356
    [113] Cyril Thomas,Olivier Gorce,Céline Fontaine,et al.,On the promotional effect of Pd on the propene-assisted decomposition of NO on chlorinated Ce0.68Zr0.32O2,Applied Catalysis B: Environmental,2006,63(3-4):201~214
    [114] D. K. Hennecke,Heat transfer by Hagen-Poiseuille flow in the thermal development region with axial conduction,Heat and Mass Transfer,1968,1(3):177~184
    [115] Daniel W. Wendland,John E. Kreucher,Eric Andersen,Reducing Catalytic Converter Pressure Loss With Enhanced Inlet-Header Diffusion,SAE Paper 952398,1995
    [116] C. D. Lemme,W. R. Givens,Flow Through Catalytic Converters—An Analytical and Experimental Treatment,SAE Paper 740243,1974
    [117] J. S. Howitt,T. C. Sekella,Flow Effects in Monolithic Honeycomb Automotive Catalytic Converters,SAE Paper 740244,1974
    [118] Herz RK,Sell JA,Dynamic behavior of automotive catalysts-Ⅲ:Transient enhancement of water-gas shift over rhodium,J Catal,1985,94(1):166~174

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700