用户名: 密码: 验证码:
共轨式发动机控制单元(ECU)的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着排放法规的日益严峻和共轨技术的广泛应用,以“均质压燃、低温燃烧”为基本特征的新一代内燃机燃烧技术也得到深入地研究和应用。电控技术是实施这些燃烧理论的有效途径,是新一代清洁、高效、智能化发动机技术的重要组成部分。本文回顾了柴油机电控技术的发展趋势以及电子设计自动化(EDA)技术的发展特征,并且针对共轨技术和新一代燃烧技术的特点及控制要求,采用全新的电子技术完成了一种全新构架发动机控制单元(ECU)的开发,并以研制成功的ECU为核心对新开发的共轨燃油喷射系统进行了实验优化研究。
     新一代燃烧技术要求燃油喷射控制系统具备可灵活调制燃油喷射模式、精确控制喷油定时和油量等参量,这使得控制系统中涉及到大量数字逻辑电路的开发。为此,本文以MCF5233微处理器和CPLD(复杂可编程逻辑器件)为核心构架进行了ECU的开发和研制,该构架可以实现时间任务、算法任务和数字逻辑任务的平行处理。为了提高喷油器电磁阀的响应速率,基于CPLD创新性地提出了斩波数字调制式升压模块,其替代了传统升压模块中的PWM(脉宽调制)专用IC和斜波补偿电路等,简化了升压模块的结构;同时,基于CPLD完成了对喷油器高、低压驱动信号的逻辑合成,实现了对喷油器的高、低压分时控制。相对于本课题组上一代天然气ECU(专利号:02125326.9),该ECU更适合新一代燃烧技术和共轨技术发展的需要。
     本文基于MCF5233-eTPU模块,利用转速信号进行了瞬时转速(角速度)算法设计,借助于瞬时计算的角速度提高了压力控制阀(PCV)和喷油器控制的精度,改进了系统时序控制的灵活度。其中基于内外参考点法,解决了系统时序控制的稳定性,进一步提高了定时精度。利用结构体数组对喷射参数进行定义,仅一次中断服务,即可实现了多次喷射控制,提高了CPU的工作效率,借助eTPU的qom功能满足了燃油控制系统不同喷射模式灵活调制和自由切换的要求。另外,依据可靠性设计理论,对ECU进行了全方位的可靠性设计,开发了部分故障诊断单元,加强了ECU系统的可靠性。
     本文从软件工程学角度,基于嵌入式实时系统的生存周期模型,采用面向对象技术和实时系统并行设计方法(CODARTS)对ECU系统进行了软件开发,在确保ECU系统实时性的同时兼顾其可移植性和扩展性。提出以COBRA的对象标准进行系统的面向对象需求分析,使面向对象技术和CODARTS方法具有很好的兼容性。同时,为了满足燃油喷射系统开发的需要,构建了人机交互平台。
     以法国EFS电控燃油喷射系统测试平台为基础,以自行研发的ECU为核心,搭建了用于共轨电控燃油系统标定的实验平台。在此平台上对ECU各功能模块进行了验证,对升压模块和喷油器驱动电路进行了优化研究。鉴于升压电路结构参数多,以及ECU对升压电压的恢复响应要求高等特征,基于Pspice仿真软件对升压电路的结构参数进行了优化。结果显示,该升压模块的最大转换效率可以到达90%以上,ECU的实验表明,升压电压最大波动不超过10%,其恢复时间仅为1.3ms,满足整机运行范围内ECU的需求。
     针对喷油器驱动通道存在的不一致性问题,通过实验重点研究了上电回路和放电回路对喷油器特性的影响,根据实验分析结果,采用在各回路引入定值电阻的方案,弱化了各驱动通道阻抗的不一致性,该方案提高了喷油器驱动通道的一致性,中等油量(40mg~50mg)时各驱动通道的RSD(相对标准偏差)由优化前的11.9%降低到优化后的3.8%。最后通过实验利用ECU对新开发的共轨燃油喷射系统进行特性研究,利用调试通过的电控燃油系统对珀金斯135Ti柴油机进行了改装。实践证明该ECU到达预期目标,具有很好的应用前景。
With the increasingly stringent emissions regulations and common-rail technology widely used, ?Homogeneous, Compression ignition, Low-temperature combustion?, as the basic characteristics of a new generation of combustion technology, has also been in-depth studied and applied. Electronic control technology is an effective way to implementation of combustion theory, and is an important component of new generation of clean, efficient and intelligent engine technology. This paper reviews the development trends of diesel engine electronic control technology and electronic design automation (EDA) technology features. Aiming at characters and control demands of HPCR (High Pressure Common-rail) technique and new generation combustion technique, ECU?s (Engine Control Unit) development is completed by adopting bran-new Electronic technology, and lastly optimizing experiment research on newly developed HPCR fuel injection system is carried out with the successfully developed ECU.
     A new generation of combustion theory demands fuel injection control system with flexible fuel injection modulation model, precise control of injection timing and oil quality and other parameters, which makes control systems in the development of a large number of digital logic circuits. Therefore, with 32-bit microprocessor MCF5233 and CPLD (Complex Programmable Logic Device) as the core framework, the ECU is designed, which can achieve time tasks, algorithm tasks, and digital logic tasks to concurrently process. For improving response speed-rate of injector electromagnetism valve, an innovative type of digital modulation booster module, based on CPLD, is brought forward, which substitutes IC of making PWM (Pulse Width Modulation) signal and the circuits of compensating inclined-wave in traditional booster module, and predigested structure of the module. At the same time, based on CPLD the logic synthesis of injector, drive signals of high-low voltage are completed, which realize high-low voltage time-sharing control to injectors. Relative to the older generation natural gas ECU (Patent Number: 02125326.9), the ECU is more suitable for next-generation combustion technology and common-rail technology development?s needs.
     Based on MCF5233-eTPU module, the instantaneous speed algorithm is designed by using crank-speed signal, thinks to which design of timing control for PCV (Pressure Control Valve) and injector is developed, and flexible timing control can be achieved. The internal and external reference point method was developed , which solves the stability of the system timing control, and further improves the timing accuracy. Injection parameters is defined by using an structure array, and using only one interrupt service, multistage injection control is achieved to improve the working efficiency of the CPU. With the help of eTPU-qom function, fuel control system meets these requirements of flexibly modulating of injection mode, and freely switching between different modes. In addition, based on reliability design theory, the all-round reliability design for the ECU is completed, and some of the fault diagnosis units are designed, which further strengthen reliability of ECU.
     From software engineering point of view in this paper, the life cycle model of embedded real-time system is built. Using object-oriented technology and CODARTS (Concurrent Design Approach for Real-Time System), the ECU system software is developed to ensure ECU systems to be real-time and transplantable and expansible at the same time. For making object-oriented technology and CODARTS to be better compatible, a method is brought forward, which makes the object standard of COBRA (Concurrent Object Based Real-time Analysis) to be carried through the whole process of object-oriented requirement analysis of software system. Meanwhile, in order to meet the fuel injection system development?s needs, a platform for human-computer interaction is built.
     Based on electronically controlled fuel injection system bench from FRANCE EFS INC, with self-developed ECU as the core, an experimental calibration platform for common-rail electronically controlled fuel system is set up. On this platform, all functions of ECU are verified while booster module and driver circuit of injector is optimized. In view of excessive configuration parameters in booster circuit, and higher request of ECU for boost-voltage characteristics of the recovery response, based on Pspice circuit simulation software, the structural parameters of the booster module is optimized. The results shows that the biggest booster module conversion efficiency can reach more than 90%, and the ECU's experiments showed that the biggest boost-voltage fluctuation don?t exceed 10%, and the renewing-time only was 1.3ms, which met these needs of ECU within engine operating range.
     Aiming at the question about inconsistencies of injector drive channels, effect of power circuit and discharge circuit on injection character is researched as a focus of experiment. According to the analysis of the experimental results, the introduction of a fixed value resistance into each loop, weakening the various driven channel impedance inconsistencies, improves the consistency of injector drive channels, which results in the driver channel RSD (relative standard deviation) down to 3.8%, from 11.9% before optimization in jet fuel of 40mg~50mg. In the end, research on character of newly developed common-rail fuel injection system is completed by using ECU in practical experiment, and the 135Ti diesel is modified by using the new electronic control fuel system that has passed all tests. Practice has proved that ECU developed in this work reached anticipated target and had good application prospects.
引文
[1].王璋保,我国能源(石油)供应的安全问题,工业加热,2002(2):5-9
    [2].21世纪我国石油供给分析,中国石油学会石油炼制分会,2005
    [3].盛杨怿,我国石油供给、需求现状及战略分析,经济前沿,2005,11(5):8-11
    [4].徐微,我国能源消费变动趋势及对策研究,理论探索,2006,295(1):40-42
    [5].何光远,发展煤基醇醚氢汽车燃料是替代石油的首要选择, http://www.engine.net.cn/2006forum/HGYc.pdf
    [6].欧阳明高,我国汽车保有量2020年超1.5亿辆, http://www.yzcar.net/html/news/2009-3/9112057.html
    [7].梁刚,2002年和2001年世界石油储量和产量,国际石油经济,2003,11(1) : 54-55
    [8].陈元千,我国未来石油产量和最终可采储量的预测,石油科技论坛,2003(1) : 26-31
    [9].文清,发改委:2010年石油进口依存度将突破50%,市场周刊.新物流,2005(7): 46
    [10].张幼文,黄仁伟,2004中国国际地位报告,北京:人民出版社,2004
    [11].朱华,胡武祥,我国汽车工业发展模式的能源清单,汽车工业研究,2002(10): 33-35
    [12].村进俊水,汽车发动机技术的发展方向,天津大学-日本丰田公司汽车技术研讨会技术资料(二),1997
    [13]. http://www.dieselnet.com/standards/us/fe.php
    [14]. K.-P. Schindler, Why Do We Need the Diesel, SAE paper 972684, 1997
    [15]. C. Arcoumanis, Mixture Formation and Combustion in the DI Diesel Engine, SAE paper 972681, 1997
    [16].张春辉,朱建华,余磊,国内乘用车燃料限值法规对润滑油市场的影响,http://ae.nstl.gov.cn/commChannel/content.asp?contentid=172764
    [17].安德?巴斯蒂安,大众汽车公司开创柴油机的新时代,国际车用柴油机技术研讨会,北京,中华人民共和国科学技术部,2000
    [18].叶代启,烟气中氮氧化物污染的治理,环境保护科学,1999.4
    [19].魏淑芬,内燃机的排放污染分析及控制,环境保护,1996,5:6-9
    [20]. J. B. Heywood, Internal Combustion Engine Fundamentals, New York: McGraw-Hill Book Company, 1998
    [21]. J. Warnatz, U. Maas & R. W. Dibble, Combustion: Physical & Chemical Fundamentals, Modelling & Simulation, Experiments, Pollutant Formation (4th ed.), Berlin Heidelberg: Springer -Verlag, 2006
    [22].气象信息分析报告,“十五”国家科技攻关计划2001-BA608B-09课题报告,2001,http://www.cams.cma.gov.cn/htdocs/report/02.pdf
    [23].熊思浩,王群,朱镕基昨日宣布中国已经核准《京都议定书》,新华通讯社,1999.9.3
    [24]. http://www.dieselnet.com/standards/us/
    [25]. http://www.dieselnet.com/standards/jp/onroad.php
    [26]. http://www.dieselnet.com/standards/eu/
    [27].赵三明,从2004到2005:倪宏杰谈内燃机行业的现状与趋势,中国工业报,2004.12.31
    [28].张少华,欧洲柴油轿车的发展情况,汽车情报,2004(35):32~35
    [29]. http://www.autoinfo.gov.cn/autoinfo_cn/lbj/qyzf/webinfo/2007/06/13/1181214248045797.htm
    [30].苏万华等,节能高效、零排放内燃机关键技术的基础研究,973国家重大基础研究项目建议书
    [31]. Fuquan Zhao, Thomas W A, Dennis N A, Homogenous Charge compression Ignition(HCCI) Engine: Key Research and Development Issues, Society of Automotive Engineers, Inc., 2003:147-158
    [32]. A Report to the U.S. Congress:“Homogenous Charge Compression Ignition (HCCI) Technology”, U.S. Department of Energy, Energy Efficiency and Renewable Energy Office of Transportation Technologies, 2001
    [33]. Stanglmaier R H, Roberts C E, Homogenous Charge Compression Ignition (HCCI): benefits, compromises, and future engine applications. SAE Paper 1999-01-3682, 1999
    [34]. T. W. Ryan III, A. C. Matheaus, Fuel Requirements for HCCI Engine Operation, SAE Paper 2003-01-1813
    [35]. M. Alriksson, I. Denbratt, Low TemperatureCombustion in a Heavy Duty Diesel Engine Using High Levels of EGR, SAE Paper 2006-01-0075
    [36]. S. Simescu, S. B. Fiveland, L. G. Dodge, An Experimental Investigation of PCCI-DI Combustion and Emissions in a Heavy-Duty Diesel Engine, SAE Paper 2003-01-0345.
    [37]. K. Akihama, Y. Takatori, K. Inagaki etc, Mechanism of the Smokeless Rich Diesel Combustion by Reducing Temperature, SAE Paper 2001-01-0655, Journal of Engines, Vol.110, 2001
    [38].田国弘,王志,葛强强等,缸内直喷汽油机SI-HCCI-SI燃烧模式切换的研究内燃机学报,2007,25(3):229-234
    [39].葛强强,王志,田国弘等,SI/HCCI燃烧模式瞬态切换过程的建模与优化,内燃机学报,2008,26(3):221-225
    [40].王志,王建昕,帅石金等,火花点火对缸内直喷汽油机HCCI燃烧的影响,内燃机学报,2005,23(2):106-112
    [41]. H. Husted, D. Kruger, G. Fattic etc, Cylinder Pressure-Based Control of PreMixed Diesel Combustion, SAE Paper 2007-01-0773, 2007
    [42]. K. Schten, G. Piplery, A. Punater, Design of Automotive Grade Controller for In-Cylinder Pressure Based Engine Control Development, SAE Paper 2007-01-0774, 2007
    [43]. M. Hasegawa, Y. Shimasaki et al,“Study on Ignition Timing Control for Diesel Engines Using In-Cylinder Pressure Sensor,”SAE Paper 2006-01-0180
    [44]. R. Sun, R. Thomas, C. L. Gray, An HCCI Engine Power Plant for a Hybrid Vehicle, SAE Paper 2004-01-0933, 2004
    [45]. J. Wang, Hybrid Robust Control for Engines Running Low Temperature Combustion and Conventional Diesel Combustion Modes, SAE Paper 2007-01-0770, 2007
    [46]. J. Wang, Air Fraction Estimation for Multiple Combustion Mode Diesel Engines with Dual-Loop EGR Systems, Proceedings of the 46th IEEE Conference on Decision and Control, pp. 2862–2867, December, 2007
    [47]. J. Wang, Smooth In-Cylinder Lean-Rich Combustion Switching Control for Diesel Engine Exhaust-Treatment System Regenerations, 2008 SAE World Congress
    [48]. C. J. Chiang, A. G. Stefanopoulou, M. Jankovic, Nonlinear Observer-Based Control of Load Transitions in Homogeneous Charge Compression Ignition Engines, IEEE Transactions on Control Systems Technology, Vol.15, No.3, pp. 438–448, 2007
    [49]. M. Ammann, N. P. Fekete, L. Guzella, and A. H. Glattfelder,“Model-Based Control of the VGT and EGR in a Turbocharged Common-Rail Diesel Engine: Theory and Passenger Car Implementation,”SAE Paper 2003-01-0357, 2003
    [50]. Gloria M. Tsao, T. H. Chang, Keh C. Tsao,“An Expert System Based Approach to Internal Combustion Engine Experimentation,”SAE Paper 910052, 1991
    [51]. Tariq Assaf, Joanne Bechta Dugan, On-board Diagnostic Expert System via an Enhanced Fault Tree Model, SAE Paper 2006-01-1567, 2006
    [52]. Amir Hossein Shamdani, Amir Hossein Shamekhi, Masoud Ziabasharhagh etc, Air-to-Fuel Ratio Control of a Turbocharged Diesel Engine Equipped with EGR using Fuzzy Logic Controller, SAE Paper 2007-01-0976, 2007
    [53]. Reza Karbalaei Mohammad Ali, S. Hamed Tabatabaei, Ali Ghaffari etc, Integrated Control of AFS and DYC in the Vehicle Yaw Stability Management System Using Fuzzy Logic Control, SAE Paper 2008-01-1262, 2008
    [54]. Rafal Longwic, Modeling the Combustion Process in the Diesel Engine with the use of Neural Networks, SAE Paper 2008-01-2446, 2008
    [55]. Vijay Manikandan Janakiraman, Saikishan Suryanarayanan, G. Lakshmi Narayana Rao ect, Analysis of the Effect of In-cylinder Parameters on NOX and HC Emissions of a CI Engine Using Artificial Neural Networks, SAE Paper 2006-01-3313, 2006
    [56]. http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MPC555&webpageId=M98648&nodeId=0162468rH3DgbNGrmC8648&fromPage=tax
    [57].吴进军MPC555的发动机电控单元最小系统设计,http://www.qcdz.cn/html/doc/20087/46261.html
    [58]. http://www.infineon.com/cms/en/product/channel.html?channel=ff80808112ab681d0112ab6b6a260817
    [59]. Sou Long Wong,Bjorn Steurich,用于发动机动力系统的32位微控制器http://www.eaw.com.cn/news/newsdisplay/article/5401
    [60].郑燕,赫建国,党剑华,基于VHDL语言与QuartusⅡ软件的可编程逻辑器件应用与开发,北京:国防工业出版社, 2007
    [61].徐志军,徐光辉等,大规模可编程逻辑器件及其应用,成都:电子科技大学出版社, 2000
    [62]. Dirk Jansen(德)等,王丹,童如松译,电子设计自动化(EDA)手册,北京:电子工业出版社,2005
    [63]. Zeidman B,基于FPGA & CPLD的数字IC设计方法,北京:北京航空航天大学出版社, 2004
    [64].段玉生,电工电子技术与EDA基础,北京:清华大学出版社, 2004
    [65]. M.A. Ganser, Common Rail Injectors for 2000 bar and Beyond, SAE Paper 2000-01-0706, 2000
    [66]. Joachim Schommers,Frank Duvinage, Marco Stotz, Potential of Common Rail Injection System for Passenger Car DI Diesel Engines, SAE Paper 2000-01-0944, 2000
    [67]. Susumu Kohketsu, Keiki Tanabe and Koji Mori, Flexibly Controlled Injection Rate Shape with Next Generation Common Rail System for Heavy Duty DI Diesel Engines, SAE Paper 2000-01-0705, 2000
    [68]. Y. Mase, J. I. Kawashina, T. Sato and M. Euguchi, Nissan?s New Multivalve DI Diesel Engine Series, SAE Paper 981039, 1998
    [69]. Shuji Kimura, Osamu Aoki, Hiroshi Ogawa, Shigeo Muranaka and Yoshiteru Enomoto, New Combustion Concept for Ultra-clean and High-efficiency Small DI Diesel Engines, SAE Paper 1999-01-3681, 1999
    [70]. Shuji Kimura, Osamu Aoki, Y. Kitahara and E. Aiyoshizawa, Ultra-clean Combustion Technology Combining a Low-temperature and Premixed Combustion Concept for Meeting Future Emission Standard, SAE Paper 2001-01-0200, 2001
    [71]. Hiromichi Yanagihara, Ignition Timing Control at Toyota UNIBUS Combustion System, Proceedings of the IFP International Congress on a New Generation of Engine Combustion Processes for the Future, pp. 34~42, 2001
    [72]. Ryo Hasegawa and Hiromichi Yanagihara, HCCI Combustion in DI Diesel Engine, SAE Paper 2003-01-0745, 2003
    [73]. Kazuhiro Akihama, Yoshiki Takatori, Kazuhisa Inagaki, Shizuo Sasaki, Anthony M.Dean, Mechanism of the Smokeless Rich Diesel Combustion By Reducing Temperature, SAE Paper 2001-01-0655, 2001
    [74]. Yuyin Zhang, Keiya Nishida, Vapor/Liquid Behaviors in Split-Injection D.I. Diesel Sprays in a 2-D Model Combustion Chamber, SAE Paper 2003-01-1837, 2003
    [75]. Rickard Ehleskog, Experimental and Numerical Investigation of Split Injections at Low Load in an HDDI Diesel Engine Equipped with a Piezo Injector, SAE Pape 2006-01-3433, 2006
    [76]. C.Beatrice, P.Belardini, C.Bertoli etc, Combustion Paterns in Common Rail D.I Engines Inferred by Expriments and C.F.D Computations.”Combustion Science and Techenology, 162:235-261, 2001
    [77]. Katsuyoshi Koyanagi, Heinz Ming etc, Optimizing Common-Rail Injection By Optical Diagnostics in a Transparent Production Type Diesel Engine, SAE Pape 1999-01-3646, 1999
    [78]. Taewon Lee, Rolf D.Reitz, The Effects of Split Injection and Swirl on a HSDI Diesel Engine Equipped With a Common-Rail Injection System, SAE Pape 2003-01-0349, 2003
    [79]. A.Helmantel, J.Somhorst, I.Denbratt, Visualization of the Effects of Post Injecion and Swirl on the Combustion Process of a Passenger Car Common Rail DI Diesel Engine, ICES 2003-622 ASME, 2003
    [80]. C.Beatrice, P.Belardini, C.Bertoli etc, Diesel Combustion Control in Common Rail Engines by New Injection Strategies, International Journal of Engine Research, 3(1):23-35, 2002
    [81]. Yi Liu, Rolf D. Reitz, Optimizing HSDI Diesel Combustion and Emissions Using Multiple Injection Strategies, SAE Pape 2005-01-0212, 2005
    [82].静林,丰田公司2.2L直喷柴油机,《汽车与配件》市场与技,2006,APT(NO.8)
    [83].苏万华,林铁坚,张晓宇等,MULINBUMP-HCCI复合燃烧放热特征及其对排放和放热率的影响,内燃机学报,2004,22(3):193~200
    [84]. Wanhua Su, Tiejian Lin and Yiqiang Pei, A Compound Technology for HCCI Combustion in a DI Diesel Engine Based on the Multi-pulse Injection and the BUMP Combustion Chamber, SAE Paper 2003-01-0741, 2003
    [85]. Wanhua Su, Xiaoyu Zhang, Tiejian Lin, Study of Pulse Spray, Heat Release, Emissions and Efficiencies in A Compound Diesel HCCI Combustion Engine, Proceedings of ASME-ICE ASME Internal Combustion Engine Division 2004 Fall Technical Conference, ICEF2004-927, 2004
    [86]. Su Wanhua, Wang Hui, Liu Bin. Injection Mode Modulation for HCCI Diesel Combustion, SAE Paper 2005-01-0117, 2005
    [87]. Arjan Helmantel, Ingemar Denbratt, HCCI Operation of a Passenger Car Common Rail DI Diesel Engine with Early Injection of Conventional Diesel Fuel, SAE Paper 2004-01-0935, 2004
    [88]. Buchwald, R. Brauer, M. Blechstein, Adaption of Injection System Parameters to Homogeneous Diesel Combustion, SAE 2004-01-0936, 2004
    [89]. Sanghoon Kook and Choongsik Bae, Combustion Control Using Two-Stage Diesel Fuel Injection in a Single-Cylinder PCCI Engine, SAE 2004-01-0938, 2004
    [90].徐丽娜,数字控制,哈尔滨:哈尔滨工业大学出版社,1991
    [91]. Kursun V, Narendra S G, De V K et al, Monolithic DC-DC Converter Analysis and MOSFET Gate Voltage Optimization, Proc IEEE/ACM Int, Houston USA, 2003
    [92]. Duan X-M, Deng H-F, Sun N-X, A High Performance Integrated Boost DC-DC Converter for Portable Power Supply, Nineteenth Annual IEEE Applied Power Electronics Conf and Expo, Anaheim USA, 2004:1039-1044
    [93]. Manjrekar M D, Kieferndorf R, Venkataramanan G, Power Electronic Transformers for Utility Applications, IEEE Industry Applications Conference, Anaheim USA, 2000: 2496-2502
    [94].刘岩,常佶,田立欣,电流控制型开关电源,现代电子技术,2001,(10): 60-62
    [95]. Deng H F, Duan X M, Monolithically Integrated Boost Converter Based on 0.5μm CMOS Process, IEEE Tans Power Electronics, 2005, 20(3): 628-638
    [96]. Abedinpour A, Trivedi A, Shenai K, DC-DC Power Converter for Monolithic Implementation, IEEE Industry Applications SOC Annual Meeting, Rome Italy, 2000:2471-2475
    [97].高原,邱新芸,汪晋宽,峰值电流控制开关电源斜坡补偿的研究,仪器仪表学报,2003,24(4):118-120
    [98].胡水根,邹雪城,张兢,一种用于Boost DC-DC转换器的新型动态斜坡补偿电路,计算机与数字工程,2007,35(10):159-162
    [99].杨喆,姚素英,徐江涛,一种用于升压型DC/DC变换器的低压带隙基准源,微电子学,2007,37(01):105-112
    [100].连长震,李建秋,周明等,电控燃油喷射用高速电磁阀驱动方式研究,汽车工程,2002,24(4):310-313
    [101].宋军,李书泽,李孝禄等,高速电磁阀驱动电路设计及试验分析,汽车工程,2005,27(5):547-549
    [102].徐权奎,祝轲卿,陈自强等,高压共轨式柴油机电磁阀驱动响应性研究,内燃机工程,2007,28(3):15-19
    [103].Zhang J Y, Li J Q, Development of the Main Controller of Compressed Natural Gas Engine Based on 32-Digit Powerpc561, SAE Paper 2008-01-1738, 2008
    [104].Zeidman B,基于FPGA & CPLD的数字IC设计方法,北京:北京航空航天大学出版社,2004
    [105].Freescale Semiconductor Company, MCF5235 Reference Manual, USA: Freescale Semiconductor Company, 2001
    [106].张震,全电控柴油引燃天然气发动机电控单元及电控系统的研究与开发,硕士学位论文,天津大学,2002
    [107].黄书伟,卢申林等,印制电路板的可靠性设计,北京:国防工业出版社, 2007
    [108].Stephen H. Hall, Garrett W. Hall, James A. McCall, High-Speed Digital System Design-A Handbook of Interconnect Theory and Design Practices, A Wiley-Interscience Publication, 2000
    [109].High-Speed Board Design Techniques, Copyright ? Advanced Micro Devices, 1997
    [110].康一梅等,嵌入式软件设计,北京:机械工业出版社,2007.6
    [111].杨刚,肖宇彪,32位嵌入式系统与SoC设计导论,电子工业出版社,2006.4
    [112].郑人杰等著,实用软件工程,北京:清华大学出版社,1997.4
    [113].杨文龙,古天龙,软件工程,电子工业出版社,2004.3
    [114].[美]Cameron Hughes, Thomas Hamilton, Tracey Hughes, C++ IOSTREM面向对象I/O程序设计,北京:电子工业出版社,1997.5
    [115].马茜,盖刚,张勇,面向对象的软件设计基础,北京科海培训中心
    [116].Jack E. Kemmerly, Steven M.Durbin,工程电路分析,北京:电子工业出版社,2002
    [117].杨岳峰,张奕黄,“主开关管的散热保护及散热器的选择方法”,电机电器技术,2003(2):21~23,2003
    [118].苏开才,毛宗源,“现代功率电子技术”,国防工业出版社,北京,1995
    [119].李永平,Pspice电路仿真程序设计,北京:国防工业出版社,2006
    [120].李永平,董欣,Pspice电路设计与实现,北京:国防工业出版社,2006
    [121].朱元宪,WIT?s New Generation ECU for Diesel Engine Control,第一届发动机电控技术国际会议,2008.11
    [122].田丽,影响印刷电路板(PCB)的特性阻抗因素及对策,自动化与仪器化表,2003,(2):48-49
    [123].刘学龙,柴油机高压共轨燃油喷射系统的仿真与实验研究,硕士学位论文,天津大学,2009
    [124].杨洪敏,苏万华,汪洋,高压共轨式喷油器的无量纲几何参数对喷油规律和喷油特性一致性影响的研究,内燃机学报,2000,18(3):244-249
    [125].林铁坚,汪洋,苏万华,高压共轨喷油器设计参数对性能影响的研究,内燃机学报,2001,19(4):289-294

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700