用户名: 密码: 验证码:
煤/煤气掺烧锅炉燃烧检测及控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤与煤气混烧是锅炉燃烧领域重要的研究内容,利用冶金行业的低热值燃料,解决钢铁厂高炉煤气与焦炉煤气的资源利用和保护环境,在电站锅炉上实现煤与煤气混烧特别是对低热值的高炉煤气大比例掺烧,可以起到很好的节能减排效果。
     本文研究了670t/h煤与煤气混烧锅炉的燃烧特性,构建了锅炉煤与高炉煤气焦炉煤气三种燃料同时掺烧的燃烧方案,搭建出煤/煤气掺烧的火焰图像检测系统,实现了煤气的大掺烧比例和全烧煤气。不同的煤气掺烧比例调整实验表明,高炉煤气投入比例增加,会使炉膛火焰中心温度下降,火焰中心上升,煤粉在炉膛中的停留时间缩短,飞灰含碳增加,同时会减小燃烧器区域的火焰黑度,降低主汽温度,并使排烟温度增加,锅炉效率下降;而焦煤投入后有利于锅炉燃烧。通过上述实验,得到了煤与煤气掺烧锅炉的最佳煤气掺烧比例。在此基础上,分析了煤气的掺烧对锅炉受热面的磨损原因及防范措施。
     通过对炉膛火焰图像监测系统的深入分析,提取了能实时反映炉膛燃烧状况的辐射强度参量,通过设定合理的阈值,实现了混烧锅炉燃烧稳定性的分析诊断和预警。煤/煤气混烧锅炉的一次灭火事故分析表明,该方法能有效地诊断燃烧工况异常现象,能给出锅炉不稳定燃烧的预警信号,避免锅炉灭火事故的发生。
     煤/煤气掺烧锅炉的烟气量增加,使主汽温度的波动变大。将辐射能作为前馈信号引入到670t/h煤与煤气混烧锅炉的主汽温控制回路,减小了主汽温度对燃烧的迟滞时间,改善了主汽温的品质,提高了蒸汽参数的稳定性。
     由于煤气的掺烧改变了原有的炉内燃烧组织方式,使混烧锅炉的燃烧优化调整难度加大。通过对不同风/燃比条件下的燃烧调整,以及辐射能信号与机组主要参数的监测和分析,获得了煤、高炉煤气、焦炉煤气的合理分配比例和混烧经济性的平衡点,形成了多燃料的在线燃烧调整控制策略,实现了煤/煤气掺烧锅炉的高效和低NOx排放的优化运行。
Co-firing of coal with BFG (Blast Furnace Gas) and COG (Cove Oven Gas) is an important study in the boiler combustion field. With the development of national economy, co-firing of coal and gas study is becoming increasingly important. The objective of co-firing study should solve not only the safety and economy in the co-combustion of pulverized coal and gas, but also the problem of environmental emissions.
     Through an in-depth analysis of combustion characteristics of multi-fuel fired 670t/h boiler in a power plant, we established a combustion program of burning coal and gas mixture, identified the largest proportion of gas, and built a flame image detecting system used for testing coal/gas mixed combustion.
     By monitoring the real-time combustion conditions through the flame image detectors arranged in certain furnace position, we can extract the common combustion characteristic parameters, set a reasonable threshold, achieve the diagnosis of combustion stability of the multi-fuel fired boiler and early warning function. The data of three-dimensional temperature field displayed that at different ratios of blended gas, the furnace temperature characteristics will take on different changes. With increasing gas proportion, furnace flame core temperature drops, and flame center moves up. When combining these kinds of early warning signals with burning radiation, temperature level and the furnace flame ON/OFF signals, we can also make an effective integration of the boiler fire warning signals and FSSS systems, and ultimately develop a new method of combustion warning. Visualization system can reflect changes in operating conditions and power loads, create the corresponding relations between furnace average/maximum temperature and load, and then be utilized to optimize the unit's part of the circuit using the radiation signal.
     Leading radiation energy as a feed-forward signal into the opium volume of the main steam temperature control loop can improve the quality of the temperature as well as the stability of steam parameters while blending with gas combustion. Experimental analysis indicates that at different air/fuel ratios, the radiation signal has a favorable corresponding relation with the actual generation power. Reasonable regulating the proportion of coal, the amount of BFG and COG through the previously mentioned corresponding relationship between them, and through the monitoring and analysis of the combustion and unit parameters lead to form a multi-fuel on-line combustion adjustment system and thus obtain better furnace combustion efficiency and low NOx emissions.
引文
[1]BP与国家能源局、国家统计局工业交通司.《BP世界能源统计2009》和《中国能源统计年鉴2009》.2010.3.
    [2]Ren J X. Study of combustion stability of blast furnace gas for turbine. Proceeding of the 1999 international joint power generation conference, Shanghai,1999.
    [3]王政民.高炉煤气的合理使用与节能潜力.冶金能源,1999,(1):36-41.
    [4]杜凤祥.高炉煤气余压发电装置在邯钢的应用.冶金动力,2002,(1):37-39.
    [5]苟嘉川.高炉煤气能量利用率提高探索.四川冶金,2002,(3):29-31.
    [6]侯长连,胡和平,董为民等.高效蓄热式工业炉的开发与利用.钢铁,2002,(1):17-19
    [7]尹建威,孙国龙.高炉煤气燃烧发电的现状和展望.燃气轮机技术,2002,15(1):27-29.
    [8]韩陈.75t/h煤粉锅炉全烧高炉煤气改造设想.冶金动力,2001,5:3-6.
    [9]安锦民,杨敏,贾文义等.锅炉合理掺烧高炉煤气试验分析.内蒙古电力技术.2001,5:11-12.
    [10]周建国.燃用高炉煤气工业锅炉的设计.工业炉,1993(3):23-25.
    [11]陈冬林,鄢晓忠,符慧林等.湘钢热电厂WGZ75/39-6煤粉锅炉改烧煤气的工程实践.热力发电,2001,(6):36-40.
    [12]杨轶,陈刚.煤粉和高炉煤气混烧锅炉燃烧问题的分析及改造.电站系统工程,2003,19(2):36-38.
    [13]湛志钢.煤粉/高炉煤气混烧对煤粉燃尽性影响的研究.硕士论文,华中科技大学,2004.
    [14]马晓茜,黄文迪.低热值煤气燃烧技术的应用与分析.冶金能源,1994,13(5):34-35,43.
    [15]马晓茜.燃气互换性与火焰稳定性研究.燃烧科学与技术,1996,2(1):46-53.
    [16]马晓茜,黄文迪,刘文龙.燃用低热值煤气锅炉燃烧系统节能改造的技术分析.节能技术,1994,6:29-30,40.
    [17]刘定平,陈红艳.低热值高炉煤气与煤粉混烧技术的探讨.锅炉技术,2003,34(6):44-48.
    [18]刘定平,裴振林.高炉煤气与贫煤在电站锅炉掺烧应用.中国电力,2002,(3):16-19.
    [19]张明春,冯波,马晓茜.低热值煤气燃烧技术探讨.煤气与热力,1996,16(3):45-49.
    [20]孙绍增,钱琳,王志强等.温度及氧含量对煤气再燃还原NOx的影响.动力工程,2008,28(4):265-269.
    [21]陈淑萍.2×130t/h次高压煤气、煤粉混烧锅炉本体优化安装.新疆钢铁,2003(1):47-48.
    [22]高连生.75t/h煤粉与高炉煤气混烧锅炉存在问题及改造.冶金动力,2002(6):44-49.
    [23]夏侯国伟,黄素逸,高文琼.75t/h燃煤锅炉改烧高炉煤气的技术关键及工程实践.湖南电力,2004,24(2):55-57.
    [24]江维光,赵慧武,张利忠等.150t/h燃油锅炉改为煤粉与高炉煤气混烧锅炉.节能技术,2005,23(3):273-274.
    [25]潘卫国,王文欢,任建兴等.350MW煤/高炉煤气混烧锅炉多工况热力计算的研究.上海电力学院学报,2005,21(2):102-105,110.
    [26]宋忠喜,王新晶,刘作.掺烧煤气对循环流化床锅炉的影响及对策.科技纵横,2003:34-36.
    [27]宋忠喜,王新晶,刘作.掺烧煤气对循环流化床锅炉的影响及设计对策.能源技术,2004,25(2):86-87.
    [28]吕剑明.电站燃煤锅炉改为煤气混燃炉的改造及运行.黑龙江石油化工,1999,10(4):43-45.
    [29]张林仙.对黄石下陆钢厂SHF20-25/400燃煤锅炉改烧混合燃气的校核计算.黄
    石高等专科学校学报,2001,17(2):16-17.
    [30]沈月芬,曹子栋等.高压燃煤锅炉掺烧高炉煤气对锅炉热工参数的影响.锅炉技术,1996:10-13.
    [31]沈月芬,曹子栋等.英国B&W公司燃煤锅炉掺烧高炉煤气对热工参数的影响.中国电力,1997,30(4):59-61.
    [32]何晋,杜瑞铭,聂利辉.锅炉飞灰含碳量偏高原因分析及处理对策.热力发电,2003:32-33.
    [33]张智刚,朱文蓓,曹子栋.全燃和掺燃高炉煤气炉的比较研究.锅炉技术,2005,36(1):53-56.
    [34]刘汉周,卢啸风,辛明道.燃煤锅炉煤、气混烧/燃气再燃技术的应用,2004(3):15-17.
    [35]唐长忠,周晓东.转炉煤气在电厂煤粉锅炉中的掺烧.冶金动力,2004(1):47-49.
    [36]X. Jun, X.X. Sun, S. Hu, D.X. Yu, An experimental research on boiler combustion performance, Fuel Processing Technology 68 (2000)139-151.
    [37]陈力,刘化才,辛卉.浅谈循环流化床锅炉掺烧高炉煤气.水利电力机械,2004,26(4):7-8.
    [38]王文选,张守玉等.循环流化床中石油焦与煤混合燃烧温度场研究.热能动力工程,2004,19(3):256-259.
    [39]刘聿拯,刘向龙等.煤粉炉改燃天然气对锅炉热力性能的影响.锅炉技术,2004,35(5):41-44.
    [40]罗青林,王慧云.抛煤机锅炉掺烧高炉煤气燃烧技术.发电设备,2005(3):164-166.
    [41]余欣迪,袁振峰等.燃气锅炉尾部受热面腐蚀的机理分析及改造,2002,22(3):230-231.
    [42]魏华彦,张忠孝等.气体再燃技术在宝钢电厂350 MW锅炉机组上的工业应用.热能动力工程,2005,20(5):535-538.
    [43]Ernst Worrell, Lynn Price, Nathan Martin. Energy efficiency and carbon dioxide emissions reduction opportunities in the US iron and steel sector.
    Energy,2001,26:513-536.
    [44]东方锅炉厂编.天然气锅炉.第一版.北京:科学技术出版社,1997:50-143.
    [45]Somasundaram, M. and Chattopadhyay.D. Reliability improvement and life extension of mixed fuel-fired steel plant boilers. Fuel and Energy abstract, 1997,29(2)9:618-623.
    [46]Milorad Bojica, Panos Mourdoukoutasb, Energy saving does not yield CO2 emissions reductions:the case of waste fuel use in a steel mill. Applied Thermal Engineering, Aug,2000,20(1):963-975.
    [47]J. Y. Shin a, Y.J. Jeon, D.J. Maeng, etc. Analysis of the dynamic characteristics of a combined-cycle power plant. Energy,2002,27:1085-1098.
    [48]Suzukawa Y, Sugiyama S, Mori I. Heat transfer improvement and NOx reduction in an industrial furnace by regenerative combustion system. Energy Conversion Engineering Conference,1996. IECEC 96. Proceedings of the 31st Intersociety, Volume:2,11-16 Aug.1996,2(s):804-809.
    [49]D.R. McIlveen-Wright, F. Pinto, L. Armesto, et al. A comparison of circulating fluidised bed combustion and gasification power plant technologies for processing mixtures of coal, biomass and plastic waste. Fuel Processing Technology 87 (2006) 793-801.
    [50]Y.S. Shen, B.Y. Guo, A.B. Yu, P. Zulli. A three-dimensional numerical study of the combustion of coal blends in blast furnace. Fuel 88 (2009) 255-263.
    [51]Richard G. Newell, William A. Pizer. Carbon mitigation costs for the commercial building sector:Discrete-continuous choice analysis of multifuel energy demand. Resource and Energy Economics 30 (2008):527-539.
    [52]Yewen Tan, Mark A.Douglas, Kelly V.Thambimuthu. CO2 capture using oxygen enhanced combustion strategies for natural gas power plants.Fuel 81(2002):1007-1016.
    [53]K. Kavouridis, N. Koukouzas. Coal and sustainable energy supply challenges and barriers. Energy Policy 36 (2008) 693-703.
    [54]Aysel T. Atimtay, Huseyin Topal. Co-combustion of olive cake with lignite coal in a circulating fluidized bed. Fuel 83 (2004) 859-867.
    [55]Aysel T. Atimtay, Burcak Kaynak. Co-combustion of peach and apricot stone with coal in a bubbling fluidized bed. Fuel Processing Technology 89 (2008) 183-197.
    [56]Philip C.W. Kwong, Christopher Y.H. Chao, et al. Co-combustion performance of coal with rice husks and bamboo. Atmospheric Environment 41 (2007):7462-7472.
    [57]H. Nevalainen, M. Jegoroff, J. Saastamoinen,et al. Firing of coal and biomass and their mixtures in 50 kW and 12 MW circulating fluidized beds-Phenomenon study and comparison of scales. Fuel 86 (2007):2043-2051.
    [58]E. J. Anthony. Fluidized bed combustion of alternative solid fuels; Status successes and problems of the technology. Prog. Energy Combust.1995,21:239-268.
    [59]S.S. Penner and A.L. Berlad. Fundamental combustion research in support of industrial applications. Energy,1995,20 (4):321-324.
    [60]Chungen Yin, Lasse A. Rosendahl, S(?) ren K. K(?)r. Grate-firing of biomass for heat and power production. Progress in Energy and Combustion Science 34 (2008):725-754.
    [61]Allen L. Robinson, Helle Jenker, Steven G. Buckley, et al. Interactions between coal and biomass when cofiring. Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute,1998/pp.1351-1359.
    [62]Aysel T. Atimtay, Murat Varol. Investigation of co-combustion of coal and olive cake in a bubbling fluidized bed with secondary air injection.Fuel 88 (2009) 1000-1008.
    [63]Bueno-Lopez, A. Garcia-Garcia. Potassium-containing coal-pellets for NOx reduction under gas mixtures of different composition. Carbon,42 (2004) 1565-1574.
    [64]P. Sathitruangsak, T. Madhiyanon, S. Soponronnarit. Rice husk co-firing with coal in a short-combustion-chamber fluidized-bed combustor (SFBC). Fuel 88 (2009): 1394-1402.
    [65]Ayhan Demirbas. Sustainable cofiring of biomass with coal. Energy Conversion and Management 44 (2003):1465-1479.
    [66]F.E. Ndaji, W.A.T. Ellyatt, A.A. Malik, K.M. Thomas. Temperature programmed combustion studies of the co-processing of coal and waste materials. Fuel 78 (1999): 301-307.
    [67]Larry L. Baxter, Thomas R. Miles, Thomas R. Miles Jr, et al. The behavior of inorganic material in biomass-fired power boilers:field and laboratory experiences. Fuel Processing Technology 54(1998):47-78.
    [68]程浩斌,周怀春,娄新生.新型燃煤锅炉燃烧过程稳定性评价指数CSI.工程热物理学报,1997,18(7):512-515.
    [69]王广慧.670t/h锅炉燃烧稳定性在线评判系统的研究:[硕士thesis].热能工程,华北电力大学,2006
    [70]李铭.电站锅炉燃烧状态监测及分析预报:[硕士thesis].热能工程,华北电力大学,2001
    [71]李惊涛.锅炉燃烧稳定性及其运行经济性在线评判系统研究:[硕士thesis].工程热物理,华北电力大学,2002
    [72]王禄伟.锅炉燃烧稳定性综合评判系统研究:[硕士thesis].动力工程,华北电力大学,2004
    [73]王冬生.锅炉燃烧稳定性在线评判系统研究:[硕士thesis].热能工程,华北电力大学,2005
    [74]王洋.基于数据融合的锅炉低负荷下燃烧稳定性判断:[硕士thesis].控制理论与控制工程,华北电力大学,2006
    [75]姜宝双,雷立群.670t/h锅炉50%负荷调峰稳定燃烧措施.热电技术,2007(1):9-11.
    [76]肖隽,王一清,吕震中.基于炉膛微压信号的锅炉燃烧诊断试验研究.锅炉技术,2002,33(7):12-15.
    [77]张玉杰,刘芳,齐忆南.基于神经网络的电站锅炉燃烧诊断方法研究.西安石油大学学报(自然科学版),2007,22(5):103-106.
    [78]陈荣生,杨亚平.煤粉锅炉煤焦混合燃烧安全稳定性和经济性研究.能源与环境,2007(1):50-52.
    [79]王春昌.煤质下降对炉内燃烧稳定性的影响及解决措施.热力发电,2007(4):44-46.
    [80]王广慧.基于模糊神经网络的锅炉燃烧稳定性综合评判模型.热电技术,2006
    (3):6-8.
    [81]Jian-Da Wu, Peng-Hsin Chiang, Yo-Wei Chang, Yao-jung Shiao. An expert system for fault diagnosis in internal combustion engines using probability neural network. Expert Systems with Applications 34 (2008):2704-2713.
    [82]Jian-Da Wu, Jien-Chen Chen. Continuous wavelet transform technique for fault signal diagnosis of internal combustion engines. NDT&E International 39 (2006): 304-311.
    [83]Lu G, Yan Y, Cornwell S, Whitehouse M, Riley G. Impact of co-firing coal and biomass on flame characteristics and stability. Fuel 87 (2008):1133-1140
    [84]F. Payri, S. Molina, J. Martin, O. Armas. Influence of measurement errors and estimated parameters on combustion diagnosis.Applied Thermal Engineering 26 (2006):226-236.
    [85]华彦平,邹煜,吕震中.现代燃煤电站锅炉火焰检测综述.热能动力工程,2001,16(1):1-5.
    [86]薛飞.基于辐射图像长的火焰温度场测量研究:[博士学位论文].浙江大学.1999.
    [87]吕凤鸣.基于数字图像处理技术的炉膛火焰检测系统:[硕士thesis].控制理论与控制工程,华北电力大学(北京),2005.
    [88]孙德利.600MW机组锅炉火焰检测装置存在的问题分析及改进.科技咨询导报,2007(25):48-49.
    [89]段宝林,金鑫,魏铜生等.FW型w火焰锅炉高负荷运行提高氧量困难的研究.热力发电,2007(3):48-50.
    [90]赵东升.LY2000图像火焰检测系统的应用.中国电力,2007,40(4):93-95.
    [91]杜宏璐,朱蔓菁等.MOXA多串口设备在图像火焰检测系统中的应用.现代电子技术,2007(17):146-148.
    [92]梁森,李凌.电站锅炉低NOx排放的参数辨识.动力工程,2006,26(5):670-675.
    [93]杨超,周怀春等.多层辐射能信号检测在燃烧诊断中的应用研究.中国电力,2007,40(11):62-65.
    [94]惠建明,傅玲琼等.高压自然循环干熄焦余热锅炉应用前景分析.能源研究与信息,2007,23(2):85-89.
    [95]陈广华.锅炉火焰检测装置的研究与开发:[硕士thesis].控制工程,华北电力大学,2005.
    [96]林燕凌,居滋培.锅炉监控系统的设计和实现.自动化仪表,2007,28(12):52-54.
    [97]梁绍华,李秋白等.锅炉在线燃烧优化技术的开发及应用.动力工程,2008,28(1):33-35.
    [98]高武,章云.基于DSP的锅炉煤粉火焰检测系统.科技广场,2007:143-144.
    [99]董威,安莹,周仁魁.基于辐照度测量法的火焰检测研究.光电工程,2007,34(2):41-44.
    [100]徐之,韩斌等.基于嵌入式系统和红外图像的火焰检测算法.科学技术与工程,2008,8(1):96-99.
    [101]雍占锋,常峥,吴立志.基于图像处理的火焰监测与燃烧诊断技术研究现状.北京石油化工学院学报,2006,14(1):38-41.
    [102]余俊辉,杨耀权,霍雨佳.基于图像校正的炉膛火焰检测算法.仪器仪表与分析监测,2007(2):16-17.
    [103]丁相午,阎席珍.燃烧炉火焰检测探头的改造.科技情报开发与经济,2007,17(8):282.
    [104]葛传力.热电站锅炉安全保护与火焰检测.安徽大学学报(自然科学版),2003,27(1):71-74.
    [105]朱伟波.数字图像处理技术在锅炉燃烧诊断和优化中的应用:[硕士thesis].模式识别与智能系统,华北电力大学,2004.
    [106]高存刚.图像火焰检测系统在电厂锅炉上的应用.安庆科技,2007(1):35-39.
    [107]常太华,苏杰,田亮.一种基于DSP实现火焰检测的方法.华北电力大学学报,2002,29(4):48-50.
    [108]敖丽敏,黎建华等.一种基于自适应小波变换的火焰检测方法的研究.热能动力工程,2006,21(6):594-597.
    [109]张国平,丁益华.智能图像火焰检测在炉膛安全监控中的应用.江苏电机工程,2002,21(1):24-26.
    [110]李明,胡立兰.智能型火焰检测装置的原理及其应用.河北电力技术,2003,22(3):35,54.
    [111]周怀春.炉内火焰可视化检测原理与技术[M].北京:科学出版社,2005.
    [112]娄春,周怀春,刘浩.一种煤粉炉内断面温度场在线监测系统.电站系统工程,2004,20(2):5-7.
    [113]张师帅,周怀春等.基于火焰图像处理的炉膛辐射能信号的检测及分析[J].热能动力工程,2002,17(98):166-168.
    [114]王式民,吕震中等.图像处理技术在全炉膛火焰监测中的应用[J].动力工程,1996,16(6):68-72.
    [115]屠昕,黄群星,赵静德等。基于Web的火焰图象处理和燃烧诊断系统的设计与实现。中国图象图形学报,2003,8(3):276-280.
    [116]卫成业.燃煤锅炉炉膛火焰温度场和浓度场测量及燃烧诊断[D].杭州:浙江大学热能工程研究所,2001.
    [117]华彦平,吕震中,邹煜。基于图像灰度复杂性测度的炉膛燃烧状况评价。动力工程,2002,22(1):1611-1614.
    [118]卫成业,王飞等.运用彩色CCD测量火焰温度场的校正算法.中国电机工程学报,2000,20(1):70-72.
    [119]白卫东.电站锅炉煤粉火焰安全监测及燃烧诊断方法研究.浙江大学博士论文,2006.
    [120]Jorge S.Marques, Pedro M.Jorge. Visual inspection of a thermalelectric plant. Sigal processing 2000,80:1577-1589.
    [121]Y.Yan,G..Lu,M.colechin.Monitoring and characterization of pulverized coal flames using digital imaging techniques.Fuel 2002,81:647-656.
    [122]Jennifer P. Spinti, David W. Pershing. The fate of char-N at pulverized coal conditions. Combustion and Flame 135 (2003) 299-313.
    [123]S. K. Aggarwal. A review of spray ignition phenomena:present status and future
    research. Prog. Energy Combust. Sci. Vol.24, pp.565-600,1998.
    [124]E. Gelfand, S. V. Khomik, L. T. Eremenko, S. A. Tsiganov. Basic features of the self-ignition of atomized liquid nitro/nitrate/nitrite compounds in a gaseous medium. Proceedings of the Combustion Institute, Volume 28,2000/pp.879-883.
    [125]B.K. Gullett, J.E. Dunn, S.-K. Bae, K. Raghunathan. Effects of combustion parameters on polychlorinated dibenzodioxin and dibenzofuran homologue prorles from municipal waste and coal co-combustion. Waste Management 18 (1998) 473-483.
    [126]Haiyun Sun, Wenjun Fang, Yongsheng Guo, Ruisen Lin. Investigation of bubble-point vapor pressures for mixtures of an endothermic hydrocarbon fuel with ethanol. Fuel 84 (2005):825-831.
    [127]G. Cerri, A. Sorrentit and Q. Zhang_. Optimization of cleaning timing and load allocation in steam generator management. Applied Thermal Engineering Vol.18, Nos3-4,pp.111-120,1998.
    [128]W. A. Kamal. Improving energy efficiency-The cost-effective way to mitigate global warming. Energy Convers. Mgmt Vol.38, No.1, pp.39-59,1997.
    [129]Molina, J.J. Murphy, F. Winter, B.S. Haynes, et al. Pathways for conversion of char nitrogen to nitric oxide during pulverized coal combustion. Combustion and Flame 156(2009):574-587.
    [130]S.O. Bade Shrestha, I. Wierzba, G.A. Karim. Prediction of the extent of diluents concentrations in flammability limited gaseous fuel-diluent mixtures in air. Applied Thermal Engineering 29 (2009):2574-2578.
    [131]Andres Mahecha-Botero, Tony Boyd, Ali Gulamhusein, et al. Pure hydrogen generation in a fluidized-bed membrane reactor:Experimental findings. Chemical Engineering Science,63 (2008):2752-2762.
    [132]T.F. Wall, S.P. Bhattacharya, L.L. Baxter, et al. The character of ash deposits and the thermal performance of furnaces. Fuel Processing Technology 44 (1995): 143-153.
    [133]K. D. Clark, P. G. Costen, G. D. Fowler, et al. The influence of combustion configuration and fuel type on heavy-metal emissions from a pulverizedfuel-fired combustor. Proceedings of the Combustion Institute, Vol.29,2002/pp.433-440.
    [134]L. Fryda, C. Sobrino, M. Cieplik, et al. Study on ash deposition under oxyfuel combustion of coal/biomass blends. Fuel,81 (2009):637-643.
    [135]W. Nimmo, S.S. Daood, B.M. Gibbs. The effect of 02 enrichment on NOx formation in biomass co-fired pulverised coal combustion. Fuel (2009), doi:10.1016.
    [136]Hustad J E., Sonju O K. Experimental Studies of Lower Flammability Limits of Gases and Mixtures of Gases at Elevated Temperatures. Comb. And Flame. 1988(71):283-294.
    [137]卫成业,严建华,商敏儿等.基于炉内火焰图像的燃烧诊断.动力工程,2003,23(3):2420-2427.
    [138]马少华,华莹,李小白.基于相空间重构的锅炉炉膛火焰信号分析.热能动力工程,2007,22(4):440-442,456.
    [139]李永华,闫顺林,张恩先.电站锅炉燃烧安全性综合评判与诊断系统的研究.中国电力,2002,35(5):20-22.
    [140]罗自学,杨超,周怀春.炉膛辐射能信号的提取机理及其应用研究.动力工程.2005,25(3):374-377.
    [141]罗自学,杨超,周怀春.燃烧三维温度场及辐射能信号特性的分析.电站系统工程.2005,21(2):18-20.
    [142]罗自学.引入辐射能信号的锅炉燃烧检测及优化控制:[博士thesis].热能工程,华中科技大学,2007.
    [143]罗自学,梁培露,周怀春,et al.引入辐射能信号的锅炉氧量寻优控制研究.中国电机工程学报.2006,26(23):100-103.
    [144]于达仁,范轶,徐志强.炉膛辐射能信号和热量信号的信息融合方法.中国电机工程学报.2003,23(4):158-161,171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700