用户名: 密码: 验证码:
使用PLIEF技术对重型柴油机相似环境条件下柴油喷雾结构及其浓度场的定量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于柴油机而言,燃油的喷射、雾化及其与空气的混合是整个燃烧过程的一个关键环节,然而前人对柴油喷雾的研究主要是在较低环境密度(35kg/m3以下)下开展的,距离现代重型柴油机高负荷工况(环境密度达60 kg/m3以上)相差很远,有必要对现代重型柴油机相似环境条件下柴油喷雾场进行深入定量研究。
     本文设计、开发了定容燃烧弹系统,实现了最高1100K温度和60kg/m3密度的喷雾环境模拟,对气、液相柴油喷雾温度场和浓度场进行了定量标定。在此基础上,本文使用复合激光诱导荧光技术在定容燃烧弹内定量研究了环境温度、环境密度、喷油压力、喷孔直径、氧气浓度等对重型柴油机相似环境条件下柴油喷雾结构和浓度场的影响。研究中,环境温度为800-1100K,环境密度为20-100kg/m3,喷油压力为100-220MPa,喷孔直径为0.10-0.18mm。
     研究发现,现代重型柴油机相似环境条件下柴油喷雾结构可以使用气液相喷雾锥角、贯穿距离,液核区,气相喷雾外壳,气相喷雾浓混区(Φ>2)、稀混区(Φ≤2),气相喷雾头部等参数来描述,据此本文还建立了重型柴油机相似环境条件下柴油喷雾结构模型,该结构模型中液核区域同时存在当量比相对较高的气相喷雾,这和John Dec建立的喷雾模型是不同的。现代重型柴油机相似环境条件下,气液相喷雾浓度由外到内从0逐渐增大到最大值,气相喷雾温度由外到内从环境气体平均值逐渐下降到最低。喷雾发展过程大致可以分为初期、中期、充分发展期三个阶段,在喷雾发展初期,液核长度随时间基本呈线性增长,气液相喷雾贯穿距离和锥角基本一样,气相喷雾当量比较小;在喷雾发展中期,液核长度随时间成抛物线性增长直至液核达到其最大长度,气液相贯穿距离仍然基本一致,气相喷雾瞬态最大当量比不断增大;在喷雾充分发展期,液核长度基本不变,气相喷雾继续向前发展,其瞬态最大当量比达到最大值并开始下降,液核、气相喷雾浓混区、气相喷雾低温核区基本重叠。
     研究还发现,重型柴油机相似环境条件下,环境密度、环境温度、喷孔直径、喷油压力和氧气浓度等对柴油喷雾动态结构和浓度场具有重要影响,对着火时刻柴油喷雾结构和浓度场(Φ-T图上燃烧路线始点位置)也有着重要影响。在增加充分发展期气相喷雾头部稀混区气相燃油比例,改善其均匀性,增厚气相喷雾外壳方面,减小喷孔直径、降低环境温度和提高环境密度具有很强的可替代性,同时减小喷孔直径、降低环境温度还可使气相喷雾最大当量比大幅下降。重型柴油机相似环境条件下,降低环境温度接近800K着火时刻气相喷雾不存在浓混区。
For diesel engine, fuel injection, atomization and mixing with the air is a key step to the whole combustion process. However, the study of diesel spray were mainly carried out in the low ambient density (below 35 kg/m3) by predecessor by far, which is far from the modern heavy-duty diesel engine high-load operating conditions (ambient density of 60 kg/m3 and above). It is necessary to quantitatively study the diesel spray under the modern heavy-duty diesel engine similar conditions.
     A constant-volume bomb was developed to obtain high ambient density and high temperature environment. The highest 1100K temperature and density of 60kg/m3 environmental simulation was achieved. The concentration and temperature both of vapor phase and liquid phase were quantitatively calibrated. On this basis, the effects of ambient density, ambient temperature, injection pressure, injector diameter and oxygen concentration on diesel spray structure and concentration were quantitatively studied under heavy-duty diesel engine similar conditions in the constant-volume bomb by using planar laser induced fluorescence technique. The experimental range of temperature was 800-1100K and 20-100 kg/m3 for density, and 100-220MPa for injection pressure, and 0-10-0.18mm for injector diameter.
     It was found that the diesel spray structure could be described by parameters such as penetrations and cone angles both of vapor phase and liquid phase, liquid core, the sheath of vapor phase spray, dense mixed zone (Φ> 2), lean mixed zone (Φ≤2), vapor phase spray head and so on under heavy-duty diesel engine similar conditions. Accordingly, structure model of diesel spray was established under heavy-duty diesel engine similar conditions, in which there was vapor phase spray with relatively high equivalence ratio in the liquid core zone, which is different from the spray model established by John E. Dec. The concentration both of vapor phase and liquid phase gradually increase from 0 to a maximum from outside to the inner, the temperature of vapor phase spray decreases gradually from the mean environmental value to the lowest from outside to the inner under heavy-duty diesel engine similar conditions. Spray development process can be divided into three stages of early, mid, full development period. In the early stage of spray development, liquid core length increases linearly with time, the penetrations and cone angles both of vapor phase and liquid phase are almost the same with each other, the equivalence ratio of vapor phase spray is low. In the middle stage of spray development, liquid core length increases exponentially with time until to its maximum value, the penetrations and cone angles both of vapor phase and liquid phase are almost the same with each other too, the transient maximum equivalence ratio of vapor phase spray gradually increases. In the full development stage of spray, liquid core length remains basically unchanged, vapor phase spray keeps on developing forward, there is obviously vapor phase spray head, the transient maximum equivalence ratio of vapor phase spray rises to its maximum value and then decreases, liquid core、vapor phase dense mixed zone and vapor phase low temperature core overlap each other in principle.
     It was also found that the ambient density, ambient temperature, injection pressure, injector diameter and oxygen concentration had important influence on the diesel spray temporal structure and concentration, the diesel spray structure and concentration near ignition timing (namely the starting point of combustion path in theΦ-T diagram) were significantly impacted by the factors too under heavy-duty diesel engine similar conditions. For the increase of vapor phase fuel mass fraction in the lean mixed zone and improvement of spray homogeneity in the vapor phase spray head, and incrassation of the sheath of vapor phase spray, the reduction of injector diameter and decrease of ambient temperature and increase of ambient density were highly substitutable. Moreover, the maximum equivalence ratio of vapor phase spray significantly decreased by the reduction of injector diameter and decrease of ambient temperature. There was no dense mixed zone in the vapor phase spray when ambient temperature was reduced to 800K near ignition timing.
引文
[1] J. Warnatz, U. Maas & R. W. Dibble., Combustion: Physical & Chemical Fundamentals, Modelling & Simulation, Experiments, Pollutant Formation (4th ed.), Berlin Heidelberg: Springer -Verlag, 2006
    [2]翁祖亮,平银生,从日益严重的能源和环境问题看我国中小功率柴油机的发展,中国内燃机学会中小功率柴油机分会与基础件分会论文集,2002,2~3
    [3]叶代启,烟气中氮氧化物污染的治理,环境保护科学,1999.4
    [4]魏淑芬,内燃机的排放污染分析及控制,环境保护,1996,(5):6~9
    [5] Youistsu Kakoi et al,“Emission Reductions Technology Applied to High Speed Direct Injection Diesel Engine”, SAE paper 980173, 1998
    [6] Jefferey A.Leet, et al,“EGR’s Effect on Oil Degradation and Intake System Performance”, SAE paper 980179,1998
    [7] Daniel W. Dickey, Thomas W. Ryan III, NOx Control in Heavy-Duty Diesel Engines- What is the Limit?, SAE 980174,1998
    [8] Otto Uyehara,“Factors-Effects the formation of NOx in Diesel Engines”, SAE paper 910732, 1991
    [9] Otto Uyehara,“Factors that Affect NOx and Particulates in Diesel Engine Exhaust, Part II”, SAE paper 920695, 1992
    [10] John E Dec. A Conceptual Model of DI Diesel Combustion Based on Laser-Sheet Imaging. SAE, 970873, 1997
    [11] Patrick F. Flynn, Russell P. Durrett, Gary L. Hunter. Diesel Combustion: An Integrated View Combining Laser Diagnostics, Chemical Kinetics, and Empirical Validation. SAE, 1999-01-0509, 1999.
    [12] C. Arcoumanis and K. P. Shindler, Mixture Formation and Combustion in the D.I. Diesel Engine. SAE 972681, 1997
    [13] Akihama, K., Takatori, Y., Inagaki, K., Mechanism of the smokeless rich Diesel combustion by reducing temperature, SAE paper 2001-01-0655, 2001
    [14] Kamimoto, T., and Bae M., High Combustion Temperature for the Reduction of Particulate in Diesel Engines, SAE paper 880423, 1988
    [15] Lutz, A.E., Kee, R.J., and Miller, J.A., Senkin: A Fortran Program For Predicting Homogenous Gas Phase Chemical Kinetics with Sensitivity Analysis, Sandia NationalLaboratories, SAND87-8248; 1994
    [16] T Kitamura, T Ito, J Senda and H Fujimoto, Mechanism of smokeless diesel combust ion wi th oxygenated fuels based on the dependence of the equivalence rat io and temperature on soot particle formation, International Journal of Engine Research, 2002, Vol. 3(4): a223-247
    [17] Kee, R.J., Rupley, F.M. and Miller, J.A., Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Kinetics, Sandia National Laboratories, SAND89-8009B, UC-706; 1992
    [18] J. B. Heywood, Internal combustion engine fundamentals, New York: McGraw-Hill Book Company, 1998
    [19] Ciajolo, A. D'Anna, A., Barbella, R., Tregrossi, A., and Violi, A., The Effect of Temperature on Soot Inception in Premixed Ethylene Flames, Proceedings of the Combustion Institute 26, 1996, 2327-2333
    [20]. Prof. Dr.-ling. A. Leipertz,“Spary and Atomization”, Lehrstuhl fur Technische Thermodynomic (LTT), German, 2007
    [21].黄豪中,苏万华,裴毅强,“基于CO-4,-T图研究混合速率对柴油低温燃烧的影响”,内燃机学报,Vol. 27, NO.2, pp. 97-102, 2009
    [22].“石油及其代用能源高效率超低污染利用的基础研究科学研讨会”纪要,天津,1998.3
    [23].梁刚,2002年和2001年世界石油储量和产量,国际石油经济,2003,11(1): 54-5521世纪我国石油供给分析,中国石油学会石油炼制分会,2005
    [24].盛杨怿,我国石油供给、需求现状及战略分析,经济前沿,2005,11(5):8~11
    [25].牛建英,战略矿产资源供应安全研究:[博士学位论文],北京;中国地质大学,2007
    [26].杨妙梁,汽车发动机与环境保护,北京:中国物质出版社,2001.
    [27]. The report of Energy Information Administration of U.S
    [28]. Caterpillar Company report,“The view of bridge”Deer 2006 Detroit Michigan
    [29].姜振飞,姜恒,高油价阴影下的中国石油安全战略,现代管理科学,2005年第三期
    [30].文清,发改委:2010年石油进口依存度将突破50%,市场周刊.新物流,2005(7): 4
    [31].解茂昭,内燃机计算燃烧学(第二版),大量理工大学出版社,大连,2005.9
    [32].叶代启,烟气中氮氧化物污染的治理,环境保护科学,1999.4
    [33].魏淑芬,内燃机的排放污染分析及控制,环境保护,1996,(5):6~9
    [34].张少华,欧洲柴油轿车的发展情况,汽车情报,2004(35):32~35
    [35].赵三明,从2004到2005:倪宏杰谈内燃机行业的现状与趋势,中国工业报,2004.12.31
    [36].张少华,欧洲柴油轿车的发展情况,汽车情报,2004(35):32~35
    [37]. Daniel W. Dickey, Thomas W. Ryan III, NOx Control in Heavy-Duty Diesel Engines- What is the Limit?, SAE 980174,1998
    [38]. Castleman R. A., The Mechanism of Atomization of a Fuel Jet, Journal of Physics, 1932
    [39]. Dejuhasz K. J., Dispersion of sprays in solid-injection oil, Journal of Physics, 1931
    [40]. Schweitzer P. H., Mechanism of Disintegration of Liquid Jets, J. Appl. Phys., Vol. ... 136-159, 1931
    [41]. Bergwerk, W., Flow Pattern in Diesel Nozzle Spray Holes, 1959
    [42]. Shkadov V. Y., Instability of a two-layer capillary jet, International Journal of Multiphase Flow, Volume 22, Number 2, 1983
    [43]. Rupe J. H., The Liquid Phase Mixing of a Pair of Impinging Streams, Atomization and Sprays, 1989
    [44]. Muraszew A. E. Giffen and A. Muraszew, Atomization of Liquid Fuels, John Wiley, New York , 1953
    [45]. Bracco F. V., Reitz R. D., Mechanism of Atomization of a Liquid Jet, Phys, Fluids, 1982
    [46]. Lin S. P., Kang D. J., Atomization of a liquid jet, Physics of fluids, 1987, 30:2000-2006
    [47]. Hiriroyasu H.,Arai M., Structure of Fuel Sprays in Diesel Engines, SAE Paper 900475,1990
    [48].三木英雄等,柴油机燃油喷雾雾化特性的实验研究,内燃机关(日文),1983, 1983, 22(0):10-17
    [49]. Cavaliere A., et al, Analysis of Diesel Spray Characteristics through Two-Dimentional Laser Light Scattering Technique, ICHMT 19th Symposium,1987
    [50]. Reitz R. D., Diwakar R., The Effect od Drop Breakup on Fuel Sprays, SAE Paper 840469,1986
    [51]. G.J.Smallwood and ?.L.Gülder“Views on the Structure of transient diesel sprays”, Atomization and Sprays, vol.10,pp.355-386,2000
    [52]. Chaves H., Knapp M., et al, Experimental Study of Cavitation in the Nozzle Hole of Diesel Injectors Using Transperengt Nozzles, SAE Paper 950290, 1995
    [53]. Sateriou C., Andrews R., Smith M., Direct Injection Diesel Sprays and the Effect of Cavitation and Hydraulic Flip on Atomization, SAE Paper 950080, 1995
    [54]. Tamaki N., Shimizu M., Hiroyasu H., Enhangcement of the atomization of a liquid jet by cavitation in a nozzle hole, Atomization and Sprays, 2001, 11: 125-137
    [55]. C. Baumgarten et al, Numerical and Experimental Investigation of Cavitating Flow in High Pressure Diesel Nozzles, ILASS, Europe, 2001
    [56]. Fredrik Wahlin, Experimental Investigation of Impinging Diesel Sprays for HCCI Combustion, Doctoral Dissertation of Royal Institute of Technology
    [57]. Hiroyasu, H. and Arai,M.“Structures of Fuel Sprays in Diesel Engines”, SAE Paper No.900475
    [58]. A. Fath, K. U. Munch, Alfred leipertz, Spray Breakup Process of Diesel Fuel Investigated Close to the Nozzle, International Journal of Fluid Mechanics Research, Volume 24, Issue 1-3, Pp.251-260, 1997
    [59]. Abrayham J, Magi V, A Model for Multicomponent Droplet Vaporization in Sprays, SAE Paper 980511
    [60]. Torda T. P., Evaporation of Drops and Breakup of Sprays, Atomization and Sprays, 1973
    [61]. Ranz W. E., On Sprays and Spraying, Can. J. Chem. Eng, 1958, 36:175
    [62]. Fath, A., Fettes, C. and Leipertz, A.,“Investigation of the Diesel Spray Break-up Close to the Nozzle at Different Injection Condition”, Proceedings of COMODIA’98, pp.429-434, 1998, Japan
    [63]. Badock C.Wirth R.Fath A Investigation of Cavitation in Real Size Diesel Injection Nozzles 1999(5)
    [64]. Yong Yi,Numerical Modeling of Spray Primary Breakup with Application to Diesel Engines,UMI Number: 3072746,University of Wisconsin– Madison,Directed by Reitz,2002
    [65].何学良,李疏松,“内燃机燃烧学(第一版)”,机械工业出版社,北京,1990
    [66]. Wakuri,Y., Fuji,M., Amitani, T. and Tsuneya, R.,“Studies on the Penetration of Fuel Spray in a Diesel Engine,”Bulletin of JSME ,Vol.3,No.9,pp123-130,1960
    [67]. Heywood J. B., Internal Combustion Engine Fundamental, McGraw-Hill: New York, 1988
    [68]. Dent, J.,“A Basis for the Comparison of Various Experimental Methods forStudying Spray Penetration,”SAE Paper 710571,1971.
    [69]. Hiroyasu, H. and Arai, M.,“Structures of Fuel Sprays in Diesel Engines,”SAE Paper 900475, 1990
    [70]. Naber,J. and Siebers, D.,“Effects of Gas Density and Vaporization on Penetration and Dispersion of Diesel Sprays,”SAE Paper 960034,1996
    [71]. Browne, K., Partridge, I. and Greeves, G.,“Fuel Property Effects on Fuel/Air Mixing in an Experimental Diesel Engine”, SAE Paper 860223, 1986.
    [72]. Kamimoto, T., Yokota, H. and Kobayashi, H.,“Effect of High Pressure Injection on Soot Formation processes in a Rapid Compression Machine to Simulate Diesel Flames”, SAE Paper 871610, 1987.
    [73]. Siebers, D.,“Liquid-Phase Fuel Penetration in Diesel Sprays”, SAE Paper 980809, 1998.
    [74]. Siebers, D. L.,“Scaling Liquid-Phase Fuel Penetration in Diesel Sprays Based on Mixing-Limited Vaporization”, SAE Paper 1999-01-0528,1999.
    [75]. Espey, C. and Dec, J.,“The Effect of TDC Temperature and Density on the Liquid-Phase Fuel Penetration in a D.I. Diesel Engine”, SAE Paper 952456, 1995.
    [76]. Verhoeven, D., Vanhemelryck, J. and Baritaud, T.,“Macroscopic and Igniton Characteristics of High-Pressure Sprays of Single-Component Fuels”, SAE Paper 981069, 1998.
    [77]. Scheid, E., Pischinger, F., Knoche, K., Daams, H., Hassel, E. and Ruter, U.,“Spray Combustion Chamber with Optical Access, Ignition Zone Visualization and First Raman Measurements of Local Air-Fuel Ration,”SAE Paper 861121,1986
    [78]. Kosaka, H. and Kamimoto, T.,“Quantitative Measurement of Fuel Vapor Concentration in an Unsteady Evaporation Spray via a 2-D Mie-scattering Imaging Technique,”SAE Paper 932653,1993
    [79]. Espey,C., Dec, J., Litzinger, T. and Santavicca, D.,“Quantitative 2-D Fuel Vapor Concentration Imaging in a Firing D.I. Diesel Engine Using Planar Laser-Induced Rayleigh Scattering,”SAE Paper 940682,1994
    [80]. Espey,C., Dec, J., Litzinger, T. and Santavicca, D.,“Planar Laser Rayleigh Scattering for Quantitative Vapor-Fuel Imaging in a Diesel Jet,”Combustion and Plame, Vol 109,pp65-86,1997
    [81]. Anderson,O., Collin, R., Alder, M. and Egnell,R.,“Quantitative Imaging of Equivalence Ratio in DME Sprays Using a Chemically Preheated Combustion Vessel”,SAE Paper,2000.
    [82]. Melton,L.,“Spectrally Separated Fluorescence Emissions for Diesel Fuel Droplets and Vapor”, Applied Optics, vol.22, No.14,pp.2224-2226,1983
    [83]. Suzuki,M., Nishida, K., and Hiroyasu, H.,“Simultaneous Concentration Measurement of Vapor and Liquid in an Evaporating Diesel Spray”; SAE Paper 930863,1993
    [84]. Senda J. and Kanda, T.,“Quantitative Analysis of Fuel Vapor Concentration in Diesel Spray by Exciplex Fluorescence Method”, SAE Paper 970796,1997
    [85]. T Kitamura, T Ito, J Senda and H Fujimoto, Mechanism of smokeless diesel combust ion wi th oxygenated fuels based on the dependence of the equivalence rat io and temperature on soot particle formation, International Journal of Engine Research, 2002, Vol. 3(4): a223-247
    [86]. Musculus , M.P., Dec, J.E. and Tree, D.R.,“Effects of Fuel Parameters and Diffusion Flame Lift-Off on Soot Formation in Heavy-Duty Diesel Engine”, SAE Paaper 2002-01-0889, 2002
    [87]. John E. Dec, Patrick F. Fylinn, Charles K. Westbrook, An Intergrated View Combining Laser Diagnotics, Chemical Kinetics, And Experimental Validation , SAE Paper 1999-01-0509
    [88]. Yuyin ZHANG and Keiya NISHIDA and Takuo YOSHIZAKI,“Quantitative Measurement of Droplets and Vapor Concentration Distributions in Diesel Sprays by Processing UV and Visible Images”, SAE Paper 2001-01-1294
    [89]. Jong-Uk Kim and Byungyou Hong, Quantitative Vapour–liquid Visualization Using Laser-induced Exciplex Fluorescence, J. Opt. A: Pure Appl. Opt. 3: 338–345, 2001
    [90]. Kim, T., and Ghandhi, J.B.,“Quantitative 2-D Fuel Vapor Concentration Measurements in an Evaporating Diesel Spray using Exciplex Fluorescence”, SAE Paper 2001-01-3495,2001
    [91]. Tongwoo Kim, Jaal B. Ghandhy,“Quantitative Vapor Phase Exciplex Fluorescence Measurements at High Ambient Temperature and Pressure”, KSME International Journal, Vol. 17 No. 1, pp. 157-167, 2003
    [92]. Tongwoo Kim,“Quantitative 2-D Fuel Vapor Concentration Measurements in an Evaporating Diesel Spray Using the Exciplex Fluorescence Method”, UMI: 3033311, 2001
    [93]. M. S. Beckman and P. V. Farrell,“Simultaneous Liquid and Vapour Diesel Fuel Spray Images from a HEUI Injector”, ILASS Americas, 14th Annual Conference onLiquid Atomization and Spray Systems, Dearborn, MI, May 2001
    [94]. Mark Sean Beckman,“Quantitative Vapor Phase Imaging of In-Cylinder Diesel Fuel Sprays”, UMI: 3128027, Wisconsin-Madison, 2004
    [95].苏万华,孙田,郭红松,“复合激光诱导荧光定量标定技术及其对喷雾特性研究的应用,第一部分:燃油喷雾当量比定量标定方法的研究”,内燃机学报,2009
    [96].苏万华,孙田,郭红松,“复合激光诱导荧光定量标定技术及其对喷雾特性研究的应用,第二部分:喷射压力和喷孔直径对喷雾特性的定量分析”,内燃机学报, 2009
    [97]. Walter Knecht, Development Trends of Heavy Duty Diesel Engine in View of Future European Lagislative Requirements, COMODIA, Japan, 2008
    [98]. Wanhua Su, Yingying Lu, Wenbin Yu, et al, High Density-Low Temperature Combustion in Diesel Engine Based on Technologies of Variable Boost Pressure and Intake Valve Timing, SAE Paper 2009-01-1911
    [99].郭红松,苏万华,孙田,利用PLIEF技术对超高压燃油喷雾雾化和混合过程的研究,内燃机学报,No.6, Vol. 13,Pp. 525-531,2007
    [100].毛题襁,柴油发动机燃油喷射系统的发展,汽车工艺与材料,2009
    [101]陈国珍,荧光分析法,科学出版社,1975
    [102]汪洋,苏万华,史绍熙,用激光诱导荧光法(LIF)研究燃油喷雾的撞壁混合过程,燃烧科学与技术,1996,2(4)
    [103]. Hua Zhao,Nicos Ladommatos,Engine Combustion Instrumentation and Diagnostics,Society of Automotive Engineers,Inc.2001
    [104]. Melton,L.,“Spectrally Separated Fluorescence Emissions for Diesel Fuel Droplets and Vapor”, Applied Optics, vol.22, No.14,pp.2224-2226,1983
    [105]. Tonghoo.Kim,M.S.Beckman,P.V.Farrell and J.B.Ghandhi,Evaporating Spray Concentration Measurements from Small and Medium Bore Diesel Injectors,SAE Paper 2002-01-0219
    [106].苏万华,余皎,赵昌普,汪洋,林铁坚,一种研究现代柴油机喷雾混合过程的实验装置,中国工程热物理学会燃烧学学术会议论文集,2000
    [107] COMPex 102准分子激光器使用手册
    [108] Andor公司DH712-18F-03型号ICCD用户手册
    [109]孙田博士论文
    [110] Felton,P., Bracco,F. and Bardsley,M.,“On the Quantitative Application of Exciplex Fluorescence to Engine Sprays,”SAE Paper 930870,1993
    [111] Yeh,C.–N., Kamimoto, T., Kobori, S., and Kosaka, H.,“Quantitative Measurement of 2-D Fuel Vapor Concentration in a Transient Spray via Laser-Induced Fluorescence Technique”, SAE Paper 941953,1994
    [112]孙田,复合激光诱导荧光定量标定技术及其对柴油喷雾特性研究的应用,天津大学博士学位论文
    [113]华自强,“工程热力学(第二版)”,高等教育出版社,1986
    [114] Yaws, C. L.,“Thermodynamic and Physical Property Data”, Gulf Publishing Company, 1992
    [115] Vargaftik, N. B.,“Handbook of Physical properties of Liquid and Gas”, Hamisphere, 1983
    [116]. Chraplyvy, A.R., Applied optics, 1981.20(15)
    [117] Felton,P., Bracco,F. and Bardsley,M.,“On the Quantitative Application of Exciplex Fluorescence to Engine Sprays,”SAE Paper 930870,1993
    [118]. Jong-Uk Kim and Byungyou Hong, Quantitative Vapour–liquid Visualization Using Laser-induced Exciplex Fluorescence, J. Opt. A: Pure Appl. Opt. 3: 338–345, 2001
    [119] Mike Potter,Russ Durrett,High-Efficiency Clean Combustion Design for Compression Ignition Engines, GM company report, 2006
    [120] Carsten Baumgarten, Mixture Formation in Internal Combustion Engine, New York: Springer-Verlag, 2006
    [121] Yann Guezennec, Shawn Midlam-Mohler and Giorgio Rizzoni. A mixed mode hcci/di engine based on a novel heavy fuel atomizer. 9th Diesel Engine Emissions Reduction (DDER) Workshop, Aug. 24-28, 2003
    [122] Shawn Midlam-Mohler. Diesel hcci with external mixture preparation. 10th Diesel Engine Emissions Reduction (DDER) Workshop, Aug29-Spet.2, 2004
    [123] B. Walter, B.Gatellier. Near Zero NOx Emissions and High Fuel Efficiency Diesel Engine: the NADITM Concept Using Dual Mode Combustion. Oil & Gas Science and Technology-Rev.IFP, Vol.58 (2003), NO.1, pp. 101~114. 2003
    [124] B. Walter, B. Gatellier. Development of the High Power NADI Concept Using Dual Mode Diesel Combustion to Achieve Zero NOx and Particulate Emissions”, SAE Paper 2002-01-1744, 2002
    [125] W. H. Su, X. Y. Zhang, T. J. Lin et al. Study of Pulse Spray, Heat Release, Emissions and Efficiencies in A Compound Diesel HCCI Combustion Engine, Proceedings of ASME-ICE ASME Internal Combustion Engine Division 2004 FallTechnical Conference, ICEF2004-927, 2004
    [126] W. H. Su, X. Y. Zhang, T. J. Lin et al. Effects of Heat Release Mode on Emissions and Efficiencies of a Compound Diesel Homogeneous Charge Compression Ignition Combustion Engine. Journal of Engineering for Gas Turbines and Power. APRIL 2006, Vol. 128:446~454
    [127] A. Helmantel, I. Denbratt. HCCI Operation of a Passenger Car Common Rail DI Diesel Engine With Early Injection of Conventional Diesel Fuel. SAE Paper 2004-01-0935, 2004
    [128] Shuji Kimura, An experimental analysis and future trend of Low-temperature and premixed combustion for Ultra-Clean Diesel, SAE Homogeneous Charge Compression Ignition system, 2005
    [129] L. M. Pickett and D. L. Siebers, "Soot in diesel fuel jets: effects of ambient temperature, ambient density, and injection pressure," in Proceedings of the Third Joint Meeting of the U.S. Sections of the Combustion Institute (The Combustion Institute), 2003
    [130]苏万华,高密度-低温柴油机燃烧理论与技术的研究与进展,内燃机学报(增刊),Vol.26, Pp.1-8, 2008
    [131] Jose V.Pastor, Jose J.Lopez, J.Enrique Julia,“Planar Laser-Induced Fluorescence Fuel Concentration Measurement in isothermal Diesel Sprays”Optics Express, Vol.10,No,7, 2002
    [132] Su Wanhua, Lin Tiejian, and Pei Yiqiang, (2003). A Compound Technology for HCCI Combustion in a DI Diesel Engine Based on the Multi-Pulse Injection and the BUMP Combustion Chamber. SAE Paper No.2003-01-0741
    [133] SU Wan-hua, WANG Yang, YU Jiao and et al. Mixture Preparation in a BUMP Combustion Chasmber for the Purpose of Realization of HCCI Combustion. Journal of Combustion Science and Technology, 2002, 8(4): 364-368
    [134]苏万华,林铁坚,张晓宇等, MULINBUMP-HCCI复合燃烧放热特征及其对排放和放热率的影响,内燃机学报,2004,22(3):193~200
    [135]严传俊,范玮,燃烧学,西北工业大学出版社,2005
    [133] Higgins, B.S. and Siebers D.L.,“Measurement of the Flame Lift-off Location on DI Diesel Sprays Using OH Chemiluminescence”, SAE Paaper 2001-01-0918, 2001
    [136]汪祥空化文章….
    [137] M. Ban, P Prieshing, N. Duic, n-heptane autoignition tabulation for ECFM-3Z Model, THIRD EUROPEAN COMBUSTION MEETING ECM 2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700